Advances in measuring the chromospheric magnetic field using the He 10830 triplet

Andreas Lagg
Max-Planck-Institut für Sonnensystemforschung
Katlenburg-Lindau, Germany

1st Sino-German Symposium on Solar Physics
The Chromosphere In Hα

Halphea -800 mA
The Chromosphere in Hα
The Chromosphere In Hα

Halphi -400 mA
The Chromosphere in $\text{H} \alpha$
IBIS Ca II 8542 Å wing (K. Reardon)
IBIS Ca II 8542 Å (K. Reardon)
IBIS Hα 6563 Å (K. Reardon)
The Chromosphere

Complex Chromosphere

- Transition region
- Current sheets
- Weak fields
- Reversed granulation
- Gravity waves / p-modes
- Granulation

- Internetwork
- Convection zone
- Photosphere
- Chromosphere

- Coronal loops
- Shock waves
- Spicule II
- Dynamic fibril

- Classical temperature
- Wedemeyer-Böhm et al. (2008)
Physical Conditions
- non-LTE
- partial frequency redistribution (PRD)
- non-equilibrium hydrogen and helium ionization
- scattering
- 3D radiative processes

Observational
- extremely short timescales
- low density plasma above bright background
- fine structure (fibrils)
- weak signals
- complex interpretation
Why is it so Complex?

Physical Conditions
- non-LTE
- partial frequency redistribution (PRD)
- non-equilibrium hydrogen and helium ionization
- scattering
- 3D radiative processes

Observational
- extremely short timescales
- low density plasma above bright background
- fine structure (fibrils)
- weak signals
- complex interpretation
The principal ingredients defining chromospheric structure and dynamics are, for decreasing activity, magnetic reconnection, current heating, Alfvén waves, magnetically guided and/or converted acoustic waves, possibly gravity waves and torsional waves, and photon losses in strong lines.

Rutten (2012)
The principal ingredients defining chromospheric structure and dynamics are, for decreasing activity, magnetic reconnection, current heating, Alfvén waves, magnetically guided and/or converted acoustic waves, possibly gravity waves and torsional waves, and photon losses in strong lines.
Accessing B_{Chromo}: Extrapolations

Method

- Use photospheric magnetic field vector (ideal: 3D vector field, 180° ambiguity resolved)
- Preprocessing: use e.g. Hα images to constrain magnetic field orientation
- Errors in boundary conditions
- Model assumptions
- “Interesting regions” not well-behaved

Experts: Wiegelmann (MPS), Yan, Guo

Wiegelmann et al. (2005)
Accessing B_{Chromo}: Extrapolations

Method

- Use photospheric magnetic field vector (ideal: 3D vector field, 180° ambiguity resolved)
- Preprocessing: use e.g. Hα images to constrain magnetic field orientation
- Errors in boundary conditions
- Model assumptions
- “Interesting regions” not well-behaved

Experts: Wiegelmann (MPS), Yan, Guo

Wiegelmann et al. (2005)
Accessing B_{Chromo}: Measurements

- Gyroresonant emission: Radio obs. of strong fields (>250 G)
- Bremsstrahlung emission: Radio
- Coronal loop oscillations: EUV, coronagraphy
- Zeeman effect: spectropolarimetric observations UV - IR
- Faraday rotation: radio observation
- Scattering polarization: coronagraph
- Hanle effect: spectropolarimetric observations UV - IR
gyroresonant emission: Radio obs. of strong fields (>250 G)
Bremsstrahlung emission: Radio
coronal loop oscillations: EUV, coronagraphy
Zeeman effect: spectropolarimetric observations UV - IR
Faraday rotation: radio observation
Scattering polarization: coronagraph
Hanle effect: spectropolarimetric observations UV - IR
Accessing B_{Chrom}: Measurements

- gyroresonant emission: Radio obs. of strong fields (>250 G)
- Bremsstrahlung emission: Radio
- coronal loop oscillations: EUV, coronagraphy
- Zeeman effect: spectropolarimetric observations UV - IR
- Faraday rotation: radio observation
- Scattering polarization: coronagraph
- Hanle effect: spectropolarimetric observations UV - IR

Option 1

Full non-LTE 3D treatment (Ca II H&K, Ca II IR) → e.g. Oslo group (M. Carlsson, J. Leenaarts) → MPS (M. van Noort)
Accessing B_{Chromo}: Measurements

- Gyroresonant emission: Radio observation of strong fields (>250 G)
- Bremsstrahlung emission: Radio
- Coronal loop oscillations: EUV, coronagraphy
- Zeeman effect: spectropolarimetric observations UV - IR
- Faraday rotation: radio observation
- Scattering polarization: coronograph
- Hanle effect: spectropolarimetric observations UV - IR

Option 1

Full non-LTE 3D treatment (Ca II H&K, Ca II IR)
→ e.g. Oslo group (M. Carlsson, J. Leenaarts)
→ MPS (M. van Noort)

Option 2

Hanle & Zeeman diagnostics using the He I 1083.0 nm triplet
→ this talk
The He I 1083 nm triplet

Centeno et al. (2008)
The He I 1083 nm triplet

Centeno et al. (2008)
Centeno et al. (2008)

The He I 1083 nm triplet

Clue: For $\lambda < 504$ Å (≈ 24.6 eV)

- radiation originates in corona
- cannot penetrate deeply

→ illuminates only upper chromosphere
The He I 1083 nm triplet

Centeno et al. (2008)

Pros and Cons

- **simple: thin slab atmosphere**
- **Zeeman effect (+ simple Hanle)**
- **restricted height information**
- **weak signal in quiet Sun**
The He I Sun of 2012-09-30 (ChroTel, VTT)

Avrett et al. (1994)
The He I 1083 nm triplet

The He I Sun of 2012-09-30 (ChroTel, VTT)

Avrett et al. (1994)
High Resolution in He I 1083 nm

Ji et al. (2012)
- highest resolution He I observations at NST/BBSO
- Lyot filter
- Speckle image reconstruction
- ultra-fine loops
This afternoon: Xu et al. (2012)

- Characteristic signatures of a strong-field (600–800 G) flux rope
- Flux rope produces filament during emergence
- 2 filaments overlying each other:
 1. lower: concave topology
 2. upper: normal configuration (unstable)

Chromospheric field is not aligned with visual structure!
He I in the Quiet Sun: VTT/TIP - Chromosphere

07may08.004, WL 10830.339–10830.549 Å

-440 -420 -400 -380
20 40 60 80 x [arcsec]

y [arcsec]

1.2 \times 10^{-4} - 380
1.1 \times 10^{-4}
1.0 \times 10^{-4}
9.0 \times 10^{-5}
8.0 \times 10^{-3} - 440

Q/I_c

0.002
0.000
-0.002

0.000
0.002
0.004

0.000
0.002
0.004

V/I_c

-0.003 - 440
-0.002
-0.001
0.000
0.001
0.002
0.003

0.000
0.002
0.004

-0.002

-0.002

24 / 39
He I in the Quiet Sun: VTT/TIP - Chromosphere
He I in the Quiet Sun: VTT/TIP - Chromosphere
He I in the Quiet Sun: Profiles
Summary & Outlook

Larger Telescopes / Solar C

Fine Structure & Short Timescales

IBIS Ca II 8542 Å (K. Reardon)

Ground Based
- NVST: 1 m YAO
- GREGOR: 1.5 m
- NST: 1.6 m BBSO
- Ji, Cao and Goode
- ATST / EST: 4 m
- CGST: 8 m (ring)

Space Borne
- DSO: 1 m
- Solar-C: 1.5 m, end of this decade
Conclusions

- Measuring chromospheric fields is high priority science goal
- Instrument developments:
 - GRIS (GREGOR), FIRS, IBIS (NSO), NVST, Solar-C, DSO, Chinese Giant Solar Telescope (VIS-IR, 8 m)
- Model improvements:
 - combined Hanle & Zeeman (MPS, IAC), 3D non-LTE modelling of chromospheric lines (Oslo, soon: MPS)
- Missing link between photosphere and corona to be completed soon

Rutten, R. J. 2012, Royal Society of London Philosophical Transactions Series A, 370, 3129

Active Region Filament

Continuum image
- opposite polarities on both sides
- large penumbra-like structure roughly along the neutral line

He I line core image
- Hα outlines complete filament
- He I only visible along few elongated field-aligned features

Xu et al. (2012), VTT / TIP-2 data
Opposite polarities in the chromosphere closer to each other than in the photosphere

Chromosphere: small upflows along the PIL and inside the segmented He filaments. Downflows are found at its sides.
A Sunspot in 3D

Joshi et al. (2012), response functions

Si I, Ca I

He I, > 1000 km

log(τ)

0.0000 0.0001 0.0002 0.0003 0.0004

-6 -4 -2 0

270 km 125 km
Sunspot Magnetic Field

Joshi et al. (2012), VTT / TIP-2 data
Example: Magnetic Field Gradient

Joshi et al. (2012)
nearly aligned along the PIL
concave structure

Xu et al. (2012)

- angle to PIL: 20–30°
- Corona: the EUV loops even more perpendicular to the PIL
He I in the Quiet Sun: VTT/TIP - Photosphere

Summary & Outlook

Larger Telescopes / Solar C

07may08.004, WL 10827.096−10827.305 Å

Q/I_c

V/I_c

U/I_c

y [arcsec]

x [arcsec]

y [arcsec]
He I in the Quiet Sun: Azimuth

Summary & Outlook
Larger Telescopes / Solar C

[Graph showing total magn. flux, avg. horiz. magn. flux, and avg. vert. magn. flux with scale and data points.]
Comparison to Extrapolations

Extrapolations, $H = 1500$ km

Total magnetic field [G]
The Danger of Inversions

Jafarzadeh et al. (2012)

inversions: unreliable inclination if V, Q, U small

SUNRISE: direct method