# **Quiet-Sun Observations**

A 2-D inversion attempt

# Andreas Lagg

Max-Planck-Institut für Sonnensystemforschung Göttingen, Germany

# 2<sup>nd</sup> GREGOR Science Meeting @ MPS

Göttingen

Nov-08 2016





### GRIS Data Fe I @ 1.56 μm Scan of quiet sun region (2015-Sep-17)



- FFT rebinned: 0."135 pixelsize
- noise level reduction:  $4 \cdot 10^{-4} I_C$
- $\rightarrow~2.7\cdot10^{-4}~I_{\it C}$
- $\rightarrow$  no loss in spatial resolution
- spectral binning
- $\rightarrow$   $\times$ 2 (oversampling)
- $\rightarrow~2.1\cdot10^{-4}~I_{\textit{C}}$

3

2



GRIS Data Comparison to Hinode SOT/SP

Comparison: GRIS vs. SOT/SP: LP/CP Coverage





Stokes signal levels



# Comparison GRIS $\leftrightarrow$ Hinode SOT/SP

| σ-        | GRIS [%] |      | LP   | LP   | SOT/SP [%] |      | LP  | LP   |
|-----------|----------|------|------|------|------------|------|-----|------|
| level     |          |      | and  | or   |            |      | and | or   |
|           | LP       | CP   | CP   | CP   | LP         | CP   | CP  | CP   |
| $3\sigma$ | 39.7     | 73.0 | 33.1 | 79.7 | 9.8        | 49.3 | 7.7 | 51.4 |
| $4\sigma$ | 18.4     | 57.0 | 13.9 | 61.5 | 4.2        | 37.1 | 3.1 | 38.2 |
| $5\sigma$ | 9.2      | 44.2 | 6.2  | 47.2 | 2.1        | 28.5 | 1.5 | 29.1 |

### Analysis Methods

# Extracting information from the Stokes spectra



# Stokes profile diagnostics Lagg et al. (2016)

magnetic line ratio, LP/CP

- based directly on Stokes profiles
- no complex analysis involved
- obtain *B*-strength directly (avoid FF problems)
- only coarse B determination
- very limited inclination information

1D-Inversions Martínez González et al. (2016)

ME-type, SIR, SPINOR

- accurate  $B, \gamma, \phi$
- height-information
- provides PDFs
- Zeeman-bias  $B_{||} \longleftrightarrow B_{\perp}$
- FF / straylight factor required

Magnetic Line Ratios (MLRs) The principle

Simple diagnostic techniques: MLR - field strength



# Magnetic Line Ratio (Solanki et al., 1992)

$$\mathsf{MLR} = \frac{g_{\mathsf{eff}}(15652)V_{\mathsf{max}}(15648)}{g(15648)V_{\mathsf{max}}(15652)}$$

Requirements:

- spectral lines identical except for Landé factor
- 2 distinct components:
  (1) magnetized, (2) field-free
- small gradients in log au
- $\rightarrow$  not fulfilled for Fe I 1.56 line pair
- → BUT: similar formation height, narrow formation height range, similar thermal properties



Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

### Different MLR regions - Where?





### Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

### Different MLR regions - Where?





### Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

# Different MLR regions - Where?





### MHD-Simulation Comparison Small scale dynamo run & IMaX run

### Test using MHD Quiet Sun simulations (SSD+IMaX run)





• Riethmüller et al. (2016)

### MHD-Simulation Comparison Small scale dynamo run & IMaX run

### Test using MHD Quiet Sun simulations (SSD+IMaX run)





 $\rightarrow$  match contrast, resolution,  $I_c$  histogram

MLR≈1.2, small V<sub>max</sub> (hG) MLR≈1.2, large V<sub>max</sub> (hG)

MLR≈0.6, small V<sub>max</sub> (kG)

MLR $\approx$ 0.6, large  $V_{max}$  (kG)

# Martínez González et al. (2016)





9/19

### Inversions of GRIS Data 1-D Inversions Martínez González et al. (2016)





# Martínez González et al. (2016)





9/19

# Martínez González et al. (2016) - unresolved magnetic fine structure





# Martínez González et al. (2016) - unresolved magnetic fine structure



- 1C-model + unpolarized straylight
  - $\rightarrow \ \text{unable to reproduce} \\ observation$



# Martínez González et al. (2016) - unresolved magnetic fine structure



- 1C-model + unpolarized straylight
  - $\rightarrow \ \text{unable to reproduce} \\ observation$
- 2 magn. comp. + unpolarized straylight
  - $\rightarrow$  decent fit



# Martínez González et al. (2016) - unresolved magnetic fine structure



- 1C-model + unpolarized straylight
  - $\rightarrow \ \text{unable to reproduce} \\ observation$
- 2 magn. comp. + unpolarized straylight
  - $\rightarrow$  decent fit
    - Is this unresolved finestructure?
  - Simpler model possible?



PSF influence

### PSF influence - magnetic pixel in QS - no PSF



Inversions of GRIS Data PSF influence

# MPS

### PSF influence - magnetic pixel in QS - with PSF



### PSF influence - magnetic pixel in weak B environment - no PSF





### PSF influence - magnetic pixel in weak B environment - with PSF





PSF influence

### 2D (spatially coupled) inversions







Stokes profile - kG patch

og 
$$au = -0.8$$
:  $B = 1320$  G,  $\gamma = 27^{\circ}$ 



### Stokes profile - PSF halo around kG patch (1)

og 
$$au=-$$
0.8:  $extsf{B}=$  30 G, ( $\gamma=$  64 $^{\circ}$ )



h

### Comparison: 1-D, 2-D, MLR maps



[Mm]

Comparison: 1-D, 2-D, MLR maps



### MLR-technique







Arcsec













### Comparison: 1-D, 2-D, MLR maps



### 2-D SPINOR



### Comparison: 1-D, 2-D, MLR maps



### 2-D SPINOR



Arcsec

Arcsec

-0



### Comparison: 1-D, 2-D, MLR maps



30

Arcsec

40

20

10

20

50





2

0

# MIPS

### Comparison: 1-D, 2-D, MLR maps

10

20

[Mm]



30

50

40







### Comparison: 1-D, 2-D, MLR maps



17/19

### Summary

### Summary



# 2-D inversions with GRIS data

- reproduces complex Stokes profiles with rather simple model atmosphere
- promising behavior on kG patches
- details of PSF matter for correct height stratification
- uncertainties in complex cases (i.e., penumbra, light bridges)
- → exact PSF knowledge is mandatory (and its spatial and temporal variation)

Summary

### Bibliography



Lagg, A., et al. 2016, ArXiv e-prints Martínez González, M. J., et al. 2016, A&A GREGOR issue, accepted

Rempel, M. 2014, ApJ, 789, 132

Riethmüller, T., et al. 2016, ApJ, in preparation Solanki, S. K., Rüedi, I. K., & Livingston, W. 1992, A&A, 263, 312 van Noort, M. 2012, A&A, 548, A5

# MPS

# Martínez González et al. (2016) - PDFs



# MPS

### Martínez González et al. (2016) - PDFs

