

METIS Science Performance

Daniele Spadaro

INAF-Osservatorio Astrofisico di Catania Italy

👩 IFN 🕅 🕼 SF) 👔 👔

OAC

METIS Workshop

Göttingen, November 21st-23rd, 2018

ThalesAlen

CGS

Metis coronal imaging

Polarized VL 580 - 640 nm

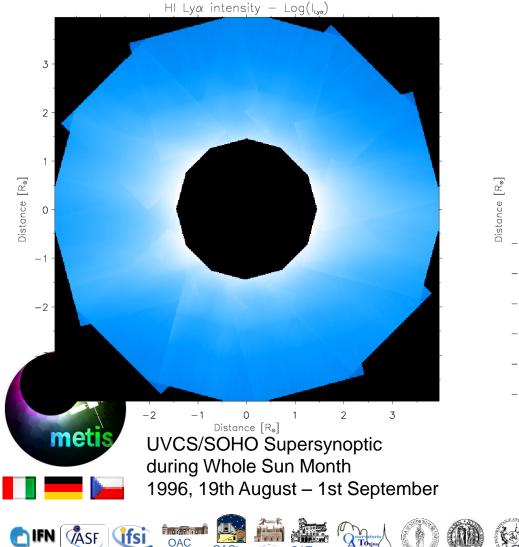
UV HI Ly α imaging @ 121.6 ± 10 nm FoV (1.6° - 2.9° annular, 1.7 - 3.1 R₂ @ 0.28 AU)

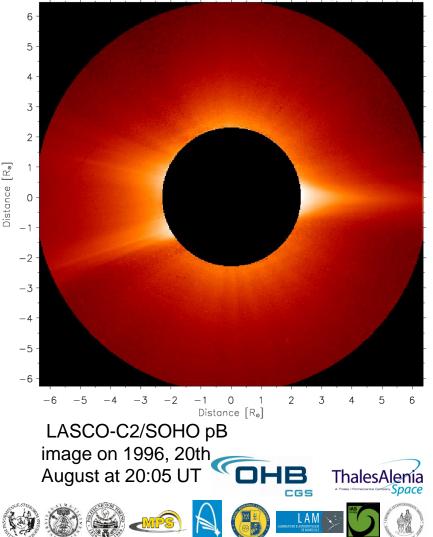
Spatial sampling element \leq 4000 km (20") @ 0.28 AU Time resolution \geq 1 sec

Off-limb and near-Sun coronagraphy

For the first time:

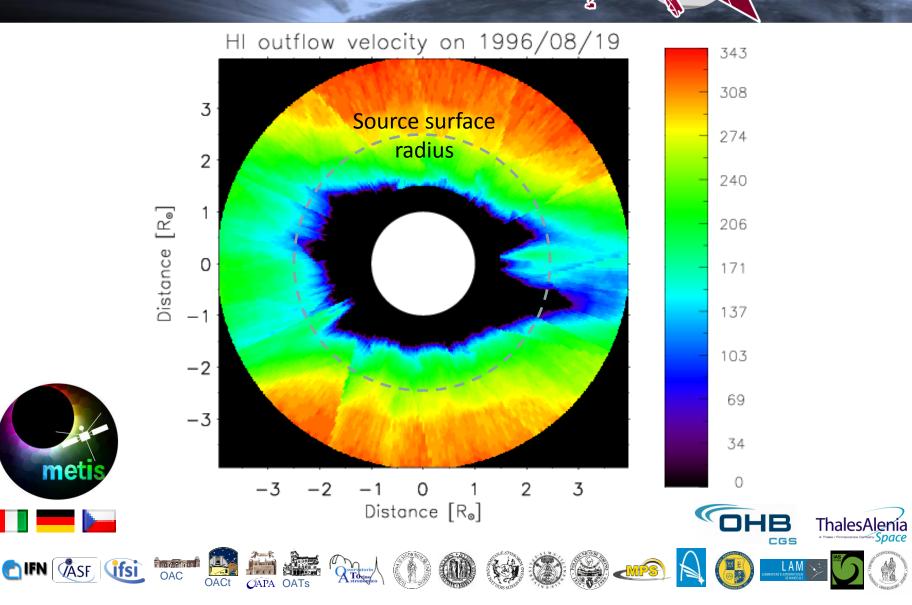
 simultaneous imaging of the full corona in polarized visible light (580-640 nm) and narrow-band ultraviolet H I Ly α (121.6 nm) <u>- Global maps of coronal emission -</u>


Complete characterization of the most important plasma components of the corona and the solar wind, i.e., electrons and protons: ==> density (polarized VL), outflow velocity (Doppler dimming of Ly α), ...



OACt

OAPA OATS


K-corona polarized brightness - Log(pB)

solar orbiter

Full inversion output

solar orbiter

-Scientific Objectives –

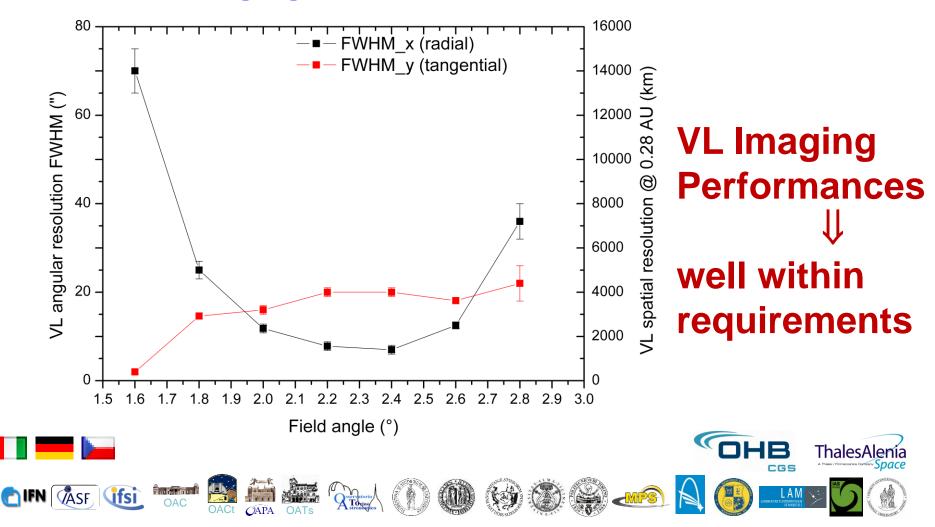
(see the doc METIS-OACT-RPT-001 – METIS Scientific Performances Report)

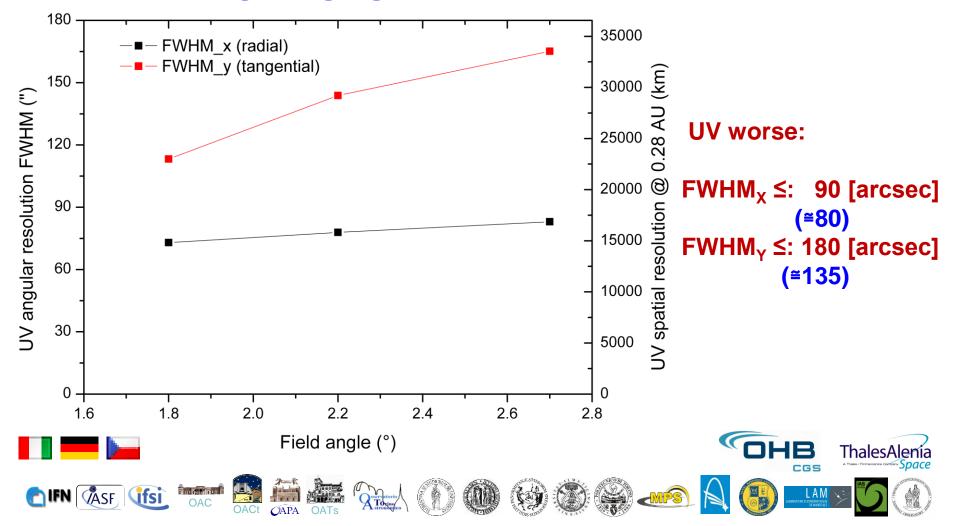
- 1. Origins and acceleration of the solar wind streams
- 2. Sources of the solar energetic particles (SEP)
- 3. Origin and early propagation of coronal mass ejections (CME)
 - * Crucial questions in the field of coronal and solar wind physics *
- 4. Study of Sun-grazing comets (in addition)

 The scientific objectives define the observational requirements that will be satisfied by the performances of the instrument

Metis Instrument Performance							
CORONAL IMAGING							
VL<10 ⁻⁹							
$UV < 10^{-7}$							
VL: 580-640 nm							
UV: 121.6±10 nm							
10 arcsec (VL), 20 arcsec (UV)							
20 arcsec (VL), 40 arcsec (UV)							
1.5°-2.9°annular, off-limb corona							

3.4° at the corners of the square detector vignetted by the round field stop

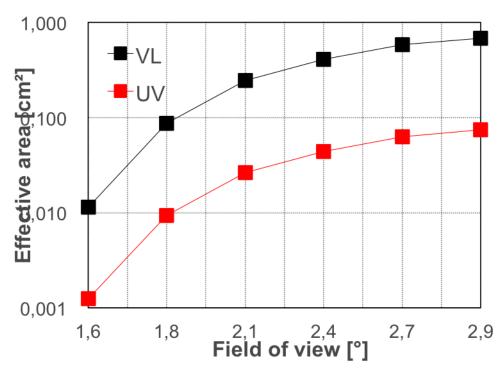

CGS



VL Imaging Performances vs Field-of-View

UV-analog Imaging Performances vs Field-of-View

Não spozicile Italiano


Field of	Effective a	reas [cm ²]			
view [°]	VL	UV			
1.6	1.14 × 10 ⁻	1.24×10^{-3}			
1.8	8.62 × 10 ⁻	9.34 × 10 ⁻			
2.1	2.43 × 10 ⁻	2.63×10^{-2}			
2.4	4.06 × 10 ⁻	4.40×10^{-2}			

The effective areas ale obtained from the overall instrument throughput, inclusive of the vignetting, times the geometrical area of the entrance

aperture (Ø 40 mm).

Instrument response

solar orbiter

METIS

Expected countrates (*i.e., CR, counts-of-detected photons/s/pixel*) in the two wavelength bands of Metis from typical coronal radiances at minimum solar activity ($I_{c.}$ photons/s/cm²/sr) – see METIS-OACT-TNO-004

S/C @ 0.28 AUVL path:500-5000 counts/s/pixel(100-2000)perihelionfor a typical streamer(coronal hole)UV path:more than 2 orders of magnitude lower

S/C @ 0.5 AU VL path: 25-800 counts/s/pixel (15-450) for a typical streamer (coronal hole) UV path: about 3 orders of magnitude lower

S/C @ 0.65 AU VL path: 15-500 counts/s/pixel (5-300) for a typical streamer (coronal hole) UV path: more than 3 orders of magnitude lower

Signal-to-noise (S/N) ratio and required exposure times

	Exposure times required [s]							
S/C @	min (S/N ≥ 10)	2/3 DFWC	CH (S/N ≥ 10)	STR (S/N ≥ 10)				
0.28 AU	7	16	2401	120				
0.50 AU	90	56	18002	900 ¹				
0.65 AU	210	80	-	9003				

1 Binning 2x2

2 Binning 4x4, below $3.5 R_{\odot}$

3 Binning 4x4

<u>Note:</u> In the case of maximum activity, the expected countrates are higher by a factor ranging from 3 to 6, depending on the height.

In the case of CMEs, the expected countrates are about 20%-30% higher than those corresponding to the streamer belt.

METIS

Polarimetric Calibration Current voltage-quadruplet:

Voltage [V]	14.00	5.59	3.56	2.83
Retardan ce [°]	60.8	137.9	257.5	369.4

Optimized voltage-quadruplet (max polarimetric efficiency ∆Retardance= 90°):

Voltage [V]	8.96	4.60	3.45	2.89
Retardan ce [°]	90	180	270	360

 Flow-down from mission-level key science questions to METIS scientific objectives, and to measurement requirements, which correspond to specific observing modes of METIS

Traceability matrix (see METIS-OACT-RPT-001)

INAF

🖱 I F

SOLAR ORBITER Key Science Question	Metis Science Question	Metis Objective	Metis Observation	Field of View (FoV)	Metis Measurement	Cadence	Required Exposure Time (S/N≥10)	VL Sampling element	Observing Mode	Data Volume	
		Identify coronal wind flows: slow and fast streams	VL polarized (580-640 nm) UV (HI Ly α) imaging	Annular FoV 1.5°-2.9° Off-limb corona Out to 5 R _o	Global maps of <i>electron density</i> <i>outflow velocities</i> of neutral hydrogen	VL 5-30 min UV 5-30 min	VL 7-210 s UV 10-30 min	20"-40" (4000 km – 8000 km)	WIND	14 Mb	
		Locate energy deposition in wind streams	VL polarized (580-640 nm) UV (HI Ly α) imaging	Annular FoV 1.5°-2.9° Off-limb corona Out to 5 R _o	Global maps of <i>outflow velocity</i> <i>gradients</i> of neutral hydrogen	VL 5-30 min UV 5-30 min	VL 7-210 s UV 10-30 min	20"-40" (4000 km – 8000 km)	WIND	14 Mb	
solar wind accelerati plasma and of solar wi	Origin and acceleration of solar wind streams	Assess role of coronal fluctuations in heating and accelerating solar wind	VL (580-640 nm) imaging only	Annular FoV 1.5°-2.9° Off-limb corona Out to 3 R _o	High spatial and temporal resolution time series of visible coronal brightness to derive fluctuation spectra best near perihelion	VL 1-20 s	VL 1-20 s (S/N 2-28)	20" (4000 km)	FLUCTS TBF	5 Mb	
			Asses role of coronal magnetic topology vs. wind outflow velocity	VL polarized (580-640 nm) UV (HI Ly α) imaging	Annular FoV 1.5°-2.9° Off-limb corona Out to 5 R _o	Global maps of electron density outflow velocities of neutral hydrogen best near perihelion	VL 5-20 min UV 5-20 min	VL 7-90 s UV 10 min	20" (4000 km)	MAGTOP	23 Mb
		Identify sources of the slow solar wind	VL polarized (580-640 nm) UV (HI Ly α) imaging	Annular FoV 1.5°-2.9° Off-limb corona Out to 5 R _o	Global maps of electron density outflow velocities of neutral hydrogen streamer/hole interfaces, above streamer cusp best near perihelion	VL 5-30 min UV 5-30 min	VL 7-210 s UV 10-30 min	20"-40" (4000 km – 8000 km)	WIND	14 Mb	

solar orbiter

METIS

INAF

METIS

solar orbiter

SOLAR ORBITER Key Science Question	Metis Science Question	Metis Objective	Metis Observation	Field of View (FoV)	Metis Measurement	Cadence	Required Exposure Time (S/N≥10)	VL Sampling element	Observing Mode	Data Volume
How do solar eruptions produce energetic particle radiation that fills the heliosphere	Coronal sources of solar energetic particles	Identify SEPs produced by CMEs and their associated shocks	VL polarized (580-640 nm) UV (HI Ly α) imaging	Annular FoV 1.5°-2.9° Off-limb corona Out to 7.5 R _☉	Global maps of e' density outflow & tracer velocities to identify the path of the shock in coronal ambient	VL 1-5 min UV 1-5 min	VL 7-90 s UV 1-5 min	20" (4000 km)	CMEOBS	23 Mb
How do solar transient drive	Origin and early propagation	Identify the mechanism driving the eruption of CMEs	VL polarized (580-640 nm) UV (HI Ly α) imaging	Annular FoV 1.5°-2.9° Off-limb corona Out to 7.5 R _o	Global maps of electron density outflow velocity of neutral H to monitor CME pre-eruption, eruption and reconfiguration states of ambient corona best near perihelion, out of ecliptic	VL 1-5 min UV 1-5 min	VL 7-90 s UV 1-5 min	20" (4000 km)	CMEOBS	23 Mb
heliospheric variability	of coronal mass ejections	Understand the evolution of the global corona	VL polarized (580-640 nm) UV (HI Ly α) imaging	Annular FoV 1.5°-2.9° Off-limb corona Out to 7.5 R _o	Global maps of <i>e'</i> density outflow & tracer velocities to follow evolution of CMEs with UV and visible- light imaging from the coronal base (1.6 Ro at 0.28 AU) out to 7 Ro best near perihelion, out of ecliptic	VL 5-30 min UV 5-30 min	VL 7-210 s UV 10-30 min	20"- 40" (4000 km – 8000 km)	GLOBAL	8-12 Mb
How does the solar dynamo work and drive connections between the Sun and heliosphere	Observe the evolution of the global magnetic field shaping the global corona (indirect inference)	Observe the overall magnetic structure of the corona	VL polarized (580-640 nm) UV (HI Ly α) imaging	Annular FoV 1.5°-2.9° Off-limb corona Out to 5 R _o	Global maps of <i>electron density</i> <i>outflow velocities</i> of neutral hydrogen	VL 5-20 min UV 5-20 min	VL 7-90 s UV 10 min	20" (4000 km)	MAGTOP	23 Mb