IMaX Observing Strategies Optimizing the 2nd Flight

Andreas Lagg

Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany

Sunrise Co-I Meeting @ MPS

Table of Contents

2 Motivation

Spectral region

Inversions

- Qualitative Comparison
- Quantitative Comparison

Observing modes during 2009 flight

2009 Observing Modes

- Fe | 5250.208 Å line
- V5-6: (-80, -40, +40, +80, +227) mÅ
- L12-2: 12 equidistant WL points from 5250.015 to 5250.400 Å
- L3-2, V3-6 (60, +60, +227) mÅ

This Analysis

... will only deal with vector modes (full magnetic field information) V5-6, V7-6 modes

Observing modes during 2009 flight

2009 Observing Modes

- Fe | 5250.208 Å line
- V5-6: (-80, -40, +40, +80, +227) mÅ
- L12-2: 12 equidistant WL points from 5250.015 to 5250.400 Å
- L3-2, V3-6 (60, +60, +227) mÅ

This Analysis

... will only deal with vector modes (full magnetic field information) V5-6, V7-6 modes

Analysis Methods 2009

Milne-Eddington

Height independent values for

- Β, γ, χ
- V_{LOS}
- fit parameters: $\lambda_{\text{DOPP}}, S_0, S_{\text{GRAD}}, \eta_0, a_{\text{damp}}.$
- \Rightarrow 9 free parameters

SPINOR / SIR

- *T*-stratification (HSRA): *T*₀, *T*_{GRAD}
- Β, γ, χ
- $V_{\rm LOS}, V_{\rm mic}$
- \Rightarrow 7 free parameters

Number of measured data points in V5-6 mode: 4 (λ) × 4 (Stokes) + 1 continuum = 17

Analysis Methods 2009

Milne-Eddington

Height independent values for

- Β, γ, χ
- V_{LOS}
- fit parameters: $\lambda_{\text{DOPP}}, S_0, S_{\text{GRAD}}, \eta_0, a_{\text{damp}}.$
- \Rightarrow 9 free parameters

SPINOR / SIR

- *T*-stratification (HSRA): *T*₀, *T*_{GRAD}
- Β, γ, χ
- $V_{\rm LOS}$, $V_{\rm mic}$
- \Rightarrow 7 free parameters

Number of measured data points in V5-6 mode: 4 (λ) × 4 (Stokes) + 1 continuum = 17

Analysis Methods 2009

Milne-Eddington

Height independent values for

- Β, γ, χ
- V_{LOS}
- fit parameters: $\lambda_{\text{DOPP}}, S_0, S_{\text{GRAD}}, \eta_0, a_{\text{damp}}.$
- \Rightarrow 9 free parameters

SPINOR / SIR

- *T*-stratification (HSRA): *T*₀, *T*_{GRAD}
- Β, γ, χ
- V_{LOS}, V_{mic}
- \Rightarrow 7 free parameters

Number of measured data points in V5-6 mode: 4 (λ) × 4 (Stokes) + 1 continuum = 17

Solar Conditions

2009 flight

- "only" quiet Sun data sets
 - high photon flux
 - low polarization signal

Re-flight

- observations at all activity levels
- quiet Sun: known performance
- plage / penumbra / umbra:
 - Iow photon flux
 - high polarization signal

Solar Conditions

2009 flight

- "only" quiet Sun data sets
 - high photon flux
 - low polarization signal

Re-flight

- observations at all activity levels
- quiet Sun: known performance
- plage / penumbra / umbra:
 - Iow photon flux
 - high polarization signal

Motivation

Is it possible to optimize IMaX observations?

- Adapt observing modes to solar conditions
- Which spectral line (5250.2, 5250.6, both)?
- How many wavelength points?
- Beyond Milne-Eddington: reliable gradients?

MHD Simulations

MPS

MuRAM cube: 1/4 sunspot (M. Rempel / M. Schüssler)

7/40

MHD degradation

MHD original resolution: $32 \times 32 \times 16 \text{ km}^3$

- binned to $64 \times 64 \text{ km}^2$
- IMaX spectral PSF applied
- wavelength sampling:
 - continuous (100 WL points over V5-6 range)
 - simulating observing modes V5-6, V7-6
 V5-6: (-80, -40, +40, +80, +227) mÅ
 V7-6: (-140, -90, -40, +40, +90, +140, +227) mÅ
- noise added (normal distribution): levels 1 ⋅ 10⁻⁴ (= noise-free) and 3 ⋅ 10⁻³ of *I_c* ⇒ increase of noise level in umbra

disk center

The Spectra - Quiet Sun

Intergranular Lane

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- good continuum
- weak Q,U,V signals

The Spectra - Quiet Sun

Intergranular Lane

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- good continuum
- weak Q,U,V signals

The Spectra - Quiet Sun

Intergranular Lane

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- good continuum
- weak Q,U,V signals

The Spectra - Quiet Sun

Center of Granule

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- good continuum
- Q,U,V signals even weaker

The Spectra - Quiet Sun

Center of Granule

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- good continuum
- Q,U,V signals even weaker

The Spectra - Quiet Sun

Center of Granule

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- good continuum
- Q,U,V signals even weaker

The Spectra - Sunspot

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- fair continuum
- Q,U,V high
- asymmetries

The Spectra - Sunspot

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- fair continuum
- Q, U, V high
- asymmetries

The Spectra - Sunspot

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- fair continuum
- Q,U,V high
- asymmetries

The Spectra - Sunspot

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- fair continuum
- Q,U,V high
- asymmetries

The Spectra - Sunspot

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- continuum?
- V high, BUT:
- I level low
 ⇒ noise level ×3 !!

The Spectra - Sunspot

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- ontinuum?
- V high, BUT:
- I level low
 ⇒ noise level ×3 !!

The Spectra - Sunspot

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- ontinuum?
- V high, BUT:
- I level low
 ⇒ noise level ×3 !!

The Spectra - Sunspot

- degraded with IMaX spectral PSF
- 6 strongest lines around Fe I5250.2 Å
- ontinuum?
- V high, BUT:
- / level low ⇒ noise level ×3 !!

Spectral region

The Spectra - Quiet Sun, V5-6, noise $3 \cdot 10^{-3}$

Spectral region

The Spectra - Sunspot, V5-6, noise 3 · 10⁻³

Spectral region

The Spectra - Sunspot, V7-6, noise 3 · 10⁻³

The Spectra

Problems with spectra

- continuum level: in umbra no continuum between 5250.2 Å and 5250.6 Å
- significant contribution of 5250.6 Å line
- noise level:

intensity in umbra reduced to < 10%

- \Rightarrow noise level 1% or larger!
- complex (*pathological*) profiles: difficult to interpret with noise and only 5 WL-points

Inversion Setup

Inversion Setup

 Milne-Eddington Problem: Fe I 5250.6 Å line
 OK - not shown
 SPINOR/SIR with HSRA (and T₀, T_{GRAD}), 1 node OK - not shown
 SPINOR with 3 nodes in T, B, γ, χ, v_{LOS}, and 1 v_{mic} this analysis

How to compare MHD and Inversions?

Determine height layer for comparison

- Compute RFs
 - for every pixel and every parameter
 - use RF to compute height average of MHD cube for every pixel
 - \Rightarrow not (yet) implemented.
- Use temperature stratification
 - perform 3-node inversion of noise-free data
 - Find location where $T_{\rm MHD}(z) = T_{\rm inv}(\tau)$
 - Take ± 50 km around this location
 - \Rightarrow simple, fast
 - (!) same height layer for all atmospheric parameters
 - (!) temperature comparison MHD inversion not useful

How to compare MHD and Inversions?

Determine height layer for comparison

- Compute RFs
 - for every pixel and every parameter
 - use RF to compute height average of MHD cube for every pixel
 - \Rightarrow not (yet) implemented.
- Use temperature stratification
 - perform 3-node inversion of noise-free data
 - Find location where $T_{\rm MHD}(z) = T_{\rm inv}(\tau)$
 - Take ± 50 km around this location
 - \Rightarrow simple, fast
 - (!) same height layer for all atmospheric parameters
 - (!) temperature comparison MHD inversion not useful

Qualitative Comparison

Next Slides:

- magnetic field strength
- height layer: $\log \tau = -1.25$
- \Rightarrow best layer

B-Field: $\log \tau = -1.25$

100 WL B-strength: LT=-1.25

Inversion Setup

no noise, 100 WL points from -80 mÅ to +227 mÅ

slightly too weak in umbra, slightly too strong in QS

100 WL points

B-Field: $\log \tau = -1.25$

100 WL B-strength: LT=-1.25

Inversion Setup

no noise, 100 WL points from -80 mÅ to +227 mÅ

slightly too weak in umbra, slightly too strong in QS

100 WL points

Inversion Setup

V5-6 mode, noise level 3.10⁻³

noise in umbra, too strong granular fields

V5-6 B-strength: LT=-1.25

Inversion Setup

V5-6 mode, noise level 3.10⁻³

noise in umbra, too strong granular fields

V7-6 B-strength: LT=-1.25

Inversion Setup

V7-6 mode, noise level 3.10⁻³

significant improvement in umbra, slightly better in QS

V7-6 B-strength: LT=-1.25

Inversion Setup

V7-6 mode, noise level 3.10⁻³

significant improvement in umbra, slightly better in QS

V7-6

How about gradients? - High layers

Next slides:

- magnetic field strength
- height layer: $\log \tau = -2.5$
- \Rightarrow upper photosphere

V5-6 B-strength: LT=-2.50

Inversion Setup

V5-6 mode, noise level 3.10⁻³

noise in umbra, no expansion & too strong network patches

V5-6

V5-6 B-strength: LT=-2.50

Inversion Setup

V5-6 mode, noise level 3.10⁻³

noise in umbra, no expansion & too strong network patches

V7-6 B-strength: LT=-2.50

Inversion Setup

V7-6 mode, noise level 3.10⁻³

noise in umbra (reduced), no expansion & too strong network

V7-6

V7-6 B-strength: LT=-2.50

Inversion Setup

V7-6 mode, noise level 3.10⁻³

noise in umbra (reduced), no expansion & too strong network

V7-6

How about gradients? - Deep layers

Next slides:

- magnetic field strength
- height layer: $\log \tau = 0.0$
- \Rightarrow deep photosphere

V5-6 B-strength: LT=0.00

Inversion Setup

V5-6 mode, noise level 3.10⁻³

too strong, especially penumbra

V5-6 B-strength: LT=0.00

Inversion Setup

V5-6 mode, noise level 3.10⁻³

too strong, especially penumbra

V7-6 B-strength: LT=0.00

Inversion Setup

V7-4 mode, noise level 3.10⁻³

slightly too strong in QS and umbra

V7-6 B-strength: LT=0.00

Inversion Setup

V7-4 mode, noise level 3.10⁻³

slightly too strong in QS and umbra

V5-6 B-atrength: LT=-2.50

All Parameters & Heights

Qualitative Comparison Inversions

V7-6 B-strength: LT=-2.50

All Parameters & Heights

100 150 200 x [pix] 150 200 x loid V7-6 Indination: LT=-2.50 x [pix] x loid V7-6 Azimuth: LT=-2.50 MHD Inversion 150 200 x [pix] 150 200 x [pix] V7-6 LOS-velocity: LT=-2.50 MHD

150 200 x [pis] 150 20 x loid V7-6 Indination: LT=-1.25

V7-6 B-strength: LT=-1.25

V7-6 Azimuth: LT=-1.25 MHD Inversion

x Ipid

x lpix!

Quantitative Comparison

Umbra Penumbra Quiet Sun Full

$\log \tau = -1.25$, V5-6

$\log \tau = -1.25$, V7-6

$\log \tau = -2.50$, V5-6

$\log \tau = -2.50$, V7-6

$\log \tau = 0.00, V5-6$

 $\log \tau = 0.00, V7-6$

Fe I 5250.6 Å, $\log \tau = -1.25$, V7-6

Comparison: Correlation Coefficient

- between MHD solution and inversion
- average over whole region (QS, penumbra, umbra)
- 2 right bars: *g* = 1.5 Fe I 5250.6 Å line

Conclusions

- V5-6 mode good for 1-node inversions (SPINOR/SIR or ME, not shown)
 BUT: ME inversions difficult in sunspot (Fe I 5250.6 Å)
- V7-6 mode required for height dependent inversions (V5-6 wrong in some regions)
- Fe I 5250.6 Å line worse for B, slightly better for VLOS

Reflight

- ontinuum point: to the blue?
- umbra: longer integration?
- even more WL points to cover both Fe I lines? (number of photons is constant for same t_{acq})
- more simulations? (browse my PC ...)

Conclusions

- V5-6 mode good for 1-node inversions (SPINOR/SIR or ME, not shown)
 BUT: ME inversions difficult in sunspot (Fe I 5250.6 Å)
- V7-6 mode required for height dependent inversions (V5-6 wrong in some regions)
- Fe I 5250.6 Å line worse for B, slightly better for VLOS

Reflight

- o continuum point: to the blue?
- umbra: longer integration?
- even more WL points to cover both Fe I lines? (number of photons is constant for same t_{acq})
- more simulations? (browse my PC ...)