The HeLIX+ inversion code Genetic algorithms

	display window:					
LLx	LLy	300	URX	186	URy	420

07 may08.004detrend-01cc, avg.fit=11.59

OLENDML-10R27.Oצ9B-I

87-89 | $354-359$. Fitness: 12,40 WL-bin: 3

Inversion of the RTE

Once solution of RTE is known:
> comparison between Stokes spectra of synthetic and observed spectrum
> trial-and-error changes of the initial parameters of the atmosphere („human inversions")
> until observed and synthetic (fitted) profile matches Inversions:

Nothing else but an optimization of the trial-and-error part
Problem:
Inversions always find a solution within the given model atmosphere. Solution is seldomly unique (might even be completely wrong).

Goal of this lecture:
Principles of genetic algorithms
Learn the usage of the HeLIx+ inversion code, develop a feeling on the reliability of inversion results.

The merit function

> The quality of the model atmosphere must be evaluated
> Stokes profiles represent discrete sampled functions
> widely used: chisqr definition

$$
\begin{aligned}
& \chi^{2}(\mathrm{x})=\frac{1}{N_{\text {free }}} \sum_{s=0}^{3} \sum_{\substack{\downarrow_{i=1}^{q}}}^{q}\left[\mathbb{I}_{s}^{\text {obs }}\left(\lambda_{i}\right)-\mathbf{I}_{s}^{s y n}\left(\lambda_{i} ; \mathbf{x}\right)\right]^{2} \underbrace{w_{s, i}^{2}}_{\substack{\text { sum over } \\
\text { wumber of free } \\
\text { wLight } \\
\text { Stokes }}} \\
& \text { parameters }
\end{aligned}
$$

$>$ RTE gives the Stokes spectrum $\mathrm{I}_{\mathrm{s}}^{\text {syn }}$
$>$ The unknowns of the system are the (height dependent) model parameters:

$$
\mathrm{x}=\left(B, \Theta, \phi, v_{L O S}, \ldots\right)
$$

HeLlx+ overview of features

o includes Zeeman, Paschen-Back, Hanle effect (He 10830)
o atomic polarization for He 10830 (He D3)

- magneto-optical effects
o fitting / removing telluric lines
- fitting unknown parameters of spectral lines
o various methods for continuum correction / fitting
o convolution with instrument filter profiles
o user-defined weighting scheme
o direct read access to SOT/SP, VTT-TIP2, SST-CRISP, ...
- flexible atomic data configuration
- extensive IDL based display routines
o MPI support (to invert maps)
Download from http://www.mps.mpg.de/homes/lage GBSO download-section \rightarrow helix use invert and IR\$soft

The inversion technique: reliability

Two minimizations implemented:
. Levenberg-Marquardt: \rightarrow requires good initial guess

- PIKAIA (genetic algorithm, Charbonneau 1995):
\rightarrow no initial guess needed
- planned: DIRECT algorithm (good compromise between global min and speed)

Initial guess problem

Having a good initial guess for the iteration process improves both the speed and the convergence of the inversion.

Initial guess optimizations

Weak field initialization

$$
\left.\begin{array}{rlrl}
B_{L} & =C_{1} V & R & =\frac{2 V}{\sqrt{Q^{2}+U^{2}}} \\
B_{T} & =C_{2} \sqrt{Q^{2}+U^{2}} & & =\cos ^{-1}\left\{\frac{1}{2}\left(\sqrt{R^{4}+4}-R\right)\right\} \\
B & =\sqrt{B_{L}^{2}+B_{T}^{2}} & \gamma & =\cos ^{-1}\left(\frac{B_{L}}{B_{T}}\right)
\end{array} \begin{array}{l}
\phi
\end{array}\right)=\frac{1}{4} \tan ^{-1}\left\{\frac{\sum_{\lambda} Q U}{\sum_{\lambda}\left(Q^{2}-U^{2}\right)}\right\},
$$

Other methods:
> Artificial Neural Networks (ANN)
> MDI / magnetograph formulae
> use a minimization technique which does not rely on initial guess values

Genetic algorithms

> Genetic algorithms (GA's) are a technique to solve problems which need optimization
> GA's are a subclass of Evolutionary Computing
> GA's are based on Darwin's theory of evolution
> History of GA's:

- Evolutionary computing evolved in the 1960's.
> GA's were created by John Holland in the mid-70's.

Advantages / drawbacks

> No derivatives of the goodness of fit function with respect to model parameters need be computed; it matters little whether the relationship between the model and its parameters is linear or nonlinear.
> Nothing in the procedure outlined above depends critically on using a least-squares statistical estimator; any other robust estimator can be substituted, with little or no changes to the overall procedure.
> In most real applications, the model will need to be evaluated (i.e., given a parameter set, compute a synthetic dataset and its associated goodness of fit) great many times; if this evaluation is computatio expensive, the forward mod'eling approach impractical.

Evolution in biology

> Each cell of a living thing contains chromosomes - strings of DNA
> Each chromosome contains a set of genes - blocks of DNA
> Each gene determines some aspect of the organism (like eye colour)
A A collection of genes is sometimes called a genotype
> A collection of aspects (like eye colour) is sometimes called a phenotype
> Reproduction involves recombination of genes from parents and then small amounts of mutation (errors) in copying
> The fitness of an organism is how much it can reproduce before it dies
> Evolution based on "survival of the fittest"

Biological reproducion

> During reproduction "errors" occur
> Due to these "errors" genetic variation exists
> Most important "errors" are:
$>$ Recombination (cross-over)
> Mutation

Natural selection

> The origin of species: "Preservation of favourable variations and rejection of unfavourable variations."
> There are more individuals born than can survive, so there is a continuous struggle for life.
> Individuals with an advantage have a greater chance for survive: survival of the fittest.
> Important aspects in natural selection are:
> adaptation to the environment
> isolation of populations in different groups which cannot mutually mate
> If small changes in the genotypes of individuals are expressed easily, especially in small populations, we speak of genetic drift
> "success in life": mathematically expressed as fitness

How to apply to RTE?

> GA's often encode solutions as fixed length "bitstrings" (e.g. 101110, 111111, 000101)
$>$ Each bit represents some aspect of the proposed solution to the problem
> For GA's to work, we need to be able to "test" any string and get a "score" indicating how "good" that solution is
> definition of "fitness function" required: convenient to use chisqr merit function

$$
F(\mathrm{x})=\frac{1}{\chi^{2}(\mathrm{x})}
$$

GA's improve the fitness - maximization technique

Example - Drilling for oil

> Imagine you had to drill for oil somewhere along a single 1 km desert road
> Problem: choose the best place on the road that produces the most oil per day
> We could represent each solution as a position on the road
> Say, a whole number between [0..1000] Solution1 = 300 Solution2 = 900

Road

Encoding problem

> The set of all possible solutions [0..1000] is called the search space or state space
> In this case it's just one number but it could be many numbers or symbols
> Often GA's code numbers in binary producing a bitstring representing a solution
> In our example we choose 10 bits which is enough to represent $0 . .1000$

	512	256	128	64	32	16	8	4	2	1
900	1	1	1	0	0	0	0	1	0	0
300	0	1	0	0	1	0	1	1	0	0
1023	1	1	1	1	1	1	1	1	1	1

In GA's shese encoded strings are sometimes called "genotypes". -1 "chromosomes" and the individual bits are sometimes calle d "genes

Fitness of oil function

Search space

> Oil example: search space is one dimensional (and stupid: how to define a fitness function?).
> RTE: encoding several values into the chromosome many dimensions can be searched
> Search space an be visualised as a surface or fitness landscape in which fitness dictates height (fitness / chisqr hypersurface)
> Each possible genotype is a point in the space
> A GA tries to move the points to better places (higher fitness) in the space

Fitness landscapes (2-D)

Search space

> Obviously, the nature of the search space dictates how a GA will perform
> A completely random space would be bad for a GA
> Also GA's can, in practice, get stuck in local maxima if search spaces contain lots of these
> Generally, spaces in which small improvements get closer to the global optimum are good

The algorithm

> Generate a set of random solutions
> Repeat
> Test each solution in the set (rank them)
$>$ Remove some bad solutions from set
> Duplicate some good solutions
> make small changes to some of them
> Until best solution is good enough

How to duplicate good solutions?

Adding Sex

> Two high scoring "parent" bit strings (chromosomes) are selected and with some probability (crossover rate) combined
> Producing two new offsprings (bit strings)
> Each offspring may then be changed randomly (mutation)
> Selecting parents: many schemes possible, example:

Roulette Wheel

> Add up the fitness's of all chromosomes
$>$ Generate a random number R in that range
$>$ Select the first chromosome in the population that - when all previous fitness's are added gives you at least the value R

Example population

No.	Chromosome	Fitness
1	1010011010	1
2	1111100001	2
3	1011001100	3
4	1010000000	1
5	0000010000	3
6	1001011111	5
7	0101010101	1
8	1011100111	2
		sum: 18

Roulette Wheel Selection

Crossover - Recombination

Mutation

Offspring1 1011011111
Offspring2 1010000000
Original offspring

mutate

With some small probability (the mutation rate) flip each bit in the offspring (typical values between 0.1 and 0.001)

Improved algorithm

> Generate a population of random chromosomes
$>$ Repeat (each generation)
> Calculate fitness of each chromosome
> Repeat
> Use roulette selection to select pairs of parents
> Generate offspring with crossover and mutation
> Until a new population has been produced
> Until best solution is good enough

Many Variants of GA

> Different kinds of selection (not roulette): Tournament, Elitism, etc.
> Different recombination: one-point crossover, multi-point crossover, 3 way crossover etc.
> Different kinds of encoding other than bitstring Integer values, Ordered set of symbols
> Different kinds of mutation variable mutation rate
> Different reduction plans controls how newly bred offsprings are inserted into the population

PIKAIA (Charbonneau, 1995)

How PIKAIA works...

List of ME Codes (incomplete)

> HeLIX ${ }^{+}$
A. Lagg, most flexible code (multi-comp, multi line), He 10830 Hanle slab model implemented. Genetic algorithm Pikaia. Fully parallel.
> VFISV
J.M.Borrero, for SDO HMI. Fastest ME code available. F90, fully parallel. Levenberg-Marquardt with some optimizations.
> MERLIN
Written by Jose Garcia at HAO in C, C++ and some other routines in Fortran. (Lites et al. 2007 in II Nouvo Cimento)
> MELANIE Hector Socas at HAO. In F90, not parallel. Numerical derivatives.
> HAZEL
Artoro Lopez Ariste et al. (2008). Optimized for He 10830, He D3, Hanle-slab model.
> MILOS
Orozco Suarez et al. (2007), IDL, some papers published with it

Installation \& Usage of HeLIX+

Follow instructions on user's manual:

He-Line Information Extractor ${ }^{+}$HELIX ${ }^{+}$

 Andreas Lagg • Max-Planck-Institut für Sonnensystemforschung • Katlenburg-Lindau, GermanyBasic usage:
> 1-component model, create \& invert synthetic spectrum
> discuss problems:
> parameter crosstalk
$>$ uniqueness of solution
> stability \& reliability
> influence of noise
Download from http://www.mps.mpg.de/homes/lagd GBSO download-section \rightarrow helix use invert and IR\$soft

Exercise II:

HeLIX+ installation and basic usage

> install and run IDL interface of HeLlx ${ }^{+}$
> the first input file: synthesis of
Fe I 6302.5
$>$ change atmospheric parameters (B, INC, ...)
> change line parameters (quantum numbers, $g_{\text {eff }}$)
> display Zeeman pattern
$>$ add noise
$>1^{\text {st }}$ inversion
> play with noise level / initial values / parameter range
> weighting scheme

Synthesis
> add complexity to atmospheric model (stray-light, multicomponent)
> add $2^{\text {nd }}$ spectral line (Fe 6301.5)
blind tests:
> take synthetic profile from someone else and invert it
> Which parameters are robust?
> How can robustness be improved?

