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I Isotropic x/y axes

4 Show Contour (cont_flag.pro)
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4 Overplot contour from previous image

4 Mark areas (mark_things.pro)
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Inversion of the RTE

Once solution of RTE is known:

» comparison between Stokes spectra of synthetic and observed
spectrum

> trial-and-error changes of the initial parameters of the atmosphere
(,human inversions®)

> until observed and synthetic (fitted) profile matches

Inversions:
Nothing else but an optimization of the trial-and-error part

Problem:
Inversions always find a solution within the given model
atmosphere. Solution is seldomly unique (might even be
completely wrong).

Goal of this lecture:
Principles of genetic algorithms
Learn the usage of the HeLIx" inversion code, develop a feeling
on the reliability of inversion results.
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The merit functlon|

> The quality of the model atmosphere must be evaluated
> Stokes profiles represent discrete sampled functions
> widely used: chisqgr definition

3 q
2 . 1 obs syn : 2 92
X2(0) =3 3 IO — B %)) wg
free S:\O (= 1\ /
weight
/ sum over Sl OxAr (also WL-dep)
number of free  gtokes WL-pixels
parameters

> RTE gives the Stokes spectrum |SY"

> The unknowns of the system are the (height dependent) model
parameters:

X = (B,@,QS,ULOS,. ' )
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Hel Ix* overview of features

includes Zeeman, Paschen-Back, Hanle effect (He 10830)
atomic polarization for He 10830 (He D3)
magneto-optical effects

fitting / removing telluric lines

fitting unknown parameters of spectral lines

various methods for continuum correction / fitting
convolution with instrument filter profiles

user-defined weighting scheme

direct read access to SOT/SP, VTT-TIP2, SST-CRISP, ...
flexible atomic data configuration

extensive |IDL based display routines

MPI support (to invert maps)

Download from http://www.mps.mpg.de/homes/lagg
GBSO download-section = helix

use invert and IR$soft
M‘@ A. Lagg - Abisko Winter School 4
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The inversion technique: reliability

Two minimizations
iImplemented:

. Levenberg-Marquardt:
-> requires good Iinitial
guess

« PIKAIA (genetic
algorithm, Charbonneau
1995):
—> no initial guess needed

. planned: DIRECT
algorithm (good
compromise between - 60 80 100 120 140
global min and speed) X [pix]

lo_l
x
9
0)]
-
W)
c
o
S
£
N
©
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Initial guess problem

Having a good initial guess for the iteration process improves both
the speed and the convergence of the inversion.

1000 2000 3000

MPS) A. Lagg - Abisko Winter School 6



‘ﬂl!la‘ guess OpEImIZGEIOnS

ﬂuer’ ’ |n|E|a||zaE|on

eak 1iela inftaliZzation

BL — C]_V 2V
R —
Br = C/Q?+U? Jo2 + u2
Bo VBB o= ot M)
—1 BL)
Y = COs <— 1. >oAQU
o ¢ o= g {2A<Q2—U2>}
_ 1 (@
¢ = tan <U>
Other methods:

> Artificial Neural Networks (ANN)
> MDI / magnetograph formulae

> use a minimization technique which does not rely on initial

uess values
MPS) g A. Lagg - Abisko Winter School 7



Genetic algorithms ‘ P. Spijker, TU Eindhoven \

> Genetic algorithms (GA's) are a
technique to solve problems which need

optimization
> GA's are a subclass of Evolutionary Charles Darwin
Computing [ vion of Speci

> GA's are based on Darwin’s theory of
evolution

> History of GA's:

> Evolutionary computing evolved in the
1960’s.

> GA's were created by John Holland in
the mid-70’s.
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Ravanfages , arawBacks

MPS)

» No derivatives of the goodness of fit function with
respect to model parameters need be computed; it
matters little whether the relationship between the
model and its parameters is linear or nonlinear.

» Nothing in the procedure outlined above depends
critically on using a least-squares statistical estimator;
any other robust estimator can be substituted, with little
or no changes to the overall procedure.

A. Lagg - Abisko Winter School 9
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Evolution in biology

» Each cell of a living thing contains chromosomes - strings of
DNA

» Each chromosome contains a set of genes - blocks of DNA

> Each gene determines some aspect of the organism (like eye
colour)

> A collection of genes is sometimes called a genotype
> A collection of aspects (like eye colour) is sometimes called a phenotype

> Reproduction involves recombination of genes from parents
and then small amounts of mutation (errors) in copying

» The fitness of an organism is how much it can reproduce
before it dies

> Evolution based on “survival of the fittest”

MPS A. Lagg - Abisko Winter School 10



Biological reproducion |

» During reproduction “errors” occur
> Due to these “errors” genetic variation exists
> Most important “errors” are:

» Recombination (cross-over)

> Mutation

MPS A. Lagg - Abisko Winter School 11




__
Natural selection

» The origin of species: “Preservation of favourable
variations and rejection of unfavourable variations.”

> There are more individuals born than can survive, so there
IS a continuous struggle for life.

> Individuals with an advantage have a greater chance for
survive: survival of the fittest.

> Important aspects in natural selection are:
> adaptation to the environment

> isolation of populations in different groups which cannot
mutually mate

> If small changes in the genotypes of individuals are
expressed easily, especially in small populations, we speak
of genetic drift

> “success in life”: mathematically expressed as fitness

MPS A. Lagg - Abisko Winter School 12



m ‘ David Hales (www.davidhales.com) \

> GA's often encode solutions as fixed length “bitstrings”
(e.g. 101110, 111111, 000101)

> Each bit represents some aspect of the proposed
solution to the problem

» For GA's to work, we need to be able to “test” any
string and get a “score” indicating how “good” that
solution is

> definition of “fitness function” required: convenient to
use chisqgr merit function

1
F(x) =
X2 (x)
GA's improve the fithness — maximization technique

MPS A. Lagg - Abisko Winter School 13



Example — Drilling for ol

» Imagine you had to drill for oil somewhere along a
single 1km desert road

> Problem: choose the best place on the road that
produces the most oil per day

> We could represent each solution as a position on the
road

> Say, a whole number between [0..1000]

MPS ) A. Lagg - Abisko Winter School 14
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Encoding problem

MPS)

> The set of all possible solutions [0..1000] is called the

search space or state space

> In this case it's just one number but it could be many

numbers or symbols

> Often GA's code numbers in binary producing a

bitstring representing a solution

> In our example we choose 10 bits which is enough to
represent 0..1000

512|256 | 128 | 64 | 32 |16 | 8 | 4 | 2 | 1
000 1 |1 |1]lo]lo]lo]o]1]o]o
300l 0 | 1 /oo |1 ]lo] 1] 1]o
w23 1 L1 L1 1111 ] |/

In GA's rhese encoded strings are sometimes called “genotypes’
“chromosomes” and the individual bits are sometimes calle

A. Lagg - Abisko Winter School 15



Fitness of oil function

Solution1 = 300

Solution2 = 900

(0100101100) (1110000100)
N N
& &
Road i\ VAL
0 1000
-
— v+ 30
© 5
Location
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Search space

> Oil example: search space is one dimensional
(and stupid: how to define a fitness function?).

» RTE: encoding several values into the
chromosome many dimensions can be
searched

> Search space an be visualised as a surface or
fitness landscape in which fitness dictates
height (fitness / chisgr hypersurface)

> Each possible genotype is a point in the space

> A GA tries to move the points to better places
(higher fitness) in the space

MPS A. Lagg - Abisko Winter School 17




Fitness landscapes (2-D)
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Search space

> Obviously, the nature of the search space
dictates how a GA will perform

> A completely random space would be bad for
a GA

» Also GA's can, in practice, get stuck in local
maxima if search spaces contain lots of
these

> Generally, spaces in which small
Improvements get closer to the global
optimum are good
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‘lThe algorithm

» Generate a set of random solutions
> Repeat
» Test each solution in the set (rank them)
» Remove some bad solutions from set
» Duplicate some good solutions
» make small changes to some of them
> Until best solution is good enough

How to duplicate good solutions?

MPS A. Lagg - Abisko Winter School 20




U
Adding Sex

» Two high scoring “parent” bit strings
(chromosomes) are selected and with some
probability (crossover rate) combined

> Producing two new offsprings (bit strings)

» Each offspring may then be changed randomly
(mutation)

> Selecting parents: many schemes possible,
example:
Roulette Wheel

> Add up the fithess's of all chromosomes
> Generate a random number R in that range

> Select the first chromosome in the population
that - when all previous fitness’s are added -
gives you at least the value R

=

— SEX

f result of sex

parents are seldom
— happy with the

—

result
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Example population

MPS

No. Chromosome Fitness
| 1010011010 |
2 1111100001 2
3 1011001100 3
4 1010000000 |
S5 0000010000 3
6 1001011111 5
7 0101010101 |
8 1011100111 p

sum: 18

A. Lagg - Abisko Winter School 22



\'. Rouiette Wheei Seiection \

1 2 3 4 5 6 7 8
1] 2 3 1 3 5 1| 2
0 Rnd[0..18] =7  Rnd[0..18] = 12 18

Chromosome4 Chromosomeb6

Parent1 Parent2

‘ ng”er C' :ance Ol plcng d ||E c“romosome! \
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e ———
‘Crossover - Recombination \

1010000000 | Parent!  Offspring! | 1011011111

1001011111 | parent2  Offspring2 | 1010000000

Crossover
single point -

With some high probability (crossover
random

rate) apply crossover to the parents.
(typical values are 0.8 to 0.95)
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Mutation|

mutate
Offspring1 | 1011011111 Offspring1 lOlZLOOllll
/
Offspring2 | 1010000000 Offspring2 | 1000000000
Original offspring Mutated offspring

With some small probability (the mutation rate)
flip each bit in the offspring (typical values
between 0.1 and 0.0017)
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T ——
Improved algorithm

> Generate a population of random chromosomes
> Repeat (each generation)

> Calculate fitness of each chromosome

> Repeat

> Use roulette selection to select pairs of
parents

> Generate offspring with crossover and
mutation

> Until a new population has been produced
> Until best solution is good enough

MPS A. Lagg - Abisko Winter School 26



Many Variants of GA

> Different kinds of selection (not roulette):
Tournament, Elitism, etc.

> Different recombination:
one-point crossover, multi-point crossover, 3 way crossover etc.

> Different kinds of encoding other than bitstring
Integer values, Ordered set of symbols

» Different kinds of mutation
variable mutation rate

> Different reduction plans
controls how newly bred offsprings are inserted into the
population

PIKAIA (Charbonneau, 1995)
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List of ME Codes (incomplete)

» HelLIx*
A. Lagg, most flexible code (multi-comp, multi line), He 10830
Hanle slab model implemented. Genetic algorithm Pikaia. Fully
parallel.

> VFISV
J.M.Borrero, for SDO HMI. Fastest ME code available. F90, fully
parallel. Levenberg-Marquardt with some optimizations.

> MERLIN
Written by Jose Garcia at HAO in C, C++ and some other routines
in Fortran. (Lites et al. 2007 in Il Nouvo Cimento)

> MELANIE
Hector Socas at HAO. In F90, not parallel. Numerical derivatives.

> HAZEL
Andres Asensio Ramos et al. (2008). Optimized for He 10830, He
D3, Hanle-slab model.

> MILOS
Orozco Suarez et al. (2007), IDL, some papers published with it
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Installation & Usage of HelLIX*

Follow instructions on user's manual:

He-Line Information Extractor"' HELIX "

Andreas Lagg - Max-Planck-Institut fiir Sonnensystemforschung - Katlenburg-Lindau, Germany

Basic usage:
> 1-component model, create & invert synthetic spectrum
> discuss problems:

> parameter crosstalk

> uniqueness of solution

> stability & reliability

> influence of noise

Download from
GBSO download-section = helix
use invert and IR$soft
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MPS)

[ ACI'CISC I,

HelL X'

> install and run IDL interface of
HeLlIx*
> the first input file: synthesis of
Fe 1 6302.5
> change atmospheric
parameters (B, INC, ...)
> change line parameters
(quantum numbers, g.«)
> display Zeeman pattern
> add noise
> 18tinversion
> play with noise level / initial
values / parameter range
> weighting scheme

nstallation. and basic usage

Synthesis

> add complexity to atmospheric
model (stray-light, multi-
component)

» add 2" spectral line (Fe
6301.95)

blind tests:
> take synthetic profile from
someone else and invert it

> Which parameters are robust?
> How can robustness be
improved?

Download first input file: abisko_1c.ipt

http://www.mps.mpg.de/homes/lagg/
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