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ABSTRACT

The forward problem of time-distance helioseismol-
ogy is to compute travel-time perturbations which re-
sult from perturbations to a solar model. We present
a new and physically motivated general framework
for calculations of the sensitivity of travel-times to
small local perturbations. Our starting point is a de-
scription of the wavefield excited by distributed ran-
dom sources. We employ the first Born approxima-
tion to model scattering from local inhomogeneities.
We give a clear definition of travel-time perturba-
tion, which allows a connection between observations
and theory. In this framework travel-time sensitivity
kernels depend explicitly on the details of the mea-
surement procedure.
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1. INTRODUCTION

Time-distance helioseismology, as introduced by Du-
vall et al. (1993), has yielded numerous exciting in-
sights into the interior of the Sun. This technique,
which gives information about travel-times for wave
packets moving between any two points on the so-
lar surface, is an important complement to global
mode helioseismology as it is able to probe subsur-
face structure and dynamics in three dimensions.

The forward problem of time-distance helioseismol-
ogy is to compute travel-time perturbations due to
perturbations to a solar model. An accurate solu-
tion to the forward problem is necessary for mak-
ing quantitative inferences about the Sun from time-
distance data. There have been a number of previous
efforts to understand the effect of local perturbations
on travel-times. Kosovichev (1996) used geomet-
rical acoustics to describe the interaction of waves
with sound-speed perturbations and flows. Bog-
dan (1997) argued that a finite-wavelength theory
is needed. Jensen et al. (2000) and Birch & Koso-
vichev (2000) solved the linear forward problem for
sound-speed perturbations, in the single-source ap-
proximation. Bogdan et al. (1998) used a normal

mode approach to compute travel-time perturbations
in a model sunspot. Woodard (1997) showed the ef-
fect of localized damping on travel-times.

Although the above mentioned efforts represent sub-
stantial progress, there is not yet a general procedure
for relating actual travel-time measurements to per-
turbations to a solar model. This paper is an attempt
to synthesize and extend the current knowledge into
a flexible framework for the computation of the sen-
sitivity of travel-times to local inhomogeneities. We
start from a physical description of the wavefield, in-
cluding wave excitation and damping. We incorpo-
rate the details of the measurement procedure. Two
other key ingredients of our approach are the single
scattering Born approximation and a clear observa-
tional definition of travel-time, both taken from the
geophysics literature (e.g. Tong et al., 1998; Zhao &
Jordan, 1998; Marquering et al., 1999).

2. DEFINITION OF TRAVEL TIMES

The fundamental data of modern helioseismology are
high-resolution Doppler images of the Sun’s surface
(e.g. Scherrer et al., 1995). In general, the filtered
line-of-sight projection of the velocity field can be
written as

φ = F
{

ˆ̀ · ξ̇
}

, (1)

where ξ is the displacement vector and ˆ̀ is a unit
vector in the direction of the line of sight. Through-
out this paper overdots denote time derivatives. The
operator F describes the filter used in the data anal-
ysis which includes the time window, instrumental
effects, and other filtering applied in the data analy-
sis.

The basic computation in time-distance helioseismol-
ogy is the temporal cross-correlation between the sig-
nal, φ, measured at two points, 1 and 2, on the solar
surface,

C(1,2, t) =
∫

dt′ φ(1, t′) φ(2, t′ + t). (2)

The cross-correlation is a solar seismogram; it pro-
vides information about travel-times, amplitudes
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and the shape of the wavepackets traveling between
any two points on the solar surface. For acous-
tic waves, cross-correlations display several branches
corresponding to multiple bounces off the surface in
between 1 and 2. For the rest of the paper we discuss
only first-bounce travel-times in order to simplify the
notation. The positive-time branch corresponds to
waves moving from 1 to 2 and the negative-time
branch represents waves moving in the opposite di-
rection.

We define the travel-time perturbation for each
branch to be the time lag that minimizes the differ-
ence between the measured cross-correlation, C, and
a reference cross-correlation. This is analogous to the
typical definition of travel-time perturbation used
in the geophysics literature. The reference cross-
correlation for measuring the travel-time perturba-
tion from 1 to 2 we denote by Cref

+ , which should be
chosen by the observer to look like the first-bounce
positive-time part of a cross-correlation. The other
reference cross-correlation, denoted by Cref

− , is used
for measuring the travel-time perturbation from 2
to 1 and should look like the first-bounce negative-
time part of a cross-correlation. We measure the
difference between the observed and reference cross-
correlations by considering

X±(1,2, t) =
∫

dt′
[
C(1,2, t′)− Cref

± (1,2, t′ ∓ t)
]2

.

(3)
Minimizing X± is equivalent to fitting Cref

± to C in
the least square sense, varying t only. Note that the
time lag t appears with a minus sign in Cref

+ and a
plus sign in Cref

− , so that for t positive Cref
+ is shifted

to larger positive times while Cref
− is shifted to more

negative times.

According to our definition, the travel-time pertur-
bations ∆τ+ and ∆τ− are the time lags that mini-
mize X+ and X−, and as a result Ẋ±(1,2,∆τ±) = 0.
Linearizing Ẋ±(1,2, t) about t = 0 gives

∆τ±(1,2) = ±
∫

dt Ċref
± (1,2, t) C(1,2, t)∫

dt C̈ref
± (1,2, t) C(1,2, t)

. (4)

In order for this equation to be valid the linearization
from which it was derived must be good, meaning
∆τ± must be small compared to the dominant period
of the reference cross-correlation. Equation (4) is
the fundamental equation from which the rest of the
paper follows.

The definition of travel-time perturbations described
here leaves observers free to measure without refer-
ence to a solar model. We note, however, that in
order for a proper interpretation of measured travel-
time perturbations to be made it is essential for the
observer to report their choice of reference cross-
correlations Cref

± as well as the filter function F. A
solar model is only necessary for the next step, the
interpretation of travel-time perturbations in terms
of local perturbations to a solar model, to which we
now turn.

3. INTERPRETATION OF TRAVEL TIMES

The first step in the interpretation of time-distance
data is to relate measured ∆τ± to local perturba-
tions to the solar model. Our approach is to compute
the cross-correlation in a background solar model
and then consider the perturbation to the cross-
correlation, and thus travel-time, due to a local per-
turbation to the model.

We write the cross-correlation, C, as the cross-
correlation in the background model, C0, plus a first-
order correction, δC,

C(1,2, t) = C0(1,2, t) + δC(1,2, t). (5)

We then write equation (4) in the form

δτ±(1,2) =
∫

dt W±(1,2, t) δC(1,2, t). (6)

The δτ± are defined by

δτ±(1,2) = ∆τ±(1,2)−∆τ0
±(1,2) (7)

with

∆τ0
±(1,2) = ±

∫
dt Ċref

± (1,2, t) C0(1,2, t)∫
dt C̈ref

± (1,2, t) C0(1,2, t)
, (8)

and the W± are given by

W±(1,2, t) = ±
Ċref
± (1,2, t)∓∆τ0

±(1,2) C̈ref
± (1,2, t)∫

dt C̈ref
± (1,2, t) C0(1,2, t)

.

(9)
In order to obtain these equations we have linearized
equation (4) in δC. The reference times, ∆τ0

±, are
the travel-time perturbations which would be mea-
sured if the Sun and the background model were
identical. The measured travel-time perturbations,
∆τ±, corrected by the reference times, ∆τ0

±, we de-
note by δτ±. We emphasize that the δτ± are propor-
tional to δC, which is a first-order perturbation to
the background solar model. The sensitivity of δτ±
to δC is given by W±.

4. TEMPORAL CROSS-CORRELATION

In order to obtain the cross-correlation C0 and the
first-order perturbation δC, we need to compute the
observable φ, which means we need the displacement
vector ξ. Linear oscillations are governed by an equa-
tion of the form

Lξ = S, (10)

where S denotes the source of excitation for the
waves. The linear operator L, acting on ξ, encom-
passes all the physics of wave propagation in an in-
homogeneous stratified medium permeated by flows
and magnetic fields. Damping processes should also
be accounted for in L. An explicit expression for
the operator L including steady flows is provided by
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Lynden-Bell & Ostriker (1967). Bogdan (2000) in-
cludes magnetic field.

We now expand L and ξ into zero- and first-order
contributions, which refer to the background solar
model and to the lowest order perturbation to that
model:

L = L0 + δL, (11)

ξ = ξ0 + δξ. (12)

The operator δL depends on first-order quantities
such as local perturbations in density, sound speed,
and damping rate, as well as flows and magnetic
field. Here we only consider time-independent per-
turbations, denoted by δqα(r) for short, which are
functions of position r in the solar interior. For the
sake of simplicity, we ignore local perturbations to
the source function.

To lowest order, equation (10) reduces to

L0ξ0 = S. (13)

In order to solve this equation, we introduce a set of
causal Green vectors Gj defined by

L0Gj(x, t; s, ts) = êj(s) δD(x− s) δD(t− ts), (14)

where êj(s) are basis vectors at the point s and δD is
the Dirac delta function. The vector Gj(x, t; s, ts) is
the displacement at (x, t) which results from a unit
source in the êj direction at (s, ts). Guided by equa-
tion (1), we define the zero-order Green functions for
the observable φ:

Gj(x, t; s, ts) = F
{

ˆ̀(x) · Ġj(x, t; s, ts)
}

. (15)

In terms of Gj , the unperturbed signal reads:

φ0(x, t) =
∫

ds dts Gj(x, t; s, ts) Sj(s, ts). (16)

Sums are taken over repeated indices.

To the next order of approximation, equation (10)
gives

L0δξ = −δLξ0. (17)

This is the single-scattering Born approximation. We
note that equation (17) is of the same form as equa-
tion (13): the term−δLξ0 appears as a source for the
scattered wave displacement δξ. The first-order Born
approximation has been shown to work for small per-
turbations (e.g. Hung et al., 2000; Birch & Koso-
vichev, 2001). Employing the first Born approxima-
tion gives the first-order correction to the signal:

δφ(x, t) = −
∫

dr dt′ ds dts Gj(x, t; r, t′)

{δLGk(r, t′; s, ts)}j Sk(s, ts). (18)

We recall that δL contains the first-order perturba-
tions to the solar model, δqα. Since we now have φ0

and δφ we can next compute the zero- and first-order
cross-correlations, C0 and δC.

The source of solar oscillations is turbulent convec-
tion near the solar surface. As a result, the source
function S is a realization of a random process and
thus the signal φ and the cross-correlation C are
stochastic as well. In order to interpret the mea-
sured cross-correlation we assume that it represents
an expectation value. We do not try to interpret the
difference between the cross-correlation and its ex-
pected value as it depends on the particular realiza-
tion of the source function. Under the assumptions
of the Ergodic theorem (see e.g. Yaglom, 1962) the
cross-correlation tends to its expectation value as the
observation time interval increases. In the rest of this
paper, cross-correlations stand for their expectation
values.

From equation (2) we obtain the zero-order cross-
correlation,

C0(1,2, t) =
∫

dt′ E[φ0(1, t′) φ0(2, t′ + t)], (19)

where E[·] denotes the expectation value of the ex-
pression in square brackets. Using the expression for
φ0 given by equation (16) we find that C0 depends
on

Mjk(s, ts; s′, t′s) = E[Sj(s, ts) Sk(s′, t′s)]. (20)

The matrix M gives the correlation between any two
components of S, measured at two possibly different
positions. With the assumptions of stationarity in
time and homogeneity and isotropy in the horizon-
tal direction, M only depends on the time difference
ts− t′s, the horizontal distance between s and s′, and
their depths. Further assumptions could be made in
order to simplify the computation of equation (19).
We may assume, for example, that the sources are
spatially uncorrelated or are located only at a par-
ticular depth.

We now perturb equation (2) and take the expecta-
tion value to obtain

δC(1,2, t) =
∫

dt′ E
[
φ0(1, t′) δφ(2, t′ + t)

+φ0(2, t′ + t) δφ(1, t′)
]
. (21)

Using the expressions for φ0 and δφ given by equa-
tions (16) and (18) we can express δC as the spatial
integral of a function C that depends on the point of
scattering, r,

δC(1,2, t) =
∫

dr C(1,2, t; r). (22)

We have explained how to obtain C0 and δC from
an assumed solar model consisting of a background
model (L0) and small perturbations (δL).
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5. TRAVEL-TIME SENSITIVITY KERNELS

In section 3 we showed how to relate δτ± to δC.
The expression for δC that we wrote in the previous
section enables us to express δτ± as an integral over
the scattering point r:

δτ±(1,2) =
∫

dr T±(1,2; r), (23)

where

T±(1,2; r) =
∫

dt W±(1,2, t) C(1,2, t; r). (24)

The functions T± describe the local perturbation to
the travel-time data and are linear in δqα through C.

For any choice of δL, travel-time kernels Kα
± can be

derived from T± such that

δτ±(1,2) =
∑
α

∫
dr Kα

±(1,2; r)
δqα

qα
(r). (25)

Integration by parts may be necessary. By definition,
Kα
± represent the local sensitivity of δτ± to δqα/qα.

In the previous expression, the sum over the index α
is a sum over all relevant perturbations. Note that
extra terms should be added to account for possible
perturbations δM in the source function.

6. DISCUSSION

We now have a recipe for solving the linear forward
problem, i.e. computing travel-time sensitivity ker-
nels. This recipe is based on a physical description of
the observed wavefield. The kernels give the depen-
dence of travel-time perturbations on perturbations
to a solar model and they take account of the details
of the measurement procedure. The sensitivity ker-
nels depend on the background solar model, on the
filtering and fitting of the data, and on position on
the solar disk.

The most significant obstacle to the computation
of accurate travel-time kernels is our lack of a de-
tailed understanding of turbulent convection. The
excitation and damping of solar oscillations is due
to convection and is thus extremely difficult to ac-
count for in the background model: approximations
must be introduced. An important constraint on
the zero-order solar model is that it must produce
a k-ω diagram compatible with observations. A fur-
ther complication introduced by turbulence is that,
in principle, it demands a theory for wave propaga-
tion through random media, i.e. a treatment of per-
turbations that vary on short temporal and spatial
scales.

There are a number of less fundamental issues re-
lating to the interpretation of travel-times. We em-
phasize that the filter F includes the point spread

function of the instrument, which is not always well
known. It is unclear how an inaccurate estimate of
the point spread function affects the interpretation
of travel-time measurements. A straightforward is-
sue is that cross-correlations are typically averaged
over annuli or sectors of annuli; this can easily be ac-
counted for by averaging the point-to-point kernels
described in this paper.

Despite all of the aforementioned difficulties, the ap-
proach we have described here is feasible. Gizon et
al. (2000) have shown the whole procedure described
here to work on a 2D problem using surface waves.
We have computed examples of sensitivity kernels
for various perturbations. Papers describing these
examples are in preparation.
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