The Solar Chromosphere

Recent Advances in Determining the Magnetic Fine Structure

Andreas Lagg

Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany

Rocks'n'Stars 2012

Table of Contents

- Accessing the Chromospheric Field
- The He I 1083 nm triplet
- Hei: Selected Highlights
- 5 Summary & Outlook

The Chromosphere In $H\alpha$

3/29

The Chromosphere In $H\alpha$

5/29

The Chromosphere In $H\alpha$

The Chromosphere The Complexity

Complex Chromosphere

The Chromosphere The Complexity

SST 04-0ct-2005 epuoses suo arc seconds

12/29

The Chromosphere The Complexity

Leenaarts et al. (2007)

Why is it so complex?

Physical Conditions

- non-LTE
- partial frequency redistribution (PRD)
- non-equilibrium hydrogen and helium ionization
- scattering
- 3D radiative processes

Observational

- extremely short timescales
- low density plasma above bright background
- fine structure (fibrils)
- weak signals
- complex interpretation

Why is it so complex?

Physical Conditions

- non-LTE
- partial frequency redistribution (PRD)
- non-equilibrium hydrogen and helium ionization
- scattering
- 3D radiative processes

Observational

- extremely short timescales
- low density plasma above bright background
- fine structure (fibrils)
- weak signals
- complex interpretation

The Chromosphere Key: Magnetic Field

The Key is the Magnetic Field

Rutten (2012)

The principal ingredients defining chromospheric structure and dynamics are, for decreasing activity, magnetic reconnection, current heating, Alfvén waves, magnetically guided and/or converted acoustic waves, possibly gravity waves and torsional waves, and photon losses in strong lines.

Accessing B_{Chromo}: Extrapolations

Method

- Use photospheric magnetic field vector (ideal: 3D vector field, 180° ambiguity resolved)
- Preprocessing: use e.g. Hα images to constrain magnetic field orientation
 - $\rightarrow\,$ consistent boundary data for nonlinear force-free modeling
 - → preprocessed boundary data are chromospheric-like

expert: Thomas Wiegelmann (MPS)

Problems

- errors in boundary conditions
 - measurement errors
 - ambiguity removal
 - height of measurement
- model assumptions
- "interesting regions" not well-behaved

• . .

Accessing B_{Chromo}: Extrapolations

Method

- Use photospheric magnetic field vector (ideal: 3D vector field, 180° ambiguity resolved)
- Preprocessing: use e.g. Hα images to constrain magnetic field orientation
 - $\rightarrow\,$ consistent boundary data for nonlinear force-free modeling
 - → preprocessed boundary data are chromospheric-like

expert: Thomas Wiegelmann (MPS)

Problems

- errors in boundary conditions
 - measurement errors
 - ambiguity removal
 - height of measurement
- model assumptions
- "interesting regions" not well-behaved
- ...

Accessing the Chromospheric Field Extrapolations

Extrapolations - Example

- gyroresonant emission: Radio obs. of strong fields (>250 G)
- Bremsstrahlung emission: Radio
- coronal loop oscillations: EUV, coronagraphy
- Zeeman effect: spectropolarimetric observations UV IR
- Faraday rotation: radio observation
- Scattering polarization: coronagraph
- Hanle effect: spectropolarimetric observations UV IR

- gyroresonant emission: Radio obs. of strong fields (>250 G)
- Bremsstrahlung emission: Radio
- coronal loop oscillations: EUV, coronagraphy
- Zeeman effect: spectropolarimetric observations UV IR
- Faraday rotation: radio observation
- Scattering polarization: coronagraph
- Hanle effect: spectropolarimetric observations UV IR

- gyroresonant emission: Radio obs. of strong fields (>250 G)
- Bremsstrahlung emission: Radio
- coronal loop oscillations: EUV, coronagraphy
- Zeeman effect: spectropolarimetric observations UV IR
- Faraday rotation: radio observation
- Scattering polarization: coronagraph
- Hanle effect: spectropolarimetric observations UV IR

Option 1

Full non-LTE 3D treatment (Ca II H&K, Ca II IR) \rightarrow e.g. Oslo group (M. Carlsson, J. Leenaarts)

- gyroresonant emission: Radio obs. of strong fields (>250 G)
- Bremsstrahlung emission: Radio
- coronal loop oscillations: EUV, coronagraphy
- Zeeman effect: spectropolarimetric observations UV IR
- Faraday rotation: radio observation
- Scattering polarization: coronagraph
- Hanle effect: spectropolarimetric observations UV IR

Option 1

Full non-LTE 3D treatment (Ca II H&K, Ca II IR) \rightarrow e.g. Oslo group (M. Carlsson, J. Leenaarts)

Option 2

Hanle & Zeeman diagnostics using the He $\!$ 1083.0 nm triplet \rightarrow this talk

Centeno et al. (2008)

The He I 1083 nm triplet

Centeno et al. (2008)

The He I 1083 nm triplet

Centeno et al. (2008)

Clue: For $\lambda < 504$ Å (= 24.6 eV)

- radiation originates in corona
- cannot penetrate deeply

 \rightarrow illuminates only upper chromosphere

The He I 1083 nm triplet

Centeno et al. (2008)

Pros and Cons

- simple: thin slab atmosphere
- Zeeman effect (+ simple Hanle)

- restricted height information
- weak signal in quiet Sun

The He I 1083 nm triplet

The He I Sun of 2012-09-30

Avrett et al. (1994)

The He I 1083 nm triplet

The He I Sun of 2012-09-30

21/29

Sunspot Magnetic Field

stay tuned for Joshi et al. (2012) 14:50 - 15:10

Active Region Filament

Continuum image

- opposite polarities on both sides
- large penumbra-like structure roughly along the neutral line

He I line core image

- H α outlines complete filament
- He I only visible along few elongated field-aligned features

Active Region Filament - Inclination

- Opposite polarities in the chromosphere closer to each other than in the photosphere
- Chromosphere: small upflows along the PIL and inside the segmented He filaments. Downflows are found at its sides.

He I: Selected Highlights Xu et al.

Active Region Filament - Azimuth

- nearly aligned along the PIL
- concave structure

- angle to PIL: 20–30°
- Corona: the EUV loops even more perpendicular to the PIL

Active Region Filament - Scenario

Xu et al. (2012)

- Characteristic signatures of a strong-field (600–800 G) flux rope
- Flux rope produces filament during emergence
- 2 filaments overlying each other:
 - Iower: concave topology
 - upper: normal configuration (unstable)

Chromospheric field is not aligned with visual structure!

Fine Structure & Short Timescales

IBIS Ca II 8542 Å (K. Reardon)

Ground Based

- GREGOR: 1.5 m on Tenerife
- NST: 1.6 m Big Bear
- ATST / EST: 4 m

Space Borne

• Solar-C: 1.5 m, end of this decade

Fine Structure & Short Timescales

IBIS Ca II 8542 Å (K. Reardon)

Ground Based

- GREGOR: 1.5 m on Tenerife
- NST: 1.6 m Big Bear
- ATST / EST: 4 m

Space Borne

• Solar-C: 1.5 m, end of this decade

Fine Structure & Short Timescales

Fine Structure & Short Timescales

IBIS Ca II 8542 Å (K. Reardon)

Ground Based

- GREGOR: 1.5 m on Tenerife
- NST: 1.6 m Big Bear
- ATST / EST: 4 m

Space Borne

• Solar-C: 1.5 m, end of this decade

Fine Structure & Short Timescales

IBIS Ca II 8542 Å (K. Reardon)

Ground Based

- GREGOR: 1.5 m on Tenerife
- NST: 1.6 m Big Bear
- ATST / EST: 4 m

Space Borne

• Solar-C: 1.5 m, end of this decade

Summary & Outlook

Conclusions

- Measuring chromospheric fields is high priority science goal
- → Instrument developments: GRIS (GREGOR), FIRS, IBIS (NSO), Solar-C, Chinese Giant Solar Telescope (VIS-IR, 8 m)
- $\rightarrow\,$ Model improvements: combined Hanle & Zeeman (MPS, IAC), 3D non-LTE modelling of chromospheric lines (Oslo, soon: MPS)
- Missing link between photosphere and corona to be completed soon

Bilbiography

- Avrett, E. H., Fontenla, J. M., & Loeser, R. 1994, in IAU Symp. 154: Infrared Solar Physics, ed. D. M. Rabin (Kluwer Academic Publishers, Dordrecht, 1994), 35–47
 Centeno, R., Trujillo Bueno, J., Uitenbroek, H., & Collados, M. 2008, ApJ, 677, 742
 Joshi, J., Lagg, A., Hirzberger, J., & Solanki, S. K. 2012, in preparation
 Leenaarts, J., Carlsson, M., Hansteen, V., & Rutten, R. J. 2007, A&A, 473, 625
 Rutten, R. J. 2012, Royal Society of London Philosophical Transactions Series A, 370, 3129
 Wiegelmann, T., Inhester, B., Lagg, A., & Solanki, S. K. 2005, Sol. Phys., 228, 67
- Xu, Z., Lagg, A., Solanki, S., & Liu, Y. 2012, ApJ, 749, 138