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ABSTRACT

As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is
realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing
noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce
a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full
covariance matrix of the travel-time measurements. This model depends only on the expectation value of the
filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface.
The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun
region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength
of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps
increases roughly as the square root of the observation time and is at maximum for a distance near half the length
scale of supergranulation.

Subject headings: methods: data analysis — Sun: granulation — Sun: helioseismology — Sun: interior —
Sun: oscillations — waves

1. INTRODUCTION

The purpose of time-distance helioseismology (Duvall
et al. 1993) is to infer the local structure and dynamics of the
solar interior by measuring and interpreting the travel times of
solar waves between different locations on the Sun’s surface.
Although the foundations of time-distance helioseismology
have not been written in a consistent form yet, the essential
steps that need to be followed are well known. First, we must
have a well-defined and meaningful procedure to measure
travel times (and other quantities) from the observed cross-
covariances. Second, we must derive the equations that connect
the observations to perturbations in internal solar properties
with respect to a solar model: the linear forward problem.
Third, we must solve these integral equations to infer solar
internal properties: the inverse problem.

In global helioseismology, it is well understood that the
precision of the measurement of the pulsation frequencies is
affected by realization noise resulting from the stochastic na-
ture of the excitation of solar oscillations (e.g., Woodard 1984;
Duvall & Harvey 1986; Schou 1992; Libbrecht 1992; Toutain
& Appourchaux 1994). Little is known, however, of the prop-
erties of the noise in time-distance helioseismology mea-
surements. It is important to study these properties, since the
presence of noise affects all three steps mentioned above: the
travel-time measurement procedure must be robust with re-
spect to noise, the forward problem must be solved for the
agreed on definition of travel time, and the correlations in the
measurements must be taken into account in the inversion
procedure. Ultimately, a good understanding of the noise
properties is required to assign correct errors on the solar
perturbations inferred through time-distance helioseismology.

In a commonly used averaging scheme, temporal cross-
covariances are constructed between the Doppler signal
observed at a given location on the Sun and a concentric
annulus (Duvall et al. 1993, 1996). Center-to-annulus wave
travel times are traditionally measured by fitting a Gaussian
wavelet to the cross-covariances (e.g., Kosovichev & Duvall

1997). Baudin & Korzennik (1998) attempted to estimate
the noise level in travel times through Monte Carlo simu-
lations; unfortunately, they assumed that the noise in the
cross-covariances could be modeled by additive uncorrelated
Gaussian noise (temporal bins are in fact highly correlated).
They pointed out that fits to the cross-covariances may not
converge for short observation times. An interesting approach,
pioneered by Jensen et al. (2003), consists of estimating the
noise directly from the data by measuring the rms travel time
within a quiet-Sun region. The underlying assumptions are
that the fluctuations in the travel times are dominated by noise,
not by ‘‘real’’ solar signals, and that the travel times measured
at different locations can be seen as different realizations of the
same random process. By real solar signals we mean travel-
time perturbations due to inhomogeneities in the solar interior
that are slowly varying over the time of the observations.
Jensen et al. (2003) studied the correlation between the travel
times as a function of the distance between the central points,
at fixed annular radius. Their method, however, remains to be
proved to be correct and has no predictive power.
The main purpose of this paper is to derive a model for

the noise covariance matrix of the travel times; this model
can be evaluated for different spatial separations and for var-
ious averaging schemes (annuli, quadrants, point-to-point) and
travel-time types (mean, difference, one-way). The organiza-
tion of the paper is as follows: We begin with a new robust
definition of travel times that can be applied to very noisy
cross-covariances, i.e., when the observing time T is short and
when spatial averaging is minimal. For the sake of simplicity,
we do not fit for the amplitude of the cross-covariance and
restrict our attention to quiet-Sun data. Using SOHOMDI data
we estimate the covariance of travel times using the method of
Jensen et al. (2003). We then derive a model for the covari-
ance of travel times due to realization noise. We assume that
the wave field is stationary and homogeneous over a small
region in Cartesian geometry. In this model, travel-time fluc-
tuations are only due to the stochastic nature of the wave field,
and the noise falls off as T�1/2. We find excellent agreement
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between the data and the model for short observation times
and without spatial averaging, i.e., when the fluctuations in the
data are dominated by realization noise. For larger T or with
annular averaging, there are extra correlations in the data in-
troduced by real solar perturbations (e.g., supergranulation)
that do not follow the T�1/2 law. We determine the signal-to-
noise ratio in travel-time measurements for the quiet Sun. We
believe that our simple formula for the noise covariance
matrix can be used reliably in future inversions of quiet-Sun
point-to-point travel times. For the case of point-to-annulus
travel time measurements we find that Monte Carlo simu-
lations of the noise covariance are more accurate than simple
analytical approximations.

2. ROBUST TRAVEL TIME MEASUREMENTS

Let us denote by �(x, t) the filtered oscillation signal ob-
served at point x and time t, where the filter acts by multi-
plication in the Fourier domain. In this paper we consider two
types of filters: an f-mode filter that removes all power away
from the f-mode ridge (Fig. 1a) and a Gaussian phase-speed
filter for p-modes (Fig. 2a). The signal is sampled at times
ti ¼ iht over a time interval of length T, where ht ¼ 1 minute
is the sampling rate and i is an integer in the range �N=2 �
i < N=2. In this paper we define the temporal cross-covariance
function between points x1 and x2 as

C x1; x2; tj
� �

¼ ht

T � tj
�� ��X

i

� x1; tið Þ� x2; ti þ tj
� �

: ð1Þ

This definition is slightly modified from the definition of
Gizon & Birch (2002) to include the normalization factor
1=(T � jtjj), which becomes significant when T is small. Tra-
ditionally, the cross-covariance function has been computed
over time intervals T � 8 hr and averaged spatially over points
x2 that belong to an annulus or quadrants centered at x1
(Duvall et al. 1993, 1997). The time interval T puts a limit on
the temporal scale of the solar phenomena that can be studied
with time-distance helioseismology: the signature of solar
features with a lifetime less than T will be reduced because of
the temporal averaging. In addition, the spatial averaging may
also reduce the ability of time-distance helioseismology to
resolve features with small spatial scales. In order to maximize
the potential resolution of time-distance helioseismology, we
would like to be able to measure travel times from cross-
covariances measured with shorter T and with as little spatial
averaging as possible. The difficulty with measuring travel
times for small T with minimal spatial averaging is that the
cross-covariance function can be very noisy. Figure 1c shows
an example cross-covariance function (for f-modes) measured
over a time interval T ¼ 128 minutes between two pixels
(spatial sampling hx ¼ 0:83 Mm). Conventional fitting meth-
ods will fail on cross-covariances with this level of noise.
Even when the fit converges, for less noisy data, the distri-
bution of the phase travel times will not be a unimodal
Gaussian distribution but a periodic distribution with an
�5 minute period (the typical wave period) because the enve-
lope of the cross-covariance is not sufficiently localized in time.

Fig. 1.—The f-mode power and cross-covariance functions. (a) Cut through the filtered power spectrum at ky ¼ 0. The filter only allows power near the f-mode
ridge. (b) Spatially averaged cross-covariance function (thin line) for # ¼ x2 � x1 ¼ (10 Mm) x̂, where x̂ points west. The thick dot-dashed line shows the window
function f (t) used in the travel-time measurement procedure (see text). The thick line shows the reference cross-covariance function, C ref. (c) Cross-covariance C(x1,
x2, t) for a single pair of points (thin line). The observation time is T ¼ 128 minutes, and the pixel size is hx ¼ 0:83 Mm. Overplotted is the reference cross-
covariance C ref from (b) (thick line). Note the scale difference between (b) and (c).

Fig. 2.—The p-mode power and cross-covariance functions. (a) Cut through the filtered power spectrum at ky ¼ 0. The Fourier filter is a phase speed filter of the
form exp ½�(!=k � v)2=(2s2)�, where v ¼ 36:5 km s�1 and s ¼ 2:5 km s�1. The three visible ridges are p1, p2, and p3. (b) Spatially averaged cross-covariance
function (thin line) for # ¼ x2 � x1 ¼ (25 Mm) x̂. The thick dot-dashed line shows the window function f (t) used in the travel-time measurement procedure (see
text). The thick line shows the reference cross-covariance function, C ref. (c) Cross-covariance C(x1, x2, t) for a single pair of points (thin line). The observation
time is T ¼ 128 minutes, and the pixel size is 0.83 Mm. Overplotted is the reference cross-covariance C ref from (b) (thick line). Note the scale difference between (b)
and (c).
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In order to fit cross-covariances that are noisy, we introduce
a new definition of travel time. Following a suggestion by
T. L. Duvall, Jr. (2002, private communication), we start by
constructing a smooth cross-covariance, denoted by C �, ob-
tained by adding a small fraction � of the observed cross-
covariance C to a smooth reference cross-covariance. For �
small enough, the function

C � x1; x2; tð Þ ¼ �C x1; x2; tð Þ þ 1� �ð ÞC ref x2 � x1; tð Þ ð2Þ

is well behaved and can be fitted with standard techniques.
Here � is a free parameter that is less than 1 and greater than 0.
The reference cross-covariance C ref can, for example, be com-
puted from a standard solar model. For cross-covariances that
have little noise, the choice � ¼ 1 is reasonable (the standard
definition), but as noise increases the parameter � should be
reduced.

Let us denote by �+(x1, x2) the travel time for waves that
move from x1 to x2 and by ��(x1, x2) the travel time for waves
that move from x2 to x1. To measure the one-way travel times
�+ and �� from C �, we use a method similar to the one de-
scribed by Gizon & Birch (2002). As explained in Appendix B,
�+ is such that it minimizes the ‘‘badness of fit’’ between C �(t)
and C ref (t � ��þ) computed within a time window f (t). The
isolation window f (t), which is 0 for t < 0, selects an interval
around the (first bounce) arrival time of the wave packet.
Similarly, �� is measured from C �(t) within the time window
f (�t). Examples of the function f (t) are shown in Figures 1b
and 2b. By choosing the amplitude of C ref to match an estimate
of the amplitude of the expectation value of C, the travel times
are essentially independent of � for noiseless data. For our
definition to be valid whatever the level of noise, we take the
limit � ! 0. In this limit, the minimization can be done ana-
lytically, and we obtain (see Appendix B)

�� x1; x2ð Þ ¼ ht
X
t

W� x2 � x1; tð Þ

; C x1; x2; tð Þ � C ref x2 � x1; tð Þ
� �

: ð3Þ

The sum over t is a short notation to mean the sum over all
discrete times in the interval �T=2 � t < T=2 (see Appen-
dix A). The weight functions W� are given by

W� #; tð Þ ¼ � f �tð ÞĊ ref #; tð Þ
ht
P

t 0 f �t 0ð Þ Ċ ref #; t 0ð Þ
� �2 ; ð4Þ

where Ċ ref is the time derivative of C ref. For both f- and
p-modes, the functions C ref that we use are very close to
the measured spatial averages of C (see Figs. 1b and 2b).
Equation (3) is our definition of travel time for the remainder
of this paper.

This definition has a number of useful properties. First, it is
very robust with respect to noise. The fit reduces to a simple
sum that can always be evaluated whatever the level of noise.
Second, it is linear in the cross-covariance. As a consequence,
averaging various travel-time measurements is equivalent to
measuring a travel time on the average cross-covariance. This
is unlike previous definitions of travel time that involve non-
linear fitting procedures. Third, the probability density func-
tions of �+ and �� are unimodal Gaussian distributions. This
means, in particular, that it makes sense to associate an error
with a travel-time measurement. Another way to illustrate this
point is to plot the distribution of the travel times obtained for

different spatial locations x1 at fixed x2 � x1, in a quiet-Sun
region. For short T (128 minutes), it is apparent in Figure 3
that travel times are normally distributed. Fourth, our new
definition reduces to the definition of Gizon & Birch (2002)
when C is noiseless (T ! 1). This means that sensitivity
kernels obtained according to the method developed by Gizon
& Birch (2002) remain valid with this definition of travel time.
We note that this simplified definition is only meaningful

when the expectation value of the cross-covariance is mostly
independent of position at fixed x2 � x1; thus, we restrict the
discussion to quiet-Sun data. Our definition could presumably
be generalized to fit for the amplitude and other parameters. It
would indeed be necessary to fit for the amplitude of the cross-
covariance to measure travel times around sunspots.
Throughout the rest of the paper we refer to various com-

binations of the one-way travel times ��. The travel-time
difference (‘‘diff ’’) and the mean travel time (‘‘mean’’) are

�diA x1; x2ð Þ ¼ �þ x1; x2ð Þ � �� x1; x2ð Þ; ð5Þ

�mean x1; x2ð Þ ¼ 1

2
�þ x1; x2ð Þ þ �� x1; x2ð Þ½ �: ð6Þ

In the following we use the short notation �a(x1, x2), where
the subscript a can be +, �, diff, or mean (for point-to-point
measurements).
For the annulus geometry we define the cross-covariance,

Cann(x, �, t), obtained by averaging over points that belong
to an annulus of mean radius � centered at position x. More
precisely,

Cann x; �; tð Þ ¼
P

r @ k r� x k ��ð ÞC x; r; tð ÞP
r 0 @ k r0 � x k ��ð Þ ; ð7Þ

where sums are over all spatial pixels on the solar surface and
the spatial weight function @ is chosen to be Gaussian:

@(x) ¼ e�x2=(2w2): ð8Þ

Fig. 3.—Histogram of the observed f-mode travel times when the obser-
vation time is T ¼ 128 minutes. The solid line is for the point-to-point travel
times �+ measured between pairs of individual pixels separated by � ¼
10 Mm (the pixel size is 0.83 Mm). The distribution of �+ is Gaussian with a
standard deviation of 2.8 minutes. The dot-dashed line gives the distribution
of the point-to-annulus travel times �out , which is Gaussian with a standard
deviation of 22 s.
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The parameter w fixes the thickness of the annulus, which we
choose to be half the pixel size, w ¼ hx=2. Other choices for
the function @ are possible; for example, Duvall takes @(x) ¼
1 if jxj < hx=2 and 0 otherwise. From the cross-covariance
Cann, we can define the travel times for waves traveling from
the central point to the annulus (out) and from the annulus
to the central point (in) as

�out inð Þ x; �ð Þ ¼ ht
X
t

Wout inð Þ �; tð Þ

; Cann x; �; tð Þ � C ref
ann x; �; tð Þ

� �
; ð9Þ

where C ref
ann is a reference cross-covariance appropriate for the

annulus geometry (see Appendix B). For the annulus geom-
etry, the difference (‘‘oi’’) and mean (‘‘mn’’) travel times are

�oi x; �ð Þ¼ �out x; �ð Þ � �in x; �ð Þ; ð10Þ

�mn x; �ð Þ¼ 1

2
�out x; �ð Þ þ �in x; �ð Þ½ �: ð11Þ

In the following we use the short notation ��(x; �), where the
subscript � can be out, in, oi, or mn (for annuli).

3. SPATIAL CORRELATIONS OF MDI TRAVEL TIMES

In this section, we consider the method that Jensen et al.
(2003) used to estimate noise in the travel times. They esti-
mated travel-time correlations from the data using a spatial
average instead of an ensemble average (the idea is that travel
times measured for pairs of points that are well separated in
space are like independent realizations). This method for es-
timating noise is only valid when the travel-time fluctuations
are completely dominated by realization noise and the per-
turbations due to real solar signals (e.g., supergranulation) are
negligible. As is shown below, this condition is met for small
observation times, for instance, T ¼ 128 minutes, and point-
to-point measurements.

Given any real function Q of horizontal vectors x, x 0, : : : ,
we define the spatial average hQi of Q by

Q x; x0; : : :ð Þh i ¼ 1

n

X
r

Q xþ r; x0 þ r; : : :ð Þ; ð12Þ

where n is the total number of available samples and each
sample corresponds to a discrete horizontal offset r. For any
two real functions X and Y, estimates of the covariance of X
and Y, the standard deviation of X, and the correlation coef-
ficient between X and Y are given by

Cov X ; Yh i ¼ X Yh i � Xh i Yh i; ð13Þ

� Xh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cov X ; Xh i

p
; ð14Þ

Cor X ; Yh i ¼ Cov X ; Yh i= � Xh i� Yh ið Þ: ð15Þ

In the case of point-to-point travel-time measurements, we
consider two pairs of points with coordinates (x1; x2) and
(x01; x02), as depicted in Figure 4a. According to the definition
of equation (13), the covariance of the travel times estimated
by spatial averaging of the data can be written as

Covdataa;b d; #; #0ð Þ ¼ Cov �a x1; x2ð Þ; �b x01; x02
� �� �

: ð16Þ

The function Covdataa;b depends on the types of travel times (the
indices a and b can be either +, �, mean, or diff ), the sepa-
ration d ¼ x01 � x1, the vectors # ¼ x2 � x1 and #0 ¼ x02 �
x01, and the duration of the observation T. The computation of
Covdataa;b involves a spatial averaging of the product �a(x1;
x2)�b(x

0
1; x02) at fixed parameters d, #, and #0. Similarly, we

denote the standard deviation and the correlation coefficients
of the data by

�data
a (#) ¼ � �a x1; x1 þ#ð Þh i; ð17Þ

Cordataa;b d; #; #0ð Þ ¼ Cor �a x1; x2ð Þ; �b x01; x02
� �� �

; ð18Þ

in accordance with the definitions of equations (14) and (15).
In the case of point-to-annulus travel-time measurements,

we consider two annuli with centers at coordinates x and x 0

and radii � and �0, as depicted in Figure 4b. We estimate the
covariance, standard deviation, and correlation coefficients by
spatial averaging at fixed d ¼ x0 � x, �, and �0. We use the
following notation:

Covdata�;� d; �; �0ð Þ ¼ Cov �� x; �ð Þ; �� x0; �0ð Þ
� �

; ð19Þ
�data
� �ð Þ ¼ � �� x; �ð Þh i; ð20Þ

Cordata�;� d; �; �0ð Þ ¼ Cor �� x; �ð Þ; �� x0; �0ð Þ
� �

; ð21Þ

where the indices � and � refer to the type of travel times
(either in, out, oi, or mn). Remember that all these quantities
are functions of the duration of the observation, T.

Throughout this paper we use data from the SOHO MDI
experiment (Scherrer et al. 1995). We consider a 35 hr long
time series of high-resolution Dopplergrams obtained in 2001
May at a cadence of ht ¼ 1 minute. A region of area L2 ¼
(250 Mm)2 centered at 13� latitude, devoid of sunspots or
plage, was tracked at the Carrington rate and interpolated onto
Postel’s azimuthal equidistant projection using the standard
MDI pipeline processing. The spatial sampling is 0.068 helio-
centric degrees (hx ¼ 0:83 Mm) or twice the original high-
resolution pixel size at disk center. Better spatial sampling is
unnecessary, as is shown in x 5. We split the data into 16 con-
secutive intervals of 128 minute length. We filter the data
cubes using one of two types of filters: either an f-mode filter
that removes all power away from the f-mode ridge (Fig. 1a)

Fig. 4.—(a) Geometry for the covariance Cova,b(d, #, #0, T ) for point-to-
point measurements. The travel times �a(x1, x2) and �b(x

0
1, x

0
2) are measured

between pairs (x1, x2) and (x01, x
0
2). Also shown are the vectors # ¼ x2 � x1,

#0 ¼ x02 � x01, and d ¼ x01 � x1. (b) Geometry for the covariance Cov�, � (d,�,
�0, T ) for center-to-annulus travel times. The travel time ��(x;�) is measured
between x and the concentric annulus with radius �, and �� (x

0; �0) is mea-
sured between x 0 and the concentric annulus with radius �0. Also shown is the
vector d ¼ x0 � x.
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or a Gaussian phase-speed filter for p-modes (Fig. 2a). We then
measure both point-to-point and center-to-annulus travel times
from the filtered data for each 128 minute segment using the
procedures described in x 2. For T ¼ 128 minutes, we then
estimate the travel-time covariance functions by spatial aver-
aging (we also average over all 16 segments to further improve
the measurements). The observations are presented in xx 5
and 6 and compared with the model developed in x 4.

4. A SIMPLE MODEL FOR THE NOISE COVARIANCE

4.1. Assumptions of the Model

Motivated by studies of realization noise for global helio-
seismology (e.g., Libbrecht 1992; Toutain & Appourchaux
1994), we begin by modeling the statistical properties of the
discrete Fourier transform of the signal, �(k, !), where k is
the horizontal wavevector and ! is the temporal angular fre-
quency. For an observation of duration T and square area L2,
the discrete Fourier transform is given on a grid with incre-
ments of size hk ¼ 2�=L for wavenumbers and h! ¼ 2�=T for
the angular frequency (Appendix A).

Let us denote by �(x, t) the physical wave field on the
surface of the Sun (for instance, the line-of-sight Eulerian
velocity). The observed wave field is obtained by multipli-
cation of �(x, t) with a window function W(x, t), equal to 1
when data are available and 0 otherwise. In the Fourier do-
main, the filtered observable, �(k, !), is given by

�(k; !) ¼ F(k; !)½� �W �(k; !); ð22Þ

where the asterisk is the three-dimensional convolution op-
eration and F(k, !) is the analysis filter. The application of a
window function has two effects. The window function in-
duces correlations in the Fourier domain and smears the power
over a volume of size �h2kh!. Note that for short observation
times T, the temporal window function can cause significant
broadening of the spectrum. In the absence of perturbations
(e.g., no temperature variations and no flows), it is reasonable
to assume that �(x, t) is statistically spatially homogeneous
and stationary in time, which implies that E[�(x, t)�(x 0, t 0 )] is
only a function of x� x0 and t � t 0. In Fourier space, this means
that the �(k, !) are uncorrelated, except that ��(k; !) ¼
�(�k; �!), as �(x, t) is real.

The simple noise model that we use in this paper assumes
that there are no correlations between the values �(k, !) at
distinct grid points (recall that the grid spacing is given by hk
and h!). We ignore the correlations introduced by convolution
with the window function; these correlations are small when
the spectrum of � is smooth on the scales of hk and h! . A
necessary condition for this to be valid is that the typical
damping time of the waves is less than T, so that the line width
is larger than h! . At each point (k, !) in the Fourier grid, we
model the observable as

�(k; !) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P(k; !)

p
N (k; !); ð23Þ

where N is a complex Gaussian random variable with in-
dependent real and imaginary parts, zero mean, and unit
standard deviation (E½NN �� ¼ 1). The random variables
N (k, !) are uncorrelated except for the constraint N �

(k; !) ¼
N (�k; �!), which ensures that �(x, t) is real. One can in-
voke the central limit theorem to justify employing normal
probability density functions. The expectation value of the

power spectrum, i.e., the variance of �(k, !), is denoted by
P(k, !).
It is not straightforward to compute the expectation value

of the power spectrum P(k, !) from first principles; however,
it is possible (Birch et al. 2004). Here we estimate P(k, !)
directly from the data. For example, for T ¼ 128 minutes and
L ¼ 250 Mm, we consider 16 consecutive 128 minute quiet-
Sun MDI data sets, compute their power spectra, and then
compute the average of these spectra. The resulting average
power spectrum, obtained on the grid with h!=2� ¼ 1=T ¼
130:2 �Hz and Rhk ¼ 2�R=L ¼ 17:5, is smooth and can be
used as an estimate for the expectation value (R ¼ 696 Mm is
the solar radius). Remember that for each choice of T and L
there are corresponding grid spacings in Fourier space. In
addition, P(k, !) depends on T and L through the effect of
the temporal and spatial window functions.
We have now specified the procedure to compute a single

realization of the observable for particular values of T and L
(eq. [23]). In order to estimate the correlations between vari-
ous travel-time measurements, we consider many realizations
of the observable and measure the travel times for each. By
averaging over many realizations we can estimate the travel-
time covariance that results purely from realization noise. This
approach is identical to the one used in global helioseismology
(e.g., Toutain & Appourchaux 1994). Modeling the Fourier
spectrum as consisting of independent bins and Gaussian
complex random variables is the simplest approach that can be
used. The ultimate justification of the model will, however, be
its efficacy in explaining the observed data.

4.2. Point-to-Point Travvel Times

For the case of point-to-point travel times, we can compute
analytically the average of products of travel times over an in-
finity of realizations, i.e., take the expectation value. Given two
complex random variables X and Y, the covariance Cov[X, Y ],
standard deviation �[X ], and correlation coefficient Cor[X, Y ]
are defined by

Cov X ; Y½ � ¼ E X Y �½ � � E X½ �E Y �½ �; ð24Þ

� X½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cov X ; X½ �

p
; ð25Þ

Cor X ; Y½ � ¼ Cov X ; Y½ �= � X½ �� Y½ �ð Þ; ð26Þ

where E takes the expectation value (ensemble average).
For point-to-point travel times, we use again the geometry

depicted in Figure 4a. The noise covariance of the travel times
estimated by averaging over realizations we denote by

Covnoisea;b d; #; #0ð Þ ¼ Cov �a x1; x2ð Þ; �b x01; x02
� �� �

: ð27Þ

In the model, the covariance is translation invariant and thus
depends only on the difference d ¼ x01 � x1, the vectors # ¼
x2 � x1 and #0 ¼ x02 � x01, and the duration of the observation
T. As described in x 2, indices a and b refer to either +, �,
mean, or diff.
In Appendix C we derive the following result:

Covnoise
a;b ¼ (2�)3

T
h!

X
!

W �
a #; !ð Þ

; Wb #0; !ð ÞC d; !ð ÞC x2 � x02; !
� �� �

þ W �
b #

0; !ð ÞC x02 � x1; !
� �

C x2 � x01; !
� �� �

: ð28Þ
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In this expression, Wa(#, !) is the temporal Fourier transform
of Wa(#, t). Recall that the travel times �a(x1, x2) are obtained
from the cross-covariance function C(x1, x2, t) through the
appropriate weight functions Wa(#, t). For example, for a ¼
diA, we have WdiA ¼ Wþ �W�, where W� are defined in
equation (4). In equation (28), the function C(#, !) is the
expectation value of the cross-covariance function, obtained
by taking the inverse spatial Fourier transform of the expected
power spectrum:

C(r; !) ¼ h2k

X
k

h!h
2
kP(k; !)eik = r; ð29Þ

with

P k; !ð Þ ¼ E j� k; !ð Þj2
h i

: ð30Þ

Equation (28) shows that the dominant T-dependence of the
covariance is like 1/T (there is a small effect from the temporal
window function through P). Otherwise, it depends only on
the power spectrum P(k, !) and the weight functions Wa and
Wb. Evaluating equation (28) is more efficient computationally
than performing a large number of Monte Carlo simulations.
Note that we can easily obtain the correlation function Cornoisea;b
and the standard deviation �noise

a from Covnoisea;b .

4.3. Center-to-Annulus Travvel Times

Equation (28) can be averaged over all the pairs of points
that contribute to the center-to-annulus travel times. For the
case in which P(k, !) does not depend on the direction of k,
we can obtain an analytical approximation to the noise co-
variance Covnoise�;� d; #; #0ð Þ, as shown in Appendix D.2.
This approximate result, equation (D6), is useful, as it gives
insight into the somewhat complicated behavior of the co-
variance. However, to evaluate the noise model exactly, we
perform Monte Carlo simulations. We generate realizations of
the observable � using the assumptions of the noise model
described in x 4.1. We then measure center-to-annulus travel
times from each realization and then compute the statistical
properties of the travel times. The results of the Monte Carlo
simulations are shown in x 5.2.

5. COMPARISON OF DATA AND MODEL

5.1. Point-to-Point Travvel Times

Figure 5a shows the standard deviation in point-to-point
f-mode travel-time measurements from the data and the model
for T ¼ 128 minutes. The filtered power spectrum is shown in
Figure 1a; the dominant wavelength is about k ¼ 5 Mm. We
look at the case in which # ¼ � x̂, i.e., the vector x2 � x1
points west. For T ¼ 128 minutes, the data are completely
dominated by realization noise, and the noise model (x 4.1)
accurately describes the standard deviation of the data. In
Appendix D.1 we show that the standard deviation of �diff
approximately scales with distance � according to

�diA(�) /
ffiffiffiffi
�

p
exp (!0��=g); ð31Þ

where !0 is the dominant frequency of the f-modes, � is the
FWHM of the f-mode ridge around !0, and g is the gravita-
tional acceleration at the solar surface. The increase of the
standard deviation with distance is due to the combination of
geometrical spreading (

ffiffiffiffi
�

p
factor) and wave damping (ex-

ponential factor). We also note that the standard deviation

�diff (�) is larger than �mean(�) by a factor of 2, except for when
� < k. This can be understood by writing the ratio �diff /�mean

in terms of the correlation Cor+,� between �+ and ��:

�diA

�mean

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Corþ;�

1þ Corþ;�

s
: ð32Þ

Since waves propagating in different directions are uncorre-
lated in the absence of solar perturbations, Corþ;� ’ 0 for
� > k (Fig. 5b), and thus �diA=�mean ’ 2. In the near field,
Cor+,� oscillates as a function of � around 0 with a period of
roughly k/2.

Figure 6 shows the correlations Cora, b(d ) of the point-to-
point f-mode travel times as a function of d ¼ (dx; dy) at fixed
# ¼ #0 ¼ (10 Mm) x̂ and T ¼ 128 Mm, for both the data
and the noise model. The plots show the cases of a ¼ b ¼ diA,
a ¼ b ¼ mean, and the cross term (a; b) ¼ (mean; diA ). The
correlation of the cross-term is always less than 0.1 in abso-
lute value; this correlation would be exactly 0 if the power
spectrum were isotropic. The correlations Cora,a(d ), where
a ¼ mean or diff, look similar and fall off very rapidly with
d¼k d k; they both have a central peak with a FWHM of
l ¼ 2:5 Mm. Since the central wavelength of the f-mode
power spectrum is k ’ 5 Mm, the correlation length is l ’
k=2. The spatial sampling of the filtered wave field is suffi-
cient, as the pixel size is less than l/2. The correlation peak has
a sidelobe with amplitude of about 0.1 at distance 2.5 Mm
away from d ¼ 0. The correlation maps display an anisotropic
component due to the instrumental modulation transfer func-
tion (MTF) (astigmatism) and line-of-sight projection effects
( power depends on the direction of k); this is taken into ac-
count in the noise model. Most of the fine details in the cor-
relations are accurately reproduced by the noise model, in
particular, near d ¼ �#, i.e., where x01 ¼ x2 or x02 ¼ x1.

Rather than computing the covariance Cova,a(d ) by explicit
spatial averaging (x 3 and eq. [12]), we can obtain the covari-
ance by inverse Fourier transformation of the power spectrum
of the travel maps �a(x1, x2) at fixed #. It can be shown that

Cova;a dð Þ ¼ h2k

X
k

�a kð Þj j2eik = d; ð33Þ

where �a(k) is the inverse Fourier transform of �a(x1; x1 þ#)
with respect to the point x1:

�a(k) ¼
h2x

(2�)2

X
x1

�a(x1; x1 þ#)e�ik = x1 : ð34Þ

Fig. 5.—(a) Standard deviations �diff and �mean of the f-mode point-to-point
travel times as a function of distance �. The observation time is T ¼
128 minutes. The standard deviations from the data (circles) and from the
noise model (thick lines) are shown. The thin lines show the far-field ap-
proximation from Appendix D.1. (b) Correlation between �+ and �� from the
data (diamonds) and from the noise model (solid line).
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The power spectra Sa(k) ¼ �a(k)j j2 for observed f-mode travel
times are plotted in Figure 7 for both a ¼ diA and a ¼ mean at
� ¼ 10 Mm. Such plots were first studied by T. L. Duvall, Jr.
(2002, private communication). According to equation (33)
the power Sa(k) is the Fourier transform of the covariance map

Cova,a(d ) shown in Figure 6. We see that there is a critical
wavenumber kc beyond which the power drops precipitously.
This cutoff occurs at kc ’ 4�=k (see Appendix E). This is
consistent with a correlation length l ’ k=2, as seen in the
correlation maps (Fig. 6). There are noticeable differences

Fig. 7.—Spatial power spectra of the point-to-point travel-time maps �diff and �mean at fixed# ¼ (10 Mm) x̂. The travel times are measured using the f-mode filter
and T ¼ 128 minutes. The power Sa(k) ¼ �a(k)j j2 is equivalent to the Fourier transform of the covariance map Cova,a(d ) shown in Fig. 6. (a) Power Sdiff (k) as a
function of wavevector k ¼ (kx; ky). The spatial Nyquist frequency is at kR ¼ 2600. The gray scale is logarithmic and covers the range between the two dashed lines
shown in (c). (b) Power Smean(k). (c) Azimuthal average of Sdiff (k) (solid line) and the azimuthal average of Smean(k) (thick dashed line) vs. k ¼k k k. The vertical
lines show the values of k corresponding to the wavelengths k and k/2, where k ¼ 5 Mm for the f-mode case.

Fig. 6.—Correlation plots for f-mode point-to-point travel times. The top row of panels shows the data correlations Cordataa;b (d ) as functions of d ¼ (dx; dy) at fixed
# ¼ #0 ¼ (10 Mm) x̂ and T ¼ 128 Mm (see x 3, Fig. 4a). The left column is for a ¼ b ¼ diA, the middle column is for a ¼ b ¼ mean, and the right column is for
the cross-term (a; b) ¼ (mean; diA ). The color scale is restricted to the range [�0.05, 0.1] to show details. The middle row of panels shows the corresponding noise
correlations Cornoisea;b (d ) estimated from the model described in x 4.1. The bottom row of panels shows slices at dy ¼ 0 through the travel-time correlation matrices as
functions of dx . In these plots, the circles show the data, and the solid curves show the noise model.
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between the spatial power maps Sdiff (k) and Smean(k), in par-
ticular, along the line ky ¼ 0. For short T, most of these details,
which come directly from the shape of the filtered power
spectrum P(k, !) of the wave field, can be reproduced by the
noise model from x 4.1 and equation (33). The contribution

from supergranulation at kR �120 can hardly be seen in point-
to-point travel times: it becomes more obvious in center-to-
annulus travel times (x 5.2).

Figure 8 shows the data and the model of the covariance
of the point-to-point travel times, Cora,b(d ), in the case of the

Fig. 8.—Correlation plots for p-mode point-to-point travel times. The top row of panels shows the data correlations Cordataa;b (d ) as functions of d ¼ (dx; dy) at fixed
# ¼ #0 ¼ (25 Mm) x̂ and T ¼ 128 Mm (see x 3, Fig. 4a). The left column is for a ¼ b ¼ diA, the middle column is for a ¼ b ¼ mean, and the right column is for
the cross-term (a; b) ¼ (mean; diA). The color scale is restricted to the range [�0.05, 0.1] to show details. The middle row of panels shows the corresponding noise
correlations Cornoisea;b (d ) estimated from the model described in x 4.1. The bottom row of panels shows slices at dy ¼ 0 through the travel-time correlation matrices as
functions of dx. In these plots, the circles show the data, and the solid curves show the noise model.

Fig. 9.—Spatial power spectra of the point-to-point travel-time maps �diff and �mean at fixed # ¼ (25 Mm) x̂. The travel times are measured using the p-mode
filter and T ¼ 128 minutes. The power Sa(k) ¼ �a(k)j j2 is equivalent to the Fourier transform of the covariance map Cova,a(d ) shown in Fig. 8. (a) Power Sdiff (k) as
a function of wavevector k ¼ (kx; ky). The spatial Nyquist frequency is at kR ¼ 2600. The gray scale is logarithmic and covers the range between the two dashed
lines shown in (c). (b) Power Smean(k). (c) Azimuthal average of Sdiff (k) (thick solid line) and the azimuthal average of Smean(k) (thick dashed line) vs. k ¼k k k. The
vertical lines show the values of k corresponding to the wavelengths k and k/2, where k ¼ 10 Mm for the p-mode case.
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p-mode filter shown in Figure 2a. The parameters are the same
as in the f-mode case except for # ¼ #0 ¼ (25 Mm) x̂. The
width l of the central peak is larger than in the f-mode case
because the dominant wavelength of the filtered p-mode power
is about k ¼ 10 Mm. The relation l ’ k=2 remains valid for
the p-mode example. The power spectra Sa(k) for the p-mode
case are shown in Figure 9, and again the critical wavenumber
is given by kc ’ 4�=k.

5.2. Center-to-Annulus Travvel Times

Figure 10a shows the standard deviations, �oi and �mn, for
the f-mode center-to-annulus travel times as a function of
annular radius � for T ¼ 128 minutes. As T is small, the noise
model is in close agreement with the data. For large distances
�, we have �oi=�mn ’ 2, as we saw before in the point-to-
point case (x 5.1). However, for distances � < 8 Mm the
standard deviation of the ‘‘oi’’ travel times is smaller than for
the ‘‘mn’’ travel times. This counterintuitive result comes from
the strong correlation Corout , in between ‘‘in’’ and ‘‘out’’ travel
times for small annuli (see Fig. 10b). As in the point-to-point
case (eq. [32]) we can write

�oi

�mn

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Corout; in

1þ Corout; in

s
: ð35Þ

In particular, Corout; in ! 1 implies �oi=�mn ! 0. For very
small � we have Corout; in ! 1, because the waves that con-
verge toward the annulus center are the same waves that di-
verge from it. As � increases, the correlation Corout, in tends to
0 because the waves that contribute to � in (the waves that
propagate from the annulus to the center) do not contribute to
�out if the damping distance �damp is less than the annular
radius �. Note that �oi ¼ �mn when Corout; in ¼ 3

5
. As seen in

Figure 10b, the correlation Coroi,mn is very small (	�0.02),
implying that these travel times are nearly independent. This is
additional motivation for doing data analysis with the ‘‘oi’’
and ‘‘mn’’ travel times rather than the one-way travel times;
the ‘‘oi’’ and ‘‘mn’’ travel times were originally introduced by
Duvall et al. (1996) as a means to distinguish wave-speed
perturbations from mass flows.

Figure 11 shows the travel-time correlations Coroi, oi and
Cormn,mn for concentric annuli with different radii , � and �0.

Since the annuli are concentric (d ¼ 0), the correlation is 1
when � ¼ �0. The correlation oscillates with j���0j, and
the off-diagonal elements with the largest absolute values are
on the sub- and superdiagonals with j���0j < k=2. We note
that there are matrix elements near the diagonal that have very
strong anticorrelations (Cor < �0:5). The correlation matrices
are not sparse; a large fraction of the correlations are above
50% in absolute value, especially when both � and �0 are
large. The correlation remains large far from the diagonal
� ¼ �0. This may have important implications for the in-
version of time-distance data (e.g., Gough 1996; Gough &
Sekii 2002); current time-distance inversions do not take into
account these correlations (e.g., Kosovichev 1996; Gizon et al.
2000; Jensen et al. 2001; Zhao et al. 2001).
For T ¼ 128 minutes, the correlation matrices (Fig. 11) for

the data and the noise model are remarkably similar for the
‘‘mn’’ travel times, indicating that the correlations in the ob-
served ‘‘mn’’ travel times are not caused by wave-speed in-
homogeneities. The cut at �0 ¼ 5 Mm through the correlation
of the ‘‘mn’’ times shows the detailed agreement between the
data and the model in this case. However, there are noticeable
differences between the correlation matrices for the ‘‘oi’’
travel times. Unlike in the ‘‘mn’’ case, the ‘‘oi’’ correlations
are larger for the solar data than for the noise model: this is
due to the supergranulation flows. The cut through the ‘‘oi’’
correlation maps clearly shows that the data are more corre-
lated than predicted by the model.
Figures 12a and 12b show the travel-time correlations

Cormn,mn and Coroi,oi for offset annuli with common radius
� ¼ �0 ¼ 5 Mm as a function of offset d¼k d k (see Fig. 4b
for the geometry). In these plots we consider the f-mode data
with T ¼ 128 minutes, as in Figure 11. The correlation co-
efficient for the ‘‘mn’’ and ‘‘oi’’ signals decreases with in-
creasing d. As was seen in Figure 11, the ‘‘oi’’ travel times are
more correlated in the data than in the noise model , while
the data and the noise model give very similar results for the
correlation of the ‘‘mn’’ times. In order to investigate the
spatial scales that cause the excess correlation in the ‘‘oi’’
travel times with respect to the noise prediction, we look at the
power spectrum of the travel times. Figures 12c and 12d show
the azimuthal average of the power spectra Smn(k) and Soi(k)
of the travel-time maps for � ¼ 5 Mm; these can be con-
structed by taking the spatial Fourier transform of the func-
tions Covmn,mn(d ) and Covoi, oi(d ). For kR > 300 the data and
the noise model agree well, i.e., the spatial variations in the
travel times at wavelengths less than �15 Mm are mostly due
to realization noise (remember that k ’ � ¼ 5 Mm and T ¼
128 minutes). The log-log plot of the ‘‘mn’’ power spectrum
(Fig. 12c) was first observed by Jensen et al. (2003). In
Figures 12d and 12f we detect a solar signal in the ‘‘oi’’ travel
times that peaks around kR ’ 120, corresponding to the dom-
inant wavenumber of supergranular flows seen in the direct
Doppler data (Hathaway et al. 2000) and other time-distance
studies (Duvall & Gizon 2000). This excess power with re-
spect to the noise background demonstrates that we are able
to measure the solar signal for an observation time as short as
2 hr. Note that for the ‘‘oi’’ travel times the background noise
computed from the model is not a monotonic function of k but
has a local maximum at kR ’ 160. The cutoff of the power at a
wavelength near k/2 is seen again, as in the point-to-point case
(x 5.1). In Figures 12c and 12e there is also some evidence of
excess power in the ‘‘mn’’ travel times around kR ’ 120, but
the main contribution is from the lowest wavenumbers. These
slowly varying field effects are likely caused by line-of-sight

Fig. 10.—(a) Standard deviations, �oi and �mn , for the f-mode center-to-
annulus travel times as a function of annular radius �. The standard deviations
from the data (circles) and from the noise model (thick lines) are shown. The
dotted lines show the approximation from Appendix D.2. The observation
time is T ¼ 128 minutes. (b) Correlation Corin, out between �out and � in from
the data ( filled circles), the noise model (solid line), and the approximation
(dotted line). The open circles show the correlation Coroi, mn between �oi and
�mn from the data.
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Fig. 11.—Correlations Cor(d ¼ 0; �; �0) between f-mode travel times for concentric annuli as a function of annular radii � and �0 (see Fig. 4b for the
geometry). The top row is for the measurements (T ¼ 128 minutes), and the middle row is for the noise model. The correlations for the ‘‘mn’’ times are shown in the
left column, and for the ‘‘oi’’ times in the right column. The panels in the bottom row show slices at �0 ¼ 5 Mm. The circles show the observations, and the solid
lines show the noise model. Note that the observed ‘‘oi’’ correlations are larger than the ‘‘oi’’ correlations in the noise model. This is due to a real solar signal
(supergranulation), as discussed in x 5.2.



Fig. 12.—(a) Correlations Cormn,mn(d, �, �0) between f-mode travel times for offset annuli with common radius � ¼ �0 ¼ 5 Mm (see Fig. 4b for the geometry).
The correlation has been averaged over the direction of the offset d. The circles show the observations, and the solid lines show the noise model. The observation
time is T ¼ 128 minutes. (b) Correlations for the ‘‘oi’’ f-mode travel times. (c) Spatial power spectrum of the ‘‘mn’’ travel times at fixed � ¼ 5 Mm. The thick solid
line shows the observations, and the thin solid line shows the noise model. The dotted line is for the approximation to the noise model. The Nyquist frequency is
at kR ¼ 2600. Both axes are logarithmic. (d ) Spatial power spectrum of the ‘‘oi’’ travel times at fixed � ¼ 5 Mm. The thick solid line shows the observations, and
the thin solid line shows the noise model. The dotted line is for the approximation to the noise model. (e) Difference (double thin line) between the measured
spatial power (thick line) and the noise background computed from the model (thin line) for the ‘‘mn’’ travel times. Note that the axes are linear rather than
logarithmic. ( f ) Same as in (e) but for the ‘‘oi’’ travel times. The excess power around kR ¼ 120 is due to supergranular flows.



projection effects and spatial variations in the point-spread
function of the MDI telescope.

6. SIGNAL-TO-NOISE RATIO

In this section we study the signal-to-noise ratio in the
travel-time maps as a function of observation duration T.
Rather than relying on the noise model of x 4.1, we show that
the noise can be estimated directly from the data by looking at
the T-dependence of the standard deviation of the observed
travel times.

We consider center-to-annulus f-mode travel times only.
The thickness of the annulus is w ¼ 0:41 Mm (see eqs. [7] and
[8]). In our noise model, described in x 4.1, the standard
deviation of the noise decreases as T�1/ 2, as long as T is larger
than the wave lifetimes. In Figure 13 we plot �data as a func-
tion of T for the ‘‘oi’’ and the ‘‘mn’’ travel times and � ¼
5 Mm. Any deviation from the T�1/ 2 dependence must be due
to the signal. In order to estimate the signal-to-noise ratio
directly from the data, we fit the function �Bt ¼ NT�1=2 þ S to
�data over the interval 2 hr < T < 35 hr, where N and S are
positive constants determined by the fit. This model is the
simplest possible model and is the result of adding a time-
independent signal S to a noise background NT�1/2. This fit
works remarkably well, implying that the solar signal is
mostly constant in time for T < 35 hr. This is not too sur-
prising, as the lifetime of the supergranulation pattern is larger
than 1 day (the additional systematic effects that may be pres-
ent are likely to be slowly varying in time as well ). As was
explained in x 5.2, the ‘‘oi’’ signal is dominated by super-
granular flows.

Figure 14 shows the measured signal-to-noise ratio, defined
by r ¼ T1=2�data=N � 1, for the ‘‘oi’’ travel times as a function
of both T and annular radius �. The signal-to-noise ratios that
we measure for T < 35 hr and � < 20 Mm do not exceed 1.1.

The signal-to-noise ratio r is an increasing function of T for
all distances �. This is consistent with the assumption that
the signal is nearly time independent. At fixed T, r goes through
a maximum at a distance near � ¼ 12 Mm. As expected,
time-distance measurements of supergranular flows are most
sensitive when the annular radius is roughly half the typical
diameter of the supergranules (�30 Mm). The signal-to-noise
ratio can be increased well beyond 1 by averaging over a
range of distances (Duvall et al. 1997; Duvall & Gizon 2000).

Figure 15 shows the signal-to-noise ratio for the ‘‘oi’’ and
‘‘mn’’ travel times, at fixed � ¼ 5 Mm. The time dependence
of r (solid line) is close to the fit T1/2(S/N) (dashed line).
However, some small deviations occur for the ‘‘oi’’ travel
times when T > 15 hr, indicating that the solar signal is not
quite constant in time. This is likely a result of the finite
lifetime of solar supergranulation.

Fig. 13.—Standard deviations �data of the observed center-to-annulus
f-mode travel times as functions of observation time T, on a log-log scale. The
‘‘oi’’ data are the filled circles, and the ‘‘mn’’ data are the open circles, both
measured at� ¼ 5 Mm. The dotted lines are fits of the form �Bt ¼ NT�1=2 þ S
to the data over the interval 2 hr < T < 35 hr, where N and S are free
parameters. The dashed lines show the noise components NT�1/2 from the fits.

Fig. 14.—Signal-to-noise ratio estimated from the ‘‘oi’’ data, r ¼
T1=2�data=N � 1, where N is obtained from fits of the type shown in Fig. 13.

Fig. 15.—Signal-to-noise ratio as a function of observation time T for
� ¼ 5 Mm. The filled circles show r ¼ T1=2�data=N � 1 for the ‘‘oi’’ travel
times, and the open circles show r for the ‘‘mn’’ travel times (cuts through
Fig. 14). The dashed lines show the fits T1/2(S/N).
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7. DISCUSSION

We have introduced a new definition of travel time that
allows the measurement of travel times for very noisy cross-
covariances and reduces to the definition of Gizon & Birch
(2002) in the limit of extensive spatial or temporal averaging.
Comparison of the predictions from a simple model with noise
estimates from SOHO MDI data have shown that the domi-
nant noise source in time-distance travel times is realization
noise. Our model for realization noise is valid for both p- and
f-modes and for any spatial averaging scheme ( point-to-point
or center-to-annulus measurements, for example). The model
is based on modeling the observed wave field as a complex
uncorrelated Gaussian field in the Fourier domain.

From both the data and the model we show that the noise
increases with the distance � , because of geometrical spread-
ing and damping, and decreases with observation time T as
T�1/ 2. The noise is spatially correlated for both point-to-point
and center-to-annulus measurements; in particular, the corre-
lation remains large for measurements with the same central
point but annuli of very different radii. The correlation length
of the travel times is about k/2, where k is the dominant wave-
length of the filtered wave field. The length scale k/2 appears
as a cutoff wavenumber kc ¼ 4�=k in the power spectrum of
the travel times. Thus, there is little hope of detecting a solar
signal at horizontal scales less than k /2 from the travel times
of wave packets with a dominant wavelength of k. We estimate
that with MDI high-resolution data, the ultimate horizontal
spatial resolution that can be obtained through time-distance
helioseismology near the surface can be no better than a few
megameters.

Of course, the observed travel times are not entirely due to
realization noise. Using the knowledge that realization noise
scales as T�1/ 2, we estimate the signal-to-noise ratio r for
travel times as a function of annular radius � and observation
time T. We see in quiet-Sun data that r increases with T and is
maximum when � is about half the length scale of super-
granulation. In the quiet Sun, r is larger for the ‘‘oi’’ travel
times than for the ‘‘mn’’ travel times by about a factor of 3.

The central assumption in the noise model is in the form of
the fourth moments of the wave field in the Fourier domain,

E � k1; !1ð Þ� k2; !2ð Þ� k3; !3ð Þ� k4; !4ð Þ½ �:

These moments can be calculated by assuming that the �(k, !)
are uncorrelated on the Fourier grid and normally distributed.
The same moments could be used to calculate the noise level
of other types of local helioseismic measurements, for ex-
ample, ring diagrams, acoustic holography, or Hankel analysis.

The noise covariance matrix for travel times is an important
ingredient for inverting travel times, especially as we have

shown that the noise covariance is far from diagonal. Accurate
knowledge of the noise covariance will also allow the accurate
assignment of error estimates to inversion results. We have
seen that the power spectrum of travel times is strongly af-
fected by noise and depends on the filtered power spectrum of
the wave field. Our simple model for the noise covariance can
be used to predict the noise level for various types of mea-
surements, for example, for different filters (instrumental MTF
or data analysis filters) or observation times T. This model
may be useful in designing experiments to obtain travel time
measurements with some desired noise level.
We expect that the noise model presented here will fail

when the observation time T becomes so small that individual
wave excitation events can be identified. In this limit the as-
sumption that the Fourier components of the wave field are
independent will fail, and as a result the noise predictions will
not be accurate. However, this does not appear to be a major
issue for routine time-distance work.
The definition of travel time that we introduced in this pa-

per is certainly not the optimal definition. In particular, it does
not take into account the statistics of the noise in the cross-
covariance function. Realization noise in the time-domain cross-
covariance is highly correlated, as the noise is mostly in the
3 mHz range. Travel-time fitting should presumably either
take account of this correlation or be done in the frequency
domain in which the noise in the cross-covariance at different
frequencies is uncorrelated, although this does not remain true
once nonsteady perturbations or flows are introduced (e.g.,
Woodard 2002; Woodard & Fan 2004). The travel-time mea-
surement procedure developed in this paper needs to be ex-
tended before it can be applied to the study of sunspots or
other strong perturbations. In particular, the fit should include
other parameters such as the amplitude of the cross-covariance,
since the assumption that the expectation value of the cross-
covariance function is spatially uniform is clearly not valid
near sunspots and active regions.
In future work we plan to study the inversion of time-

distance data. With the completion of that work we will have a
practical and self-consistent method for time-distance helio-
seismology, with the forward problem (Gizon & Birch 2002),
the noise model (this paper), and the inverse problem all done
within a physically motived and consistent model.

This work was supported by NASA grant NAG5-13261 to
Stanford University. SOHO is a mission of international co-
operation between the European Space Agency and NASA.
We thank Tom Duvall for providing the tracked data cube that
we used in this paper.

APPENDIX A

CONVENTIONS AND NOTATIONS

Let us consider a function Q(x, t) of discrete horizontal position x and discrete time t. We denote by hx the sampling interval in
the two spatial directions and by ht the sampling interval in the time domain. The number of samples is Nx ¼ L=hx in each spatial
direction and N ¼ T=ht in the time direction. For a centrally situated origin, Q(x, t) is evaluated on the grid xmn ¼ mhx x̂þ nhx ŷ,
where m and n are integers in the range ½�Nx=2; Nx=2� 1�, and tj ¼ jht, where j is an integer in the range ½�N=2; N=2� 1�. We
employ the convention that the discrete Fourier transform of Q(x, t) is given by

Q(k; !) ¼ h2xht

(2�)3

X
m;n; j

Q(xmn; tj)e
�ik = xmnþi!tj : ðA1Þ

GIZON & BIRCH484 Vol. 614



The horizontal wavevector k can take the discrete values kmn ¼ mhk x̂þ nhk ŷ, where hk ¼ 2�=L, and the angular frequency ! can
take the discrete values !j ¼ jh!, where h! ¼ 2�=T . For the sake of simplicity, we use the following short notation for the
summations:

Q(k; !) ¼ h2xht

(2�)3

X
x; t

Q(x; t)e�ik = xþi!t: ðA2Þ

In this short notation, the inverse Fourier transform is

Q(x; t) ¼ h2kh!
X
k; !

Q(k; !)eik = x�i!t: ðA3Þ

Note that, in the continuous limit, these Fourier conventions are the same as in Gizon & Birch (2002).

APPENDIX B

DEFINITION OF TRAVEL TIME

In this appendix we give the motivation for the definition of travel time expressed by equation (3). For the sake of simplicity, we
can assume that C(x1, x2, t) is a continuous function of time: it can be Fourier interpolated onto an arbitrarily fine time grid (C is
band-limited in frequency space). At fixed � in the range (0, 1], the badness of fit between C� ¼ �C þ (1� �)C ref and the sliding
reference cross-covariance C ref is defined by

X �
� x1; x2; tð Þ ¼

Z 1

�1
dt 0 f �t 0ð Þ C � x1; x2; t 0ð Þ � C ref #; t 0 � �tð Þ

� �2
: ðB1Þ

The one-way travel times ��þ and ��� are defined to be the time lags that minimize X+ and X�,

��� (x1; x2) ¼ argmint X
�
� (x1; x2; t): ðB2Þ

This method for measuring travel times is a generalization of the case � ¼ 1 employed by Gizon & Birch (2002) to measure travel
times when T ! 1, i.e., when C can be replaced by E[C ]. This approach is borrowed from the geophysics literature (Zhao &
Jordan 1998; Zhao et al. 2000).

The isolation window f enables us to fit separately the travel time for waves going from x1 to x2 ( plus sign subscript) and the
waves going from x2 to x1 (minus sign subscript). The function f (t), which is 0 for t < 0, selects an interval around the arrival time
of the wave packet. In the case of f-mode wave packets, the cross-covariance has only one branch, and we take f (t) equal to the
Heaviside step function. For acoustic waves there are multiple branches corresponding to multiple bounces off the surface between
x1 and x2, and f (t) ¼ 1 in a time interval around the first-bounce arrival time of the wave packet and 0 elsewhere.

When C is noisy (T is short) the parameter � must be small enough that the envelope of C � is well defined. It can be shown
numerically that there exists a value of � below which the travel times �� do not depend on �. Thus, the limit � ! 0 provides a
robust definition of travel time, whatever the noise level. In this limit X+ and X� always have well-defined minima.

The reference cross-covariance C ref can be constructed from a model cross-covariance C 0 computed for a plane-parallel,
horizontally homogenous standard solar model (see, e.g., Gizon & Birch 2002; Birch et al. 2004). For the purpose of measuring
travel times, any model with a reasonable power spectrum will do. It can be shown that if � ¼ 1 (appropriate for noiseless data),
then the travel times returned by equation (B2) are independent of the amplitude of C ref. This is, however, not true for small
�-values, in particular, when � ! 0. This difficulty is a consequence of the fact that we are not fitting for the amplitude of the cross-
covariance. For now, all we want is a meaningful definition of travel time to study realization noise in a quiet-Sun region. We
choose Cref such that its amplitude matches an estimate of the amplitude of E[C ], so that the amplitudes of C ref and E[C �] will be
similar in equation (B1). In the quiet Sun, it is reasonable to assume that the expectation of C can be approximated by its spatial
average, i.e., E½C� � hCi. Thus, we write C ref (t) ¼ AþC

0(t) for t > 0 and C ref (t) ¼ A�C
0(t) for t < 0, where the normalization

constants A� are such that Z 1

�1
f �t 0ð Þ C ref #; t 0ð Þ

� �2
dt 0 ¼

Z 1

�1
f �t 0ð Þ C x1; x2; t 0ð Þh iC ref #; t 0ð Þ dt 0: ðB3Þ

This normalization guarantees that � �
� are independent of � when C ¼ hCi and thus that the � ! 0 and � ¼ 1 travel times are

identical in this particular case.
To avoid numerical problems, we take the � ! 0 limit analytically. First we rewrite explicitly condition (B2), according to which

��þ and ��� minimize the functions X+ and X� by requiring that the time derivative of X� vanish at times ��:Z 1

�1
dt f �tð Þ �C x1; x2; tð Þ þ 1� �ð ÞC ref #; tð Þ � C ref #; t � ����

� �� �
Ċ ref #; t � ����

� �
¼ 0; ðB4Þ
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where the overdot denotes the time derivative. In the limit of small �, we can linearize the above equation to first order in � and
extract the travel times:

�� x1; x2ð Þ ¼ lim
�!0þ

��� x1; x2ð Þ ¼ �
R1
�1 dt f �tð ÞĊ ref #; tð Þ C x1; x2; tð Þ � C ref #; tð Þ

� �
R1
�1 dt 0 f �t 0ð Þ Ċ ref #; t 0ð Þ

� �2 : ðB5Þ

Hence, we obtain a linear relationship between �� and C � Cref for � ! 0. For discrete times, the definition of travel times is
expressed by equations (3) and (4) given in the text.

The center-to-annulus travel times �(x; �) are measured in a similar way from Cann(x, �, t). The only difference is that we use a
reference cross-covariance C ref

ann(�; t) such that its amplitude matches an estimate of the amplitude of hCann(x, �, t)i.

APPENDIX C

DETAILS OF THE TRAVEL-TIME COVARIANCE MODEL

Our starting point is the relationship between the cross-covariance C and the centered travel times �a � E½�a�:

�a x1; x2ð Þ � E �a x1; x2ð Þ½ � ¼ ht
X
t

Wa #; tð Þ C x1; x2; tð Þ � E C x1; x2; tð Þ½ �f g: ðC1Þ

This is a generalization of equation (3) for arbitrary type, a, of travel times. Equation (C1) can be written in Fourier space as

�a x1; x2ð Þ � E �a x1; x2ð Þ½ � ¼ 2�h!
X
!

W �
a #; !ð Þ C x1; x2; !ð Þ � E C x1; x2; !ð Þ½ �f g: ðC2Þ

The travel-time covariance function can thus be expressed as

Cov �a x1; x2ð Þ; �b x01; x02
� �� �

¼ 2�h!ð Þ2
X
!;! 0

W �
a #; !ð ÞWb #0; !0ð ÞCov C x1; x2; !ð Þ; C x01; x02; !0� �� �

; ðC3Þ

in terms of the covariance of C and the weight functions W that are used to measure the travel times. Next we write the temporal
Fourier transform of the cross-covariance function in terms of the Fourier transform of the observable:

C(x1; x2; !) ¼ h!�
�(x1; !)�(x2; !): ðC4Þ

To obtain this result, we ignored the correlations in the spectral domain introduced by the temporal window function, Win(t):

ht

T � jtj
X
t 0

Win t 0ð ÞWin t 0 þ tð Þei ! 0�! 0 0ð Þt 0 	 	! 0; ! 0 0 ; ðC5Þ

in accordance with the assumptions of the noise model (x 4.1). Using equation (C4), we can express the covariance of C in terms of
the covariance of products of the form �*�,

Cov C x1; x2; !ð Þ; C x01; x02; !0� �� �
¼ h2!h

8
k

X
k1;k2;k

0
1;k

0
2

Cov �� k1; !ð Þ� k2; !ð Þ; �� k01; !0� �
� k02; !0� �� �

; exp �ik1 = x1 þ ik2 = x2 þ ik01 = x
0
1 � ik02 = x

0
2

� �
: ðC6Þ

The covariance of �*� involves the computation of fourth moments of �. Using the assumption that the �(k, !) are independent
complex random variables that are normally distributed, one can show

Cov �� k1; !ð Þ� k2; !ð Þ; �� k01; !0� �
� k02; !0� �� �

¼ 	!;! 0 	k1;k 0
1
	k2;k 02P k1; !ð ÞP k2; !ð Þ � 	k1;k2	k2;k 0

1
	k 01;k 02P k1; !ð Þ2

h i
þ 	!;�! 0 	k1;�k 02

	k2;�k 01
P k1; !ð ÞP k2; !ð Þ � 	k1;k2	k2;�k 01

	k 01;k 0
2
P k1; !ð Þ2

h i
;

ðC7Þ

where P(k; !) ¼ E½j�(k; !)j2� is the expected power spectrum and 	 is the Kronecker delta function. We used the relation
��(k; !) ¼ �(�k; �!) and the fact that the distribution of |�|2 is exponential, so that E½j�j4� ¼ E½j�j2�2. We insert equation (C7)
into equation (C6) to obtain the covariance of C in the form

Cov C x1; x2; !ð Þ; C x01; x02; !0� �� �
¼ 	!;! 0 C x01 � x1; !

� �
C x2 � x02; !
� �

� h2kF #�#0; !ð Þ
� �

þ 	!;�! 0 C x02 � x1; !
� �

C x2 � x01; !
� �

� h2kF #þ#0; !ð Þ
� �

; ðC8Þ
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where the functions C and P are defined by

C(x; !) ¼ h2k

X
k

h!h
2
kP(k; !)eik = x; ðC9Þ

and

F (x) ¼ h2k

X
k

h!h
2
kP(k; !)

� �2
eik = x: ðC10Þ

The function C(x, !) is the temporal Fourier transform of the expected cross-covariance function. The terms that involve the
function F are much smaller than the others and can be neglected, since they go to 0 as L increases. Note that h!h

2
kP(k; !) is

the power spectrum per unit area per unit time. We can now insert equation (C8) into equation (C3) to obtain the covariance of
the travel times. The final result is given by equation (28) of x 4.2.

APPENDIX D

APPROXIMATE RESULTS

D1. POINT-TO-POINT f -MODE TRAVEL-TIME NOISE

In this section we estimate the standard deviation �noise
diA of f-mode travel times. In the regime � > k (far field) the variance of

�diff is approximately (see eq. [28] )

�noise
diA �ð Þ

� �2 ’ 2�ð Þ3

T

X
!

h!jWdiA �; !ð Þj2C2 � ¼ 0; !ð Þ: ðD1Þ

Note that C(� ¼ 0; !) is the power spectral density of � at any particular spatial pixel (eq. [C4]). In the f-mode case, we take the
isolation window f (t) to be the Heaviside step function, and thus the weight function Wdiff can be written (Gizon & Birch 2002) as

W �
diA(�; !) ¼ �2i!C ref (�; !)

2�h!
P

! 0 !02jCref (�; !0)j2
: ðD2Þ

For C ’ C ref , we have

�noise
diA �ð Þ ’

2
P

! !
2C2 �; !ð ÞC2 � ¼ 0; !ð Þ

� �1=2P
! !

2C2 �; !ð Þ
: ðD3Þ

In the far-field approximation the f-mode cross-covariance C(�, !) can be written as

C �; !ð Þ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�
r�

r
C � ¼ 0; !ð Þe�
i� cos 
r�� �

4

	 

; ðD4Þ

where the wavenumber at f-mode resonance is 
r þ i
i. Specifically, 
r ¼ !2=g and 
i ¼ !�=g, where g ¼ 274 m s�2 is the
gravitational acceleration at the surface of the Sun and � is the FWHM of the f-mode ridge at frequency !. The sums in equation (D3)
can be approximated by noticing that the cosine in equation (D4) oscillates many times within the frequency width � of the envelope
of C2(� ¼ 0; !). The result is

�noise
diA (�) � 2��

e
i�

!0

ffiffiffiffiffiffiffiffiffiffiffiffi

r�

�T

s
; ðD5Þ

where 
i and 
r are evaluated at the frequency that has maximum power, !0. The coefficient � is of order unity. For the example of
x 5.1, Figure 5, we used !0=2� ¼ 3:2 mHz, �=2� ¼ 1 mHz, � ¼ 0:8, and �=2� ¼ 133 �Hz.

D2. CENTER-TO-ANNULUS TRAVEL-TIME NOISE

The point-to-point covariance Covnoise
a;b from equation (28) can be averaged over all the pairs of points that contribute to the

center-to-annulus travel times. This averaging procedure involves the function @, which defines the geometry of the annulus, as
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described in x 2, equation (7). Assuming that P(k, !) does not depend on the direction of k, we obtain the following approximation
to the noise covariance:

Covnoise� ;� d; �; �0ð Þ 	 2�ð Þ3

T

X
!

h!W
�
� �; !ð Þ W� �0; !ð ÞC d; !ð ÞI d; �; �0; !ð Þ þW �

� �0; !ð ÞII d; �0; !ð ÞII d; �; !ð Þ
h i

:

ðD6Þ

The functions I and II are defined by

I d; �; �0; !ð Þ ¼ 2�h!h
2
k

Z 1

0

k dk e�w2k2P k; !ð ÞJ0 kdð ÞJ0 k�ð ÞJ0 k�0ð Þ; ðD7Þ

II(d; �; !) ¼ 2�h!h
2
k

Z 1

0

k dk e�k2w2=2P(k; !)J0(k�)J0(kd ): ðD8Þ

In deriving this result we used the approximation

P
x @ k x k ��ð Þe ik = xP

x @ k x k ��ð Þ ’ e�w2k2=2J0(k�); ðD9Þ

valid for wT� and @(�) ¼ exp (��2=2w2). From equation (D6) for Cov�,� we can also obtain an approximation to the correlation
Cor�,� and the standard deviation �� (see eqs. [26] and [25]).

In the particular case of f-modes, we can obtain a further approximation for the integrals that enter equation (D6), in the spirit of
Appendix D.1. We find that the dispersion of the ‘‘oi’’ travel times (annulus averaging) and the ‘‘diff’’ travel times ( point-to-point)
are roughly related by

�noise
oi (�) � �noise

diA (�)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�
2

r w
2

(1� e�2
i�)

�
r�

s
: ðD10Þ

The ratio �oi/�diff goes down as the damping is reduced (through 
i). When damping is large, averaging over the annulus simply
reduces the noise level by a geometric factor of order (
r�)1=2 ¼ (2��=k)1=2, which is the square root of the number of wave-
lengths that fit in the circumference.

APPENDIX E

SPATIAL POWER SPECTRA OF POINT-TO-POINT TRAVEL TIMES

We compute the spatial Fourier transform of Cova,a(d ) (see eq. [28]) with respect to the variable d at constant# ¼ #0. We write
the result as

Sa(k) ¼
X
!

Sa(k; !); ðE1Þ

where

Sa k; !ð Þ /
X
k 0

Wa #; !ð Þ2P k0 þ k=2; !ð ÞP k0 � k=2; !ð Þ þ e2ik
0 =# W �

a #; !ð Þ
� �2P k0 þ k=2; !ð ÞP k0 � k=2; !ð Þ: ðE2Þ

From the above equation we can see that, at each frequency !, Sa(k, !) is like a low-pass filter with a cutoff wavenumber kc 	 2k!,
where k! is the maximum wavenumber at which there is significant power at frequency ! (for example, k! 	 
r for the f-mode
case). The sum over frequencies, equation (E1), is dominated by terms with ! near the dominant frequency !0, because Sa scales
with ! as P 4, which is well localized around !0. This cutoff in the spectrum is seen clearly in Figures 7c, 9c, 12c, and 12d, as well
as in the work of Jensen et al. (2003). In the spatial domain, the correlation length is 2�=kc 	 k=2, where k is the dominant
wavelength in the filtered power spectrum.
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NOTE ADDED IN PROOF.—

Note added in proof.—The noise covariance model given in x 4.2 (eqs. [28] and [29]) is only valid when the two travel times are
obtained from the same signal � (common Fourier filter F; see eq. [22]). Let us denote by �̃ the point-to-point travel time measured
with a weight function W̃ from a signal �̃ filtered by F̃. It is easy to show that the covariance Cov½�a; �̃b� is obtained by replac-
ing Wb by W̃b in equation (28) and P by (PP̃)1=2 in equation (29), where P̃ ¼ E½j�̃j2�. This generalization is useful when con-
sidering the covariance between p-mode travel times obtained with different phase-speed filters.
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