

Metis Instrument Overview and Status

Marco Romoli

Univ. di Firenze, Italy

6th Metis Workshop

MPS, Göttingen, 21 November 2018

High-latitude Observations

Perihelion Observations

High-latitude Cobservations

M1 of Cosmic Vision 2015-2025 Launch date: February 2020 Cruise phase: 1.8 years (till 1/12/2021) Nominal mission: 5 years Extended mission: 3.7 years Orbit: 0.28 - 0.32 AU (perihelion) 0.74 -- 0.91 AU (aphelion) **Out-of-ecliptic view:** Multiple gravity assists with Venus to increa inclination out of the ecliptic to >24° (nominal mission), >34° (extended mission) **Reduced relative rotation:** Continuous observation of evolving structures on the solar surface and heliosphere for almost a

complete solar rotation

olar orbiter

In situ Instruments

•

Remote Sensing Instruments

metis

EUI (P. Rochus) High-resolution and full-disk EUV **RPW ANTENNA #1 (PZ)** imaging of the on-disk solar corona. HRI 17.4 and 121.6nm **EPD-SIS** FSI 17.4 and 30.4nm **SOLOHI SOLOHI** (R. Howard) SPICE Wide-field visible imaging of the solar corona and wind **SPICE** (A. Fludra/F. Auchere) SWA HIS EUV spectroscopy of the solar disk and near-Sun solar corona. 70.4 - 79.0 nm and 97.3 - 104.9 nm **STIX STIX** (S. Krucker) Imaging spectroscopy of EUI solar X-ray emission **PHI** (S. Solanki) **METIS** High-resolution vector magnetic field, line-of-sight velocity in **METIS** (M. Romoli) photosphere, visible imaging Visible and (E)UV imaging of PHI the off-disk corona

XORF

Yorf

|S|

W

Metis scientific objectives

- Gives a unique contribution to address the core science objectives of Solar Orbiter
- Provides observations needed to understand the region linking the Sun to the heliosphere
- A key instrument to investigate how the Sun creates and controls the heliosphere (primary objective of the Solar Orbiter mission)

Solar Orbiter Top-level Science Questions	Unique METIS contribution The only Solar Orbiter instrument observing the:
How and where do the <i>solar wind plasma</i> and <i>magnetic field</i> originate in the corona	region where the solar wind is accelerated from ≈100 km/sec to near its asymptotic value
How do <i>solar transients</i> drive heliospheric variability	region where the first, most dramatic phase of the propagation of coronal mass ejections occurs
How do solar eruptions produce <i>energetic particle radiation</i> that fills the heliosphere	path of the shock front accelerating particles in the solar corona
How does the <i>solar dynamo</i> work and drive <i>connections between the Sun and the heliosphere</i>	overall magnetic configuration (closed and open magnetic field regions of the corona)

- METIS is an imaging all-reflecting coronagraph designed to provide:
- ✓ Full Imaging of the extended corona (1.5 12 Ro) UV (121.6 nm), and visible light
- \checkmark Density distribution in corona of H⁰, and e⁻
- ✓ Global Maps of solar wind outflow (H⁰)
- \checkmark Large scale dynamics of H⁰, and e⁻ in CMEs

Metis: near-Sun coronagraphy

Polarized VL imaging @ 580 - 640 nm UV HI Ly α imaging @ 121.6 ± 10 nm FoV (1.6° · 2.9° annular, 1.7 – 3.0 R_o @ 0.28 AU)

Spatial sampling element ≤ 4000 km (20") @ 0.28 AU Time resolution ≥ 1 sec Simultaneous VL and UV imaging solar orbite

METIS instrument requirements

METIS instrument is an externally occulted coronagraph off-axis **II = u** gregorian (with inverted occultation) with imaging capabilities.

Polarimetry with liquid crystal retarder

Inverted Coronagraph instrument requirements

Wavelength range:	Visible light: 580 - 640 nm UV: HI 121.6 ± 10 nm		
Field-of-view (square)	1.6° - 2.9°	0.28 AU: 1.7 - 3.0 R_{\odot} 0.4 AU: 2.2 - 4.5 R_{\odot}	
Spatial Plate Scale	10 arcsec (VL) 20 arcsec (UV)		
Spatial resolution	40 arcsec (VL and UV analog)		
Instrumental Stray Light	VL < 10 ⁻⁹ UV < 10 ⁻⁷		
Mass	24.55 kg		
Average power consumption	15.5 W (stand-by) 26.07 W (operational)		

Zooming effect in the FOV due to the orbit's eccentricity offers the chance of observing interplanetary H around the Sun

Dist. (AU)	Min FOV	Max FOV	Corner FOV
0.28	1.7 R₀	3.0 R _☉	3.9 R₀
0.3	1.75 R _☉	3.3 R₀	4.0 R₀
0.4	2.2 R₀	4.4 R₀	6.2 R₀
0.5	2.8 R₀	5.4 R₀	7.7 R₀
0.8	4.3 R _☉	12 R _☉	17 R₀

METIS Design Overview

metis

solar orbiter

METIS Optical Design

solar orbiter

METIS in-flight off-pointing

- 1. Metis nominal science operations
- Scientific observations can be degraded by excessive stray-light

metis

- Metis internal components can be exposed to direct sunlight for a limited time
- 4. HS door should be closed in all circumstances

Metis Detectors - VLDA

٠

٠

٠

٠

The METIS Visible Light Detector Assembly (VLDA) is a 2k x2k APS with a 10 um pixel size @14 bits and it is based on the same sensor adopted by the Solar Orbiter Polarimetric and Helioseismic Imager (PHI) instrument and developed by CMOSIS and MPS.

metis

MPS, Gottingen, 21-23 November, 2018

solar orbiter Metis Detectors - UVDA

The UV detector assembly (UVDA)

metis

is based on an Intensified Active Pixel Sensor (IAPS), consisting of a microchannel plate (MCP) intensifier with phosphor screen output, optically coupled via fiber optic taper to a 1k × 1k APS sensor.

MCP INTENSIFIER 40 mm Ø (KBr photochatode) APS Phosphor(P46) MPS, Gottingen, 21

Intensified UV light detector

- Intensifier (-> window-photocathode- MCP-phosphor screen)
 - Sealed
 - entrance window of UV-grade MgF2 to optimize the transmission @ 121.6 nm.
 - KBr deposited on the entrance face of the MCP to optimize in-band sensitivity and out-of-band rejection
 - Single stage MCP
- FO taper (de-magnification 2:1)
- APS
 - Star1000 based
 - 1024x1024 pixels (30 μm at the focal plane)
 - Max pixel rate 12 MHz
 - Scale factor 20 arcsec/pixel
 - Dark current 840 e-/p/s @20 ° C 370 ° e-/p/s@-20 ° C
 - Full well 135 ke-

Metis AIV activity on S/C

S/C AIV at IABG, München

- MCAP mechanism installation 28 October
- SFT + Tvac (Nov/Dec) and verification of thermal model (Jan)
- Ejection Cap Test + protection cap removal (under definition – planned after Vibe Test Mar.2019)

solar orbiter

Metis AIV activity on S/C

S/C AIV at IABG, München

- MCAP mechanism installation 28 October
- SFT + Tvac (Nov/Dec) and verification of thermal model (Jan)
- Ejection Cap Test + protection cap removal (under definition – planned after Vibe Test Mar.2019)

MPS, Gottingen, 2

Metis OBSW

Present configuration:

OBSW 2.0.7 + IDB 4.0 are stable and suitable for ground testing but not for flight (due to some minor defects and non conformances: revise the HK organisation and routing)
Not all features of OBSW 2.0.7 have been functionally tested and verified (e.g. CME monitoring, Sun Disk flag, UV-Photon Counting)

met

Future plan:

- Metis Reference model
- Test planned at IABG: I-SFT (11-12/2018), I-FFT (8/2019), IIC (8/2019)
- Test planned at ESOC: SVT-1 (7/2019), IIC

- OBSW optimization, functional testing, and validation is in continuous progress at home on FUMO and EM, and, when ready, on the Metis Reference Model.

- Metis plan to release and upload a revised OBSW (+IDB) version shortly before or at the **beginning of the launch campaign.**

- Metis are prepared to support a further/backup OBSW upload activity at the first **Earth fly-by** if either in-flight activity will evidence any not proper functional behaviour or if the on-ground patch slot is missed.

MPS, Gottingen, 21-23 November, 2018

Metis Team

- Metis Team coordinated and funded by the Italia Space Agency (ASI)
- Industrial Team:
 - OHB Italia, Milan
 - Thales Alenia Space Turin
- Scientific Team
 - University of Florence (PI: Marco Romoli)
 - INAF Turin Astrophysical Observatory
 - University of Padua
 - CNR-IFN Padua
 - INAF Capodimonte Astrophysical Observatory, Naples
 - INAF Catania Astrophysical Observatory
 - INAF -IASF, Milan
 - INAF Trieste Astrophysical Observatory
 - University of Urbino
- Institute of Astronomy, Czech Academy of Science and Toptec
- Max Planck Institut für Sonnensystemforschung (MPS)
- Naval Research Laboratory, Washington DC, USA