



# SPICE and EUI: overall characteristics and Observing modes. Synergies with Metis

Susanna Parenti for the SPICE and EUI teams



#### **Spectral Imaging of the Coronal Environment**





















| Parameter           | Value                                        |
|---------------------|----------------------------------------------|
| Raster FOV          | 11' x 16' narrow slits<br>14' x 16' slit 30" |
| Spectral range      | SW: 69.7 to 78.9 nm<br>LW: 96.8 to 104.9 nm  |
| Spatial resolution  | 4.4'' – 5''                                  |
| Spectral resolution | 0.04 nm                                      |
| slits               | 2.5", 5", 6.5", 30"                          |
| exptime             | > 5 sec                                      |





















#### **Spectral Imaging of the Coronal Environment**





SW, y-direction: 1.1 "/pixel LW, y-direction: 1.06 "/pixel

Dumb-bells for co-allignement: one wavelength for each Study















## SPILE

#### **Spectral Imaging of the Coronal Environment**





| lon      | Wavelength (Å)         | Log T (K) | FIP (eV) | M/q  |
|----------|------------------------|-----------|----------|------|
| ні       | 1025                   | 4.0       | 13.6     |      |
| CII      | 1036                   | 4.3       | 11.3     | 12.0 |
| CIII     | 977                    | 4.5       | 11.3     | 6.0  |
| O IV     | 787.7                  | 5.2       | 13.6     | 5.3  |
| ΟV       | 760                    | 5.4       | 13.6     | 4.0  |
| O VI     | 1032                   | 5.5       | 13.6     | 3.2  |
| O VI     | 1037                   | 5.5       | 13.6     | 3.2  |
| SV       | 786.5                  | 5.2       | 10.36    | 8.0  |
| Ne VI    | 1005                   | 5.5       | 21.6     | 4.0  |
| Ne VII   | 973                    | 5.6       | 21.6     | 3.3  |
| Ne VIII  | 770                    | 5.8       | 21.6     | 2.8  |
| Mg VIII  | 772                    | 5.9       | 7.7      | 3.4  |
| Mg IX    | 706                    | 6.0       | 7.7      | 3.0  |
| Mg XI    | 997                    | 6.2       | 7.7      | 2.4  |
| Si VII   | 1049                   | 5.6       | 8.1      | 4.8  |
| Si XII   | 521 (2 <sup>nd</sup> ) | 6.5       | 8.1      | 2.6  |
| Fe X     | 1028                   | 6.0       | 7.9      | 6.2  |
| Fe XVIII | 975                    | 6.9       | 7.9      | 3.3  |
| Fe XX    | 721                    | 7.0       | 7.9      | 2.9  |

| -  |    | 2  |     | م ام |    |
|----|----|----|-----|------|----|
| IV | be | OT | win |      | WS |
|    |    |    |     |      |    |

Spectral-profile without dumb-bells

spectral-profile with dumb-bells

Intensity (sum within the window)

Auxiliary lines:

| Ne VIII | 780                    | 5.8 | 21.6 | 2.8 |
|---------|------------------------|-----|------|-----|
| Si XII  | 499 (2 <sup>nd</sup> ) | 6.5 | 8.1  | 2.6 |

















#### **Spectral Imaging of the Coronal Environment**







#### Detailed plasma diagnostics

- LOS Doppler velocity
- Turbulent or unresolved motions
- Electron density



#### $(x, y, \lambda)$ raster cubes



- Electron temperature
- Emission measure (distribution)
- Elemental abundances

















|   | OBSERVING<br>MODE (STUDY)          | LINE LIST ,<br>window<br>parameters                                                    | STUDY PARAMETERS                                                                                                           | No of repeats | Duration in<br>hours (inc.<br>10sec per<br>repeat) | Science data<br>Compression                   | Header<br>Data<br>Vol,<br>Mbytes | Net Data<br>Vol,<br>Mbytes | Net Data rate<br>Kbit/s | Spectral-line performance<br>(line-SNR and spatial<br>resolution combinations)              |
|---|------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------|-----------------------------------------------|----------------------------------|----------------------------|-------------------------|---------------------------------------------------------------------------------------------|
| _ | Spectral<br>Atlas                  | Full<br>spectrum,<br>Cal-mode (32<br>spectra x 64<br>pixels wide)                      | 4" slit, 60 s<br>exposure+5s<br>readout+45s<br>processing+0.1sec<br>step, X-range=10<br>times 4" step<br>X-start=arbitrary | 2             | 0.67                                               | Profiles<br>10:1 (note 1)                     | 0.07                             | 8.484                      | 28.26                   | line-SNR>10 at 4"x2"<br>in C-III, O-VI, Ne-VIII,<br>and Mg-IX-AR                            |
|   | Composition<br>Mapping             | 15 total<br>2 Spectral +13<br>Intensity<br>32 pixels<br>wide                           | 4" slit, 20+10s<br>set-up, 180 s exp +<br>0.25 step, X=64<br>times 4" step<br>X-start=arbitrary                            | 1             | 3.21                                               | Profile SHC<br>20:1<br>Intensity<br>JPEG 10:1 | 0.01                             | 0.606                      | 0.42                    | line-SNR>10 at 4"x2"<br>in C-III, O-VI, Ne-VIII,<br>and Mg-IX-AR                            |
|   | Dynamics                           | 4 Spectral (H<br>I, C III, O VI,<br>Ne VIII),<br>32 pixels<br>wide<br>6 Intensity      | 2" slit,20+10s<br>setup, 5 s<br>exposure +0.3s<br>step, X=128 times<br>2" step<br>X-start=arbitrary                        | 10            | 1.97                                               | Profile SHC<br>20:1<br>Intensity<br>JPEG 10:1 | 0.16                             | 15.756                     | 17.79                   | line-SNR>10 at 2"x2"<br>in C-III, O-VI, in Ne-VIII-AR,<br>and at 5"x5" in Ne-VIII-CH,<br>QS |
|   | Limb (low<br>corona<br>above limb) | 3 Spectral (C<br>III, O VI, Ne<br>VIII)<br>3 Intensity<br>(coronal line)               | 4" slit, 20+10s<br>setup, 60 s<br>exp+0.3s step,<br>X=224 times 4"<br>step                                                 | 1             | 3.76                                               | Profile SHC<br>20:1<br>Intensity<br>JPEG 10:1 | 0.05                             | 2.121                      | 1.25                    | line-SNR>10 at 4"x2"<br>in C-III, O-VI, Ne-VIII,<br>and Mg-IX-AR                            |
|   | CME Watch                          | 5 Spectral ,                                                                           | 4" slit, 20+10s<br>setup, 30 s exp<br>+0.3s step, X=96<br>times 4" step<br>X-start=arbitrary                               | 30            | 24.49                                              | Profile SHC<br>20:1<br>Intensity<br>JPEG 10:1 | 0.45                             | 45.45                      | 4.12                    | line-SNR>10 at 4"x2"<br>in C-III, O-VI, Ne-VIII,<br>and at 4"x4" in Mg-IX-AR                |
|   | 30"-wide<br>movie (sit &<br>stare) | 1 or 2<br>Spectral,<br>32 pixels per<br>window<br>(extract the<br>full slit<br>width)  | 30" slit, 20+10s<br>setup, 5 s exp +0s<br>step, X=128 times<br>0" step<br>X-start=arbitrary                                | 1             | 0.17                                               | Profiles 10:1<br>(note 3)                     | 0.03                             | 1.3433                     | 17.62                   | NA                                                                                          |
|   | 90"-wide<br>movie                  | 1 or 2<br>Spectral , 32<br>pixels per<br>window<br>(extract the<br>full slit<br>width) | 30" slit, 5 s exp<br>+0.3s step, X=3<br>times 28" step<br>X-start=arbitrary                                                | 40            | 0.51                                               | Profiles 10:1<br>(note 3)                     | 0.03                             | 1.3433                     | 5.85                    | NA                                                                                          |
|   | Waves (Sit<br>& stare)             | 3 Spectral ( C<br>III, O VI, Ne<br>VIII )                                              | 4" slit, 20+10s<br>setup, 5 s exp + 0s<br>step, X=480 times<br>0" step                                                     | 5             | 3.38                                               | Profiles 10:1<br>(note 2)                     | 1.13                             | 76.457                     | 50.34                   | line-SNR>10 at 4"x2"<br>in C-III, O-VI, Ne-VIII-AR,<br>and at <4"x6" in Ne-VII-<br>CH,QS    |
|   | Two-<br>exposure                   | 2 Spectral. Combination of bright and faint lines. Use spectra to monitor saturation   | 4" slit, 20+10s, 5s<br>+ 55 s exp+0.3s<br>step, X=64 times<br>4" step                                                      | 5             | 5.40                                               | Profiles 10:1<br>(note 2)                     | 0.06                             | 3.535                      | 1.45                    | line-SNR>10 at 4"x2"<br>in C-III, O-VI, Ne-VIII,<br>and Mg-IX-AR                            |







<sup>2</sup> for spatial X<64 the profiles compression is JPEG as series of (lambda,Y) images (SEB-0800)













## **SPICE Operations Center – IAS Lead**



The **Observer** can freely access the **STUDY GENERATOR**, **BOP**, **TIMELINES** tools and databases through an Web GUI.

You are an Observer who want to use **SPICE** data and eventually design an observation:

- STUDY: observing program. Only the PLANNER has edit access. Read only for the Observer. Ask the SPICE team for a new Study design. It goes through a VALIDATION process.
- A BOP (Basic Operation Program) is the brick of a timeline and it can contain one or more Studies. The Observer has Read and Edit access but there is a VALIDATION to be applied by the planner.

#### In addition:

- Only 48 science Studies available on-board that have to be uploaded well in advance of the RSWs.
- The process from a new Study design to upload and run it is long and complex: try to use the already designed Studies in the SPICE database.















#### **Low Latency Data**



- No (very little) real time data
- It can take up to 6 months (1 orbit) to get the data down
- But need near real time images for
  - Planning purposes (i.e retargeting)
  - Verify instrument performances
  - Selective data downlink (not all the RS instruments)

#### Low latency data concept

- Dedicated packet store (~hard drive partition) in the S/C SSSM
- High priority, part of the daily TM dump
- 1 MB/d max for each instrument















## **SPICE** data products



Low latency data: reduced version of each Study (smaller FOV, highest compression)
Science data:

- LO: raw decompressed data from telemetry pipeline
- L1: engineering data, uncalibrated, updated header (pointing and timing)
- L2: science data, corrected, calibrated to physical units
- L3: anything else derived from L2 (still under discussion)
  - For each spectral window and spatial pixel:
    - Total intensity (with background subtracted) or
    - Gaussian line fit parameters and quality indicators
  - For each raster, from fitted Gaussian lines parameters:
    - Abundances/FIP bias (new fast and reliable diagnostics under test )
    - Temperature/Density
    - ...more to be decided: any request from METIS?
  - Concatenated L3 fits: time series of data products for multiple observations of the same kind
  - Quicklook MPEG and JPEG













## **Extreme Ultraviolet Imager**



| FSI dual EUV | Passband centre           | 17.4 nm(Fe x) & 30.4 nm (He II) |
|--------------|---------------------------|---------------------------------|
|              | Field of View             | 3.8 arcdeg × 3.8 arcdeg         |
| FSI dual EUV | Resolution (2 px)         | 9 arcsec                        |
|              | Typical cadence           | 600 s                           |
|              | Passband centre           | 121.6 nm (H I)                  |
| HRI Lyman-α  | Field of View             | 1000 arcsec square              |
| nni Lyman-α  | Resolution (2 px)         | 1 arcsec                        |
|              | Typical high cadence      | Sub-second                      |
|              | Passband centre           | 17.4 nm (Fe X)                  |
| HRI EUV      | Field of View             | 1000 arc sec square             |
|              | Angular resolution (2 px) | 1 arcsec                        |
|              | Typical high cadence      | 2 s                             |

















#### EUI @ perihelion



**FSI:** global morphology of the source regions *Active regions, coronal holes, CMEs, etc.* 

HRI: highest ever resolution UV images (200 km)

Fine scale structure, dynamics





## **FSI: Extremely Wide Field of View**



@ 0.28 A.U.

@ 0.43 A.U.

















## **EUI Observing Programs**

| Science<br>Program    | Science Data<br>Requirements                                                                    | Channel                                     | Cadence (sec) | Compression | TM (Gbits / h) |
|-----------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|-------------|----------------|
| Synoptic              | 4 x 4 Rsun window centered on disc center                                                       | FSI <sub>174</sub><br>FSI <sub>304</sub>    | 600           | 50          | 0.0075         |
| Reference<br>Synoptic | 4 x 4 Rsun window centered on disc center                                                       | FSI <sub>174</sub><br>FSI <sub>304</sub>    | 1day          | 4           | 0.0025         |
| Global eruptive event | Full FOV centered on event.                                                                     | FSI <sub>174</sub> or<br>FSI <sub>304</sub> | 10            | 10          | 4.43           |
| Coronal Hole          | Full FOV centered on CH with boundary and/or plumes. High lat., perihel., possibly near co-rot. | HRI <sub>174</sub><br>HRI <sub>Lva</sub>    | 30<br>30      | 5<br>15     | 1.75           |
| Quiet Sun             | Full FOV centered on QS. Perihelion/encounter, near co-rotation                                 | HRI <sub>174</sub><br>HRI <sub>Lyα</sub>    | 8<br>1        | 7<br>15     | 16.6           |
| Active region         | Full FOV centered on AR. Perihelion/encounter, near co-rotation                                 | HRI <sub>174</sub><br>HRI <sub>Lyα</sub>    | 2<br>1        | 15<br>15    | 19.7           |
| Eruptive event        | Perihelion/encounter, near co-rotation Full FOV                                                 | HRI <sub>174</sub><br>HRI <sub>Lya</sub>    | 1<br>1        | 15<br>15    | 26.1           |
| Discovery             | High cadence dynamics Perihelion/encounter, near co-rotation, 645 x 645 FOV for Lyα             | HRI <sub>174</sub><br>HRI <sub>Lya</sub>    | 1<br>0.1      | 15<br>15    | 26.1           |













## **EUI Low latency data**



| Beacon<br>data     | Low-resolution<br>(high compression)<br>FSI <sub>174</sub> & FSI <sub>304</sub> images | ~15 minutes |                      |
|--------------------|----------------------------------------------------------------------------------------|-------------|----------------------|
| Synoptic<br>data   | Medium quality,<br>But low cadence,<br>FSI <sub>174</sub> & FSI <sub>304</sub> images  | ~15 minutes | Max. 1. MBytes / day |
| Sample HRI<br>data | EUV & Lyα                                                                              | 1 set / day |                      |













## FSI beacon @ 0.0625 bpp (x192)



















## **EUI Data Center (EDC) – ROB Lead**



- To prepare the instrument operations, monitor EUI health and process dowlinked data to science products.
- Science data are prioritized:
  - on ground pre-determined priority number
  - on board software can change it
    - By event detection
    - By software to check the data quality
  - On ground Inspection of LL and non SOLO space weather data → new TCs to change the priority
- EUI quicklook to be run at SOC











#### **EUI Data product**



- L0: raw decompressed data from telemetry pipeline
- L1: engineering data, uncalibrated, updated header (pointing and timing)
- L2: science data, corrected, calibrated to physical units
- L3: anything else derived from L2
  - JPEG2000 to feed JHelioviewer.
  - Histograms of not dowloaded data (science and calibration).















#### **RS Instruments relative FOVs**





**Closest Perihelion** 

1 A.U.

















#### SPICE MOSAIC



#### To provide extended synoptic data for connectivity:

- The best strategy to do it is under discussion
- N rasters to cover ~ 2 Rsun at perihelion (3% of disk at perihelion).
- TBD for other distances: compromise with telemetry, duration, S/C -METIS constraints.
- Products: Intensity, velocity and FIP bias maps



- EUI/HRI H I-Lyα MOSAIC
- West extended EUI/FSI (& METIS) FOV
- East minimum height of METIS FOV close to the limb.



From Chris Watson













## **Synergies with Metis**



- Several science cases in common: CMES Watch, ....
- Coordination:
  - Metis and EUI/FSI is easy
  - Metis and EUI/HRI SPICE more difficult
    - During off point with a time delay if Metis is off (~10m minimum to re-centering the S/C and open the door)
    - Useful if we get a S/C directed halo CMEs (and we are super lucky to get the source region)



#### **Eruptions observation plan**



#### **EUI**

- The high cadence program is running non-stop
- Data are written in the cyclical buffer (1h)
- The EUI event trigger for filaments and flares runs on the incoming data
- When the flag goes ON the EUI buffer is transferred to the S/C buffer.
- On ground cross-check of the data

#### **Metis**

 CMEOBS activated by a CME event internal flag or (if CME\_EXT on) by EUI and STIX flags. But not tested yet.

Flags work also in opposite direction: Metis (STIX, PHI) flags  $\rightarrow$  EUI freezers the buffer

#### **SPICE**

 Runs the CMEWATCH Study. No cycling buffer, no telemetry problems. No reaction to flags for eruptions. VSTP plan under analysis



#### Coordinated observation at the limb



- In most of the cases Metis will be off
- But we want Metis! Need for a deeper thinking on how to act to increase the science return.
- Example, during eruption (perihelion):
  - S/C off pointed, METIS off.
  - Eruption with v ~ 500 km/s. Rsun=1.5 in ~ 11 min, Rsun=3 in ~
     40min
  - Pointing change + Metis open the door as quick as possible: ~ 10 min.
  - We can plan this in advance. But:
    - The chance to be at the right time at the right moment is low
    - Metis door can be open for a limited number of times.



#### Winds Source regions (see also Andretta talk)





**Goal**: map the plasma and magnetic field properties of the candidate source regions and link them to in-situ measures.

**How**: derive N, T, FIP bias, v, B from the (photosphere) chromosphere to the corona. H, p, He and heavy ions.

In-situ: FIP bias timelines and plasma properties e.g. L\_SMALL\_HRES\_HCAD\_Fast\_Wind

**PHI:** full FOV + high resolution

**SPICE** Composition Mapping/Dynamics: Te, Ne, FIP bias, DEM/EM maps

EUI/HRI: high resolution morphology and dynamics 174 & H-I Lya

EUI/FSI: morphology and dynamics in He II 304 and Fe X 174

METIS MAGTOP, WIND, FLUCTS: large scale structuring, turbulence

Maps of N (VL), v of H<sup>0</sup>





- PCTR is hot (> 4 10<sup>5</sup> K), Parenti et al. 2012
- **Dynamics & exchange of material, Schmit &** Gibson 2013
- Temperature substructures,T>1.4 MK in the cavity e.g. Kucera & Landi 2012, Habbal et al. 2010
- Cavity height goes up to 1.6 Rsun

#### **Solar Orbiter:**

- Cavity-prominence morphology and dynamics EUI/FSI 171 and 304
- Prominence morphology and dynamics EUI/HRI Lya and 171 (x 3 in resolution) (pointing change)
- PCTR-corona with SPICE: link 171 304, N-T, Doppler-V (pointing change)
- Can Metis see the cavity above 1.6-1.7 Rsun? (pointing change) Density, dynamics

**DKIST at the limb:** Magnetic structure, Coronal density

- SOLO in quadrature
- SOLO in conjunction or opposition



Furler et al. 2009



## Actions for the upcoming months



- Synergies using the H-I Lyα, H-I Lyβ, He II
- He lines in SPICE: work in progress
- Metis observations after/during off-pointing
- Coordinate synoptic programs (out of RSW)
- Coordinate data products

• ...

Thanks to V. Andretta, F. Auchère, E. Buchlin, D. Berghmans, L. Teriaca, C. Verbeeck.