Spectral Analysis and Time Series

Andreas Lagg

Part I: fundamentals Part ll: Fourier series Part lll: Wavelets
on time series

® classification ® definition ® why wavelet

®= prob. density func. ® method transforms?

® auto-correlation ® properties ®= fundamentals:
. . FT, STFT and

® power spectral density ® convolution

resolution problems

® cross-correlation ® correlations e multiresolution
® applications ® |eakage / windowing analysis: CWT
® pre-processing ® irregular grid s DWT

® sampling ® noise removal

® trend removal .
Exercises
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Basic description of physical data

deterministic: described by explicit mathematical relation

non deterministic: no way to predict an exact value at a future instant of time
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Classifications of deterministic data
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Sinusoidal data
x(t)=Xsin(2m f,t+0O)

T=1/f,

time history frequency spectrogram

f0

Frequency
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Complex periodic data

x(t)=x(txnT) n=12,3,...

a
x(t) = ?O + Y (a,cos2mnf,t + b sin2mnf,t)

(T = fundamental period)

time history frequency spectrogram

2f 31‘1

|
Frequency
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Almost periodic data

x(t)=X,sin(2t40,) + X,sin(3t+0,) + X,sin(V507+0,)
no highest common divisor -> infinitely long period T

time history frequency spectrogram
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Transient non-periodic data

all non-periodic data other than almost periodic data
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Classification of random data
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stationary / non stationary

collection of sample functions = ensemble

data can be (hypothetically) described by
computing ensemble averages (averaging over
multiple measurements / sample functions)

mean value (first moment):

1
p (¢,)=1lim NZ x, (1))
k=1

N —

autocorrelation function (joint moment):

R
Rx(tl,t1+'r)= lim —Z x, (1) x, (t,+7)
Noo IV =]

X

stationary: u (t,)=p,, R.(t,t,+T)=R

weakly stationary: Hx<11>:ux, Rx<t1,t1+T>:Rx(T)
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ergodic / non ergodic

Ergodic random process:

properties of a stationary random process
described by computing averages over only one
single sample function in the ensemble

mean value of k-th sample function:

u (k)=1lim lf x,(1)dt

T — oo 0

autocorrelation function (joint moment):

RX(T,k):liml}xk(t)xk(t+‘r)dt

T — oo 0

ergodic:  p (k)=p., R (T,k)=R (T)
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Basic descriptive properties of random data

® mean square values

® propability density function

® autocorrelation functions

® power spectral density functions

(from now on: assume random data to be stationary and ergodic)
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Mean square values

(mean values and variances)

describes general intensity of random data:

2
rout mean square value: ¥'"° = V¥

X

often convenient:

® static component described by mean value:

® dynamic component described by variance:

standard deviation: o, = \/O‘i

X

7 =

X

T

1

lim — [ x*(¢)ds

T—>ooT0
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Probability density functions

describes the probability that the data will assume a value within some defined
range at any instant of time

T k
Prob|x<x(f)<x+Ax| = lim TX’ T =) At
=1

T — oo

forsmall Ax: Problx<x(t)<x+Ax| ~p(x)Ax

— probability density function .

X

P <x+A
rob|x<x(t)<x+Ax] | i

p(x) Ax—0 Ax Axo0 A X

T — oo

— probability distribution function
P(x) = Prob|x(t)<x]|

X
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lllustration: probability density function

sample time histories:

® sine wave (a)

® sine wave + random noise
® narrow-band random noise
® wide-band random noise

all 4 cases: mean value H,=0
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lllustration: probability density function N | |
probability density function
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A
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Autocorrelation functions

describes the general dependence of the data values at one time on the
values at another time.

R (t) = lim = fx x(t+7)dt

T — o

u. = YR (o) ¥ = R (0) (notforspecial cases like sine waves)
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lllustration: ACF

x(t)
A

autocorrelation functions (autocorrelogram)
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lllustrations

autocorrelation function of a rectangular pulse

fi) fit-7 ) _1

—~ Area= | 0 A di
rea= | - A dt x(l‘)x(l‘—‘(‘)

2 Tl
. A 0(l—) IT1< O
R E{ TJ =‘|'I 0
-0 Tl > 06

M autocorrelation function
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Power spectral density functions

(also called autospectral density functions)

describe the general frequency composition of the data in terms
of the spectral density of its mean square value

mean square value in frequency range (f, f+Af) :

Y2(FLAf) = hmzjthf)dt

T — oo

portion of x(t) in (f,f+Af)

definition of power spectral density function: Y-(f,Af) ~ G.(f)Af

6. = tim ZLEE < tm oz im 2 10,7817

important property: spectral density function is related to the
autocorrelation func’uon by a Fourier transform

= z_f R (T)e "™ dTt 4fR Jeos2m fT dT
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lllustration: PSD

power spectral density functions

Dirac delta function at f=f SIERVEVE

sine wave
+ random noise

narrowband
noise

“white” noise:
spectrum is uniform over broadband
all frequencies noise
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Joint properties of random data

until now: described properties of an
individual random process

Joint probability density functions

® joint properties in the amplitude domain

Cross-correlation functions

® joint properties in the time domain

joint probability measurement

Cross-spectral density functions

® joint properties in the frequency domain
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Cross-correlation function

describes the general dependence of
one data set to another

T
|
R_(t) = lim —f x(t)y(t+7)dt
y T — oo T 0
similar to autocorrelation function

R, (t)=0 functions are
uncorrelated

cross-correlation measurement

typical cross-correlation plot (cross-correlogram):
sharp peaks indicate the existence of a correlation
between x(t) and y(t) for specific time displacements
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Applications

Measurement of time delays

2 signals:
® different offset
® different S/N
® time delay 4s

often used:
'discrete' cross correlation coefficient
lag =I, for | >=0:

Cross Correlation
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Applications

Detection and recovery from
signals in noise

3 signals:

® noise free replica of the signal
(e.g. model)

® 2 noisy signals

cross correlation can be used to
determine if theoretical signal is
present in data

Cross Correlation
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Pre-processing Operations

® sampling considerations
® trend removal

® filtering methods

sampling

cutoff frequency (=Nyquist
frequency or folding frequency)
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Trend removal

often desirable before performing a
spectral analysis

Least-square method:

time series: u(1)

desired fit Z
iw=) bk(n
(e.g. polynomial): =

K

_N
Lsq-Fit: minimize Q(b Z
n=1
. N
- set partial Z
derivatives to O: =

N

- K+1 equations: Z b z k”

n:

—(nh)]

ZM nh

1)

-0

BEFORE

u(t) = b+ bt
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Digital filtering

HIGHPASS DATA

ORIGINAL DATA

LOWPASS DATA
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end of part | ... |
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Fourier Series and Fast Fourier Transforms

Standard Fourier series procedure:

if a transformed sample record x(t) is periodic with a period Tp (fundamental
frequency f1=1/Tp), then x(t) can be represented by the Fourier series:

Z (a,cos2mq fit + b,sin2mwqf,t)

_ %
2
2 T
where a, = ?J.x(t)COSZTrqfltdt g=0,12,...
0]
T
2 .
b, = ?fx(t)31n2anltdt g=123,...
0]
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Fourier series procedure - method |

sample record of finite length, equally spaced sampled:
x,=x(nh) n=1,2,...,

Fourier series passing through these N data values:

N/2

x(t) = A, + Zchos
g=1

N/2—1

Z Bsm
P

Fill in particular points: t=nh, n=12,..,N, T =Nh, x,=x(nh) =

21 qt qt

P

1 B 1 <
~ coefficients A, and B : A, = NZ X, = X Ay, = N,; X,COSNTT

2 < 21Tgn N

A = — ) Xx._cosS =1,2,...,——1
q N,; TN g 2
D & 21Tgn N

B = — sin =12,...,——1
g N,;x” N “ 2

inefficient & slow => Fast Fourier Trafos developed
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Fourier Transforms - Properties

Linearity | ]

< (X,
) A LY,

Symmetry | (x,) = (x*)
R{X,| is even 3{X,} is odd
Circular time shift | (] T ety
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Using FFT for Convolution

r¥s = IOF<T>S(t—T)dT

Convolution Theorem:
FT
r¥s < R(f)S(f)

Fourier transform of the convolution
is product of the individual Fourier
transforms

discrete case:
N/2

(r*s), = D, 5,1,
k=—N/2+1

Convolution Theorem:
N/2

FT
Z Si kT <R,S,

k=—N/2+1

response function ‘”|

original data N|‘l

—1

convolved data \|_ 1

(note how the response function for negative times is wrapped
around and stored at the extreme right end of the array)

constraints:

® duration of r and s are not the same

® signal is not periodic
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Treatment of end effects by zero padding

constraint 1: simply expand response function to length N by padding it with zeros

constraint 2: extend data at one end with a number of zeros equal to the max.
positive / negative duration of r (whichever is larger)

/ response function \

= Tegponse function ————

/\

- original function o naddine
sample of original function ° zeto padding

not spoiled because zero

convolution

spoiled ¢—————unspoiled ————— spoiled

unspoiled —>‘ «——spoiled
but irrelevant
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FFT for Convolution |

1. zero-pad data

2. zero-pad response function
(-> data and response function have N elements)

3. calculate FFT of data and response function
4. multiply FFT of data with FFT of response function
5. calculate inverse FFT for this product

Deconvolution

-> undo smearing caused by a response function

use steps (1-3), and then:

4. divide FFT of convolved data with FFT of response
function

5. calculate inverse FFT for this product
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Correlation / Autocorrelation with FFT

definition of correlation / autocorrelation see first lecture

Corr(g,h) = g*h

I
—
oQ
—
i
A
-
—-l
Q.
-.]

Correlation Theorem:

FT o

Corr(g,h) < G(f)H (f)
Auto-Correlation:

|2

Corr(g,g) < |G(f)

discrete correlation theorem:

=
=]
=
i
=
5
[ O]
o
(723
o
e
(8]

N—-1
Corr(g,h), = Z gl
k=0
FT %
< GH,
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Fourier Transform - problems

spectral leakage

T=nT, T#nT,
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reducing leakage by windowing (1)

Applying windowing (apodizing) function to data record:

x(t) = x(t)w(r) (original data record x windowing function)

No Window: Bartlett Window: Hamming Window:

___w--(";)=0.54+0.46*cos (m)

Blackman Window: Hann Window:

" 04240.5%%0s (1)

+0.08 cos (2 1Tt) W ( tY=exp(—0.5 (m)z)
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reducing leakage by windowing (2)

without windowing with Gaussian windowing

2

Time Time
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No constant sampling frequency |

Fourier transformation requires constant sampling (data points at

equal distances)
-> not the case for most physical data

Solution: Interpolation

® |inear:
inear interpolation between y, andy, .

IDL> idata=interpol(data,t,t_reg)
® quadratic:
quadratic interpolation using y, ., y, andy, .
IDL> idata=interpol(data,t,t_reg,/quadratic)
® |east-square quadratic
least-square quadratic fit usingy, ., ¥, Y,,, andy,
IDL> idata=interpol(data,t,t_reg,/Isq)
® spline
IDL> idata=interpol(data,t,t_reg,/spline)
IDL> idata=spline(t,data,t_reg[,tension])

ImpoIant

Hieeolalionicianges
Samplingate!
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Fourier Transorm on irregular gridded data - Interpolation

oAb

AAA) ”I\l

® original data: sine wave + noise

® FT of original data
® irregular sampling of data (measurement)

@
=
=
ey
o
=
L

® 're-sampling’
® FT of interpolated data

AnE®. 2.2 1.2 6092 .46.06.646.9.69.¢%. 6.9 " ?¢¢?T¢?¢¢¢¢¢¢¢¢¢¢¢

Frecuency Frecuency
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Noise removal

Frequency threshold (lowpass)

® make FT of data
® set high frequencies to 0

® transorm back to time
domain

Frequency

]
=

=

ey

o
—

=

=T
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Noise removal

signal threshold for
weak frequencies (dB-threshold)

® make FT of data

® set frequencies with amplitudes
below a given threshold to 0

® tfransorm back to time domain

Frequency

@
=

=
ey

o
=

-
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Optimal Filtering with FFT

normal situation with measured data;
r(t—7t)u(t)dT

o)
o
N—

||
4 =8

underlying, uncorrupted signal u(t)
+ response function of measurement r(t) c(t) = s(t)+n(t)
= smeared signal s(t)

+ noise n(t)
= smeared, noisy signal c(t)

estimate true signal u(t) with: g | CF ueasied)

o171 = U2

d(f),p(r) =optimal filter
(Wiener filter)

N2 ( extrapolated)

)
—
<
51
20
=]
—

| S1? (deduced)
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Calculation of optimal filter

reconstructed signal and uncorrupted signal should be close in least-square sense:

-> minimize «

o0

[T () -Uf)Faf

:[O|L~t(t)—u(t)|2dt = | 0
L _ o |Isth+Ninlelf) S _
0P(f) R(f) R(f)
S(f)
= @(f) = > >
SO +IN ()

additional information:

power spectral density can often
be used to disentangle noise
function N(f) from smeared
signal S(f)

/ | C|? (measured)

)
—
<
Q
20
=]
—

N2 ( extrapolated)

| S1? (deduced)
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Using FFT for Power Spectrum Estimation

discrete Fourier transform of c(t)
-> Fourier coefficients: N—
C.= Z cjezn”k/N k=0,.., N—1

J=0

[E—

-> periodogram estimate of
power spectrum:

Periodogram
1 2 measured
P(O) _ P(fo)zp‘co‘z - | Cl 1)
1 5 5 2 | N |? (extrapolated)
P(fk> — P“Ck‘ +‘CN—k‘ ] ;)f
|
P(fc) — P(fzvu):ﬁ‘czv/z‘z

| S1? (deduced)
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end of FT |
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Introduction to Wavelets

® why wavelet transforms?

® fundamentals: FT, short term FT and resolution
problems

® multiresolution analysis:
continous wavelet transform

® multiresolution analysis:
discrete wavelet transform
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Fourier: lost time information

6 Hz, 4 Hz, 2 Hz, 1 Hz 6Hz+4Hz+2Hz+1Hz

2
=
S
=
=1
&
=L

Amplitude

Signal

©
=
o
o

Frequency Frequency
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Solution; Short Time Fourier Transform

(STFT)

perform FT on 'windowed' function:

® example: rectangular window

® move window in small steps over data
® perform FT for every time step

i
]
3
=
I=1
£
=L

STFT(f,t') = [ [x(t)w(t—1")]e ™ dr

t

Amplitude
Amplituce
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Short Time Fourier Transform

STFT

Amplitude

[}
_

r-2
[}

—_
=
& &

500 1000

ANRLITUE

==
"

STFT-spectrogram shows both time and
frequency information!
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Short Time Fourier Transform: Problem

narrow window function -> good time resolution
wide window function -> good frequency resolution

a=0.001 -b

j—

rAAPLITUDE

n
[ s R ol 5 R e

0 300 1000

0 a0a oa 0 200 oa

Gauss-functions as
windows

ANPLITUDE
i = o
i T s Y |

=

2al

FREGQUENCY g 0
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Solution: Wavelet Transformation

time vs. frequency resolution is intrinsic problem (Heisenberg Uncertainty Principle)
approach: analyze the signal at different frequencies with different resolutions

-> multiresolution analysis (MRA)

Continuous Wavelet Transform |

similar to STFT: but:

® signal is multiplied with a ® the FT of the windowed signals are
function (the wavelet) not taken

® transform is calculated (no negative frequencies)
separately for different segments ® The width of the window is changed
of the time domain as the transform is computed for

every single spectral component
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Continuous Wavelet Transform

1 | T—T
CWT! =¥"(t,s) = — | x(r)y dr
Vsl s
T ... translation parameter, s ... scale parameter
W (t) ... mother wavelet (= small wave)

mother wavelet:

® finite length (compacitly
supported) ->'let’

® oscillatory ->'wave'

® functions for different

regions are derived from
this function -> 'mother’

CYAIRESHEEAT
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The Scale

similar to scales used in maps:
® high scale = non detailed global view (of the signal)

® |[ow scale = detailed view §=02 (=5 4=01 (=10}
1 T 1
in practical applications: 05 0.57
® |low scales (= high frequencies) 0 of
appear usually as short bursts or 5! 0.5}
Spikes T 500 1000 T 500 1000
® high scales (= low frequencies) last
for entire signal 1 i T S.TS TOLCTTT
- 3 0.3r 0.5
scaling dilates (stretches out) or
compresses a signal: °l I
s > 1 -> dilation 05¢ 0.5¢
s < 1 -> compression ; i L
0 00 1000 0 200 1000
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Computation of the CWT

signal to be analyzed: x(t), mother wavelet: Morlet or Mexican Hat

® start with scale s=1 (lowest scale, s=20 s=20
highest frequency) R N 3
-> most compressed wavelet

e shift wavelet in time from t  to t.

® increase s by small value

= shift dilated wavelet from t, to t, W w m a s m w o
® repeat steps for all scales : o N
U . S .
I I 0.6 I I
0.4
0.z
DD ad 100 130 200 EIEI al 1a0 130 200
to=110 to=140

A. Lagg — Spectral Analysis



CWT - Example

= s ) D 0
a6 LA T
0.d LU
0.2 AL

-0.4

-0.6H.

R ARARASAN RIS

signal x(t)
axes of CWT: translation and
scale (not time and frequency)

translation -> time
scale -> 1/frequency

AR LITUDE

[pb] ] I

ALITUDE

100

3N

scale 100 =0 0

411 Rights Reserved, Robi Polikar, #mes, Iowa, 1996
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Time and Frequency Resolution

every box corresponds to a value of the wavelet
transform in the time frequency plane

® all boxes have constant area
Af At = const. A

® [ow frequencies: high resolution
in f, low time resolution

® high frequencies: good time
resolution

Frequency

STFT: time and frequency
resolution is constant (all boxes
are the same)

Time >
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Wavelets: Mathematical Approach

WL-transform: 1 At—1
CWT! =Y¥'(t,s) = —fx(t)q/ dt
Vsl s
Mexican Hat wavelet: Morlet wavelet:
1 - /2 _
(IJ(Z) — 620 _2_1 (IJ(t) — iat 20

inverse WL-transform: f—T

dTds

wr) = S [ [ Lo
C A)

(l/ST S

admissibility o |4 2 172 FT
condition: Cw:{27Tj. |(p|(§|')| dE} <oo with ¢(&) < wl(r)
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Discretization of CWT: Wavelet Series

-> sampling the time — frequency (or scale) plane

advantage:
® sampling high for high frequencies (low scales) N. — S_IN
scale s, and rate N, 2 s,
® sampling rate can be decreased for low 7,
frequencies (high scales) N, = f_N1
scale s, and rate N, !
continuous wavelet discrete wavelet
| [—T - _
W, ==y = Y, (1) = s 2w (s t—kT,), @ ;  orthonormal
, \E g , ,
pot = f x(z‘)qjj,k(t)dt WL-transformation
t
_ wjk reconstruction of
) = CW; Zk: Vo wa() signal
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Discrete Wavelet Transform

(DWT)

discretized continuous wavelet transform is only a sampled version of the CWT

The discrete wavelet transform (DWT) has significant advantages for
implementation in computers.

excellent tutorial:
http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html

IDL-Wavelet Tools:
IDL> wv_applet

Wavelet expert at MPS:
Rajat Thomas
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end of Wavelets |
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Exercises

Part I: Fourier Analysis
(Andreas Lagg)

Instructions:
http://www.linmpi.mpg.de/~lagg

Part Il: Wavelets
(Rajat Thomas)

Seminar room
Time: 15:00
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Exercise: Galileo magnetic field

data set from Galileo magnetometer Tips:
® restore,'gll_data.saVv'
® use IDL-FFT

® remember basic plasma
physics formula for the
ion cyclotron wave:

(synthesized)
file: gll_data.sav, contains:
® total magnetic field
® radial distance
® time in seconds

your tasks:

® Which ions are present?

® |s the time resolution of
the magnetometer
sufficient to detect
electrons or protons?

_gB

w —
gYyro m

Background:

 f

— wgym
8yro 2 T

If the density of ions is high enough they will excite ion cyclotron waves
during gyration around the magnetic field lines. This gyration frequency
only depends on mass per charge and on the magnitude of the magnetic

field.

In a low-beta plasma the magnetic field dominates over plasma effects.
The magnetic field shows only very little influence from the plasma and

can be considered as a magnetic dipole.
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