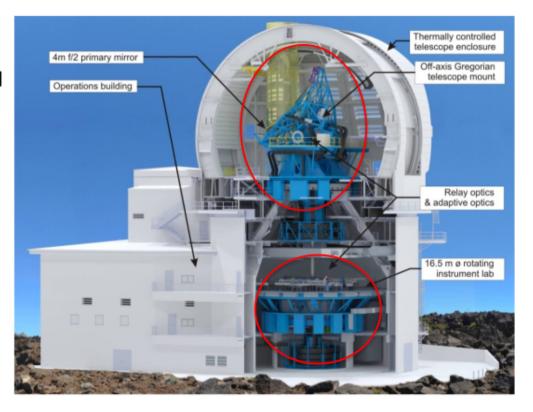
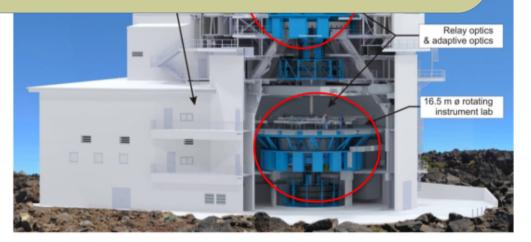
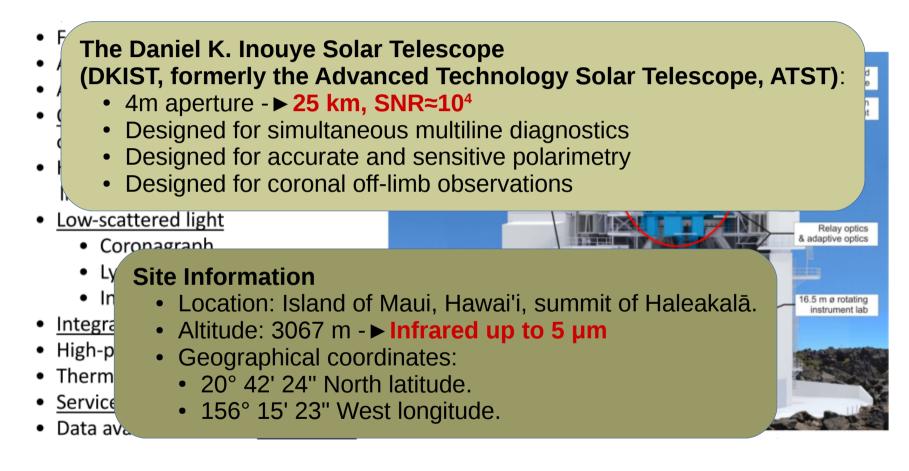
Solar Orbiter-DKIST Coordinated Observations

V. Andretta (INAF/OAC)L. Harra (UCL/MSSL)V. Martinez-Pillet (NSO)




- Four-meter aperture, f/2
- Alt/azimuth mount
- All reflecting optics
- Off-axis design (no spider, no central obscuration)
- Heat stop at prime focus: hard limit of 5' FOV
- Low-scattered light
 - Coronagraph
 - Lyot stop & limb occulter
 - In situ clean & wash of M1
- Integrated adaptive optics (on-disk)
- High-precision polarimetry
- Thermally controlled environment.
- Service Mode: PI not present.
- Data available on-line: <u>Boulder DC</u>

The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST):


- 4m aperture **≥ 25 km, SNR≈10**⁴
- Designed for simultaneous multiline diagnostics
- Designed for accurate and sensitive polarimetry
- Designed for coronal off-limb observations
- Low-scattered light
 - Coronagraph
 - Lyot stop & limb occulter
 - In situ clean & wash of M1
- Integrated adaptive optics (on-disk)
- High-precision polarimetry
- Thermally controlled environment.
- Service Mode: PI not present.
- Data available on-line: Boulder DC

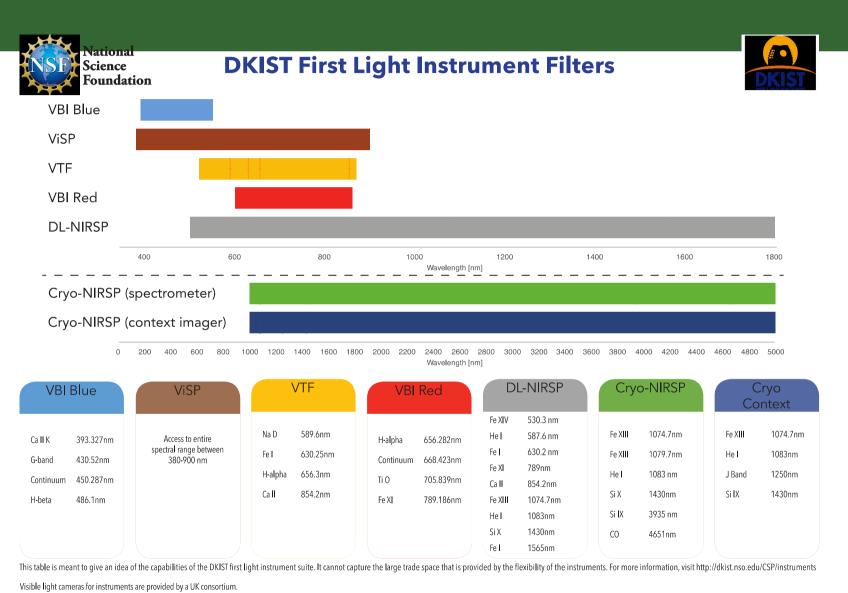
The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST): 4m aperture - > 25 km, SNR≈10⁴ Designed for simultaneous multiline diagnostics Designed for accurate and sensitive polarimetry • Designed for coronal off-limb observations Low-scattered light Coronagraph **Site Information** Location: Island of Maui, Hawai'i, summit of Haleakalā. Integra Altitude: 3067 m - ► Infrared up to 5 µm High-p Geographical coordinates: Therm 20° 42' 24" North latitude. Service 156° 15' 23" West longitude. Data ava

DKIST First-light Instruments

DKIST First Light Instrument Capabilities

	Instrument type	Spectral range	Spectral resolution	Spatial sampling	Maximum Instantaneous Field of View	Maximum Sampled Field of View	Peak Cadence	Analogous Instruments
Visible Broadband Imager <i>VBI (Blue)</i>	High Cadence, High Resolution Imager	390–550nm (sequential filter sequencing)	N/A	0.011"	45" x 45"	2' x 2' (sequential field sampling)	3.2 sec (reconstructed) 0.03 sec (raw images)	ROSA, Hinode/BFI High cadence, high spatial resolution
Visible Spectropolarimeter <i>ViSP</i>	Scanning Slit Spectropolarimeter	380-900nm (3 spectral windows at a time)	>180,000	0.0195" (arm 1) 0.0236" (arm 2) 0.0295" (arm 3) [sampling along slit]	5 slits Width x Length 0.028" or 0.041" or 50" (arm 1) 0.053" or x 60" (arm 2) 0.106" or 75" (arm 3) 0.214"	Slit length x 2'	0.5-10 sec per slit position (polarimetry) 0.02-0.2 sec per slit position (intensity-only)	SPINOR, Hinode/SP, IRIS, GRIS Scanning spectrograph, high spectral fidelity
Visible Tunable Filter <i>VTF</i>	Fabry Perot Imaging Spectropolarimeter	520-870nm (sequential scans through multiple spectral lines)	FWHM 6-8 pm	0.014"	60" x 60"	60" x 60"	Typical scan times per spectral line: 0.5-2 s (intensity only); 2-10 s (polarimetry)	IBIS, CRISP, GFPI Imaging spectropolarimeter
Visible Broadband Imager <i>VBI (Red)</i>	High Cadence, High Resolution Imager	600–860nm (sequential filter sequencing)	N/A	0.017"	69" x 69"	2' x 2' (sequential field sampling)	3.2 sec (reconstructed) 0.03 sec (raw images)	ROSA, Hinode/BFI High cadence, high spatial resolution
Diffraction Limited Near Infrared Spectropolarimeter <i>DL-NIRSP</i>	Integral Field Unit Spectropolarimeter	500–900nm 900–1350nm 1350-1800nm (1 filter band per channel)	125,000	0.03" (high res) 0.077" (mid res) 0.464" (wide field)	2.4" x 1.8" (high res) 6.16" x 4.62" (mid res.) 27.84" x 18.56" (wide)	2' x 2'	Depends on resolution and and total field of view. E.g. 6s for one tile, on-disk, high resolution, full polarimetry	SPIES True Imaging Spectropolarimeter: simultaneous 2D FOV and spectral information using fiber-fed IFU
Cryogenic Near Infrared Spectropolarimeter <i>Cryo- NIRSP</i>	Scanning Slit Spectropolarimeter	1000-5000nm (1 filter band at a time. About 70 s to switch filters)	100,000 on-disk 30,000 off-limb	0.12" [along slit] (no Adaptive Optics)	2 <i>slits</i> 0.15″ x 120″ slit 0.5″ x 240″ slit	4' x 3' (near limb) 5' round (off-limb)	Heavily depends on signal to noise. Maximum frame rate is 10 frames per second e.g. 1s per slit position near-limb/ chromosphere	CYRA (BBSO) Cryogenic, scanning spectrograph, novel diagnostics
Cryo-NIRSP Context Imager	lmager	1000-5000nm (1 filter band at a time, with fast switching time to support sequential observations during a single-band spectrograph scan.)	N/A	0.052" (no Adaptive Optics)	100" x 100"	4' x 3' (near limb) 5' round (off-limb)	Heavily depends on signal to noise. Maximum frame rate is 10 frames per second e.g. 1s per slit position near-limb/ chromosphere	CYRA (BBSO) Cryogenic, scanning spectrograph, novel diagnostics

This table is meant to give an idea of the capabilities of the DKIST first light instrument suite. It cannot capture the large trade space that is provided by the flexibility of the instruments. For more information, visit http://dkist.nso.edu/CSP/instruments



https://www.nso.edu/telescopes/dkist/

DKIST First-light Instruments

https://www.nso.edu/telescopes/dkist/

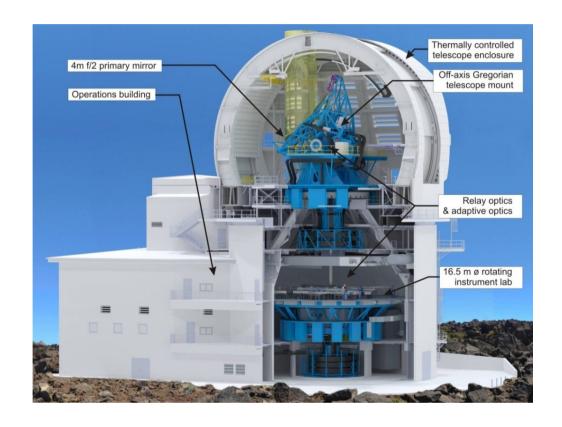
DKIST: Transformative Coronal Features

Excellent Haleakala Skies!

~1000 hours per year with sky brightness $<25 \times 10^{-6}$ at R = 1.1 and at 1000 nm.

4 meter aperture → 25 km; SNR!

Access to the infrared:


All-reflective design (transmission out to 28 μ m) First light instruments to 5 μ m

Minimizes scattered light by:

Off-axis design (no beam obsuration) High-grade M1 polish (~1nm microroughness) In-situ cleaning procedures (CO_2 + washing) Takes advantage of reduced scatter in IR.

Occulters and stops:

Inverse occulter at prime focus (large 5' FOV)
Lyot stop at intermediary pupil
Limb occulting with tracking at Gregorian focus

DKIST: Broad Coronal Science Mission

Key coronal science areas from SPEC-0001 (Science Requirements Documents):

Derived from reports of the Coronal Working Group (2002)

- 1) Coronal Magnetic Fields
 - Pre/post CME/flare configurations; field dynamics during eruptions; origin of coronal loops; prominence cavities; etc.
- 2) Coronal Plasmoid Search
 - Mass flux and acceleration mechanisms of plasmoids; field interactions
- 3) Coronal Velocity and Density in Active Regions Loops
 - Loop evolution and structure; nature and mechanisms and energy deposition, heating; loop classification
- 4) Coronal Intensity Fluctuation Spectrum
 - Size and spatial distribution of possible nano-flaring events, relation to CMEs
- 5) Coronal Intensity Oscillations
 - Coronal seismology to obtain coronal physical parameters and understand wave dynamics

DKIST supports mission with diverse imaging, scanned-slit spectroscopy and spectropolarimetry, and fiber-optic based integral field spectroscopy and spectropolarimetry.

DKIST coronal diagnostics during early operations

- Emphasis on bright line observations with greatest magnetic field sensitivity.
- Corresponding peak temperature coverage: 1 to 1.6 MK
- Filter availability can be expanded in the future.

Maximum FOV: 2.8 arcmin -- Coordinated Operations

DL-NIRSP Spectropolarimetry

Fe XI $\lambda 7892$; Log(T) ~ 6.13 Fe XIII $\lambda 10747$; Log(T) ~ 6.22 Fe XIII $\lambda 10797$; Log(T) ~ 6.22 $\lambda 10830 \; ; Log(T) \sim 4^*$ He I $\lambda 14300 : Log(T) \sim 6.13$

VBI Imaging

Fe XI $\lambda 7892$; Log(T) ~ 6.13

VISP Spectropolarimetry

Various lines: 380 to 900 nm Including FeXIV 5303, FeX 6375, (green + yellow lines)

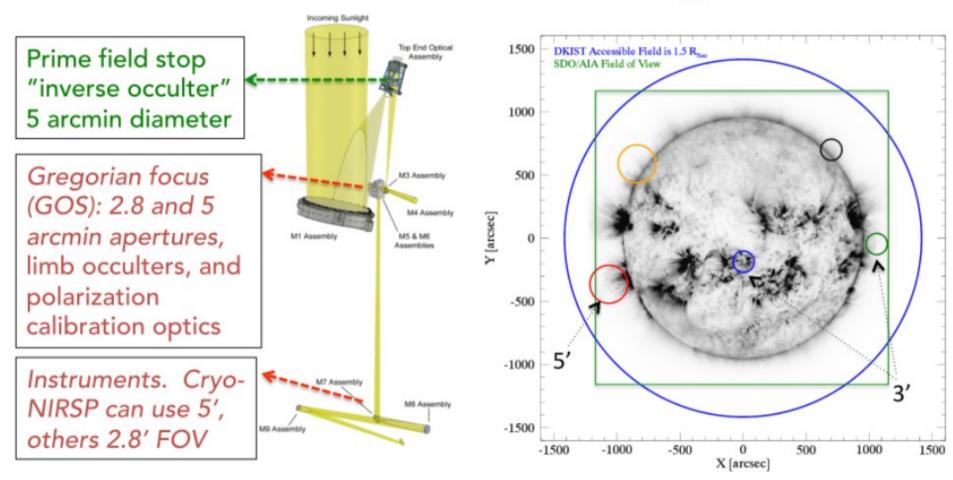
Maximum FOV: 5 arcmin

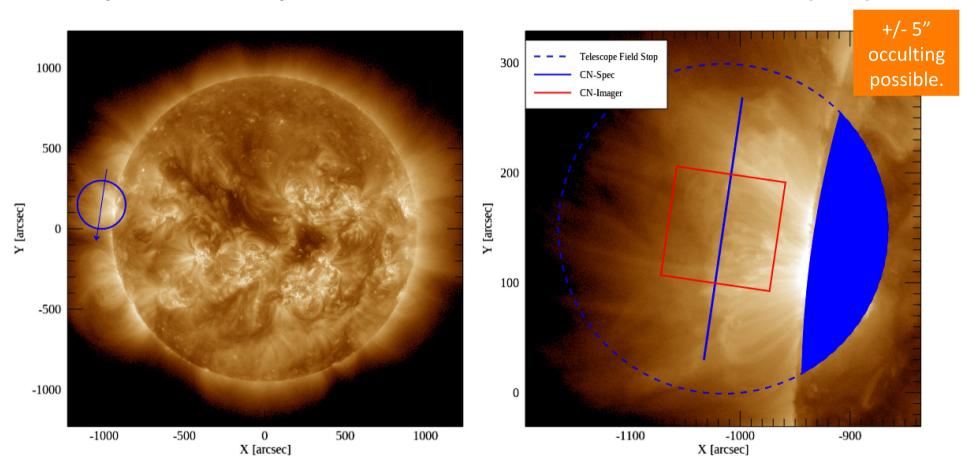
Cryo-NIRSP Spectropolar.

Fe XIII $\lambda 10747$; Log(T) ~ 6.22 Fe XIII $\lambda 10797$; Log(T) ~ 6.22 $\lambda 10830 : Log(T) \sim 4^*$ He I Si X $\lambda 14300 \; ; Log(T) \sim 6.13$ $\lambda 39350 : Log(T) \sim 6.04$

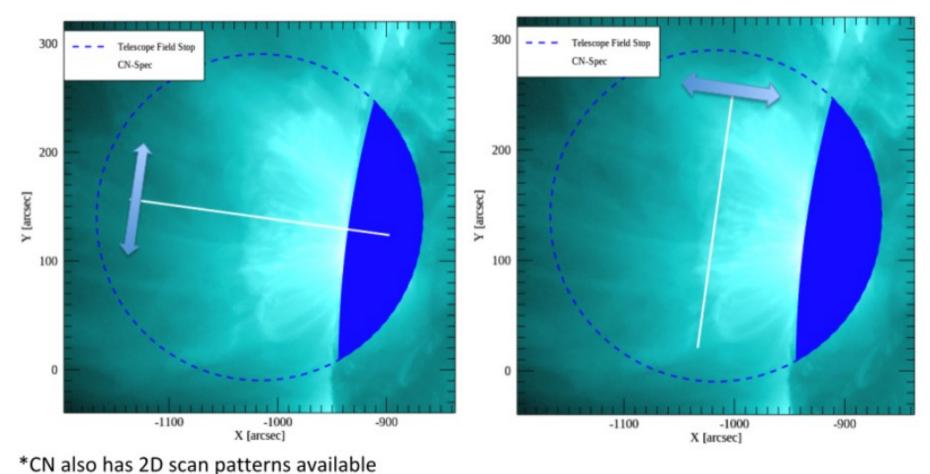
Si IX

Cryo-NIRSP Context Imager

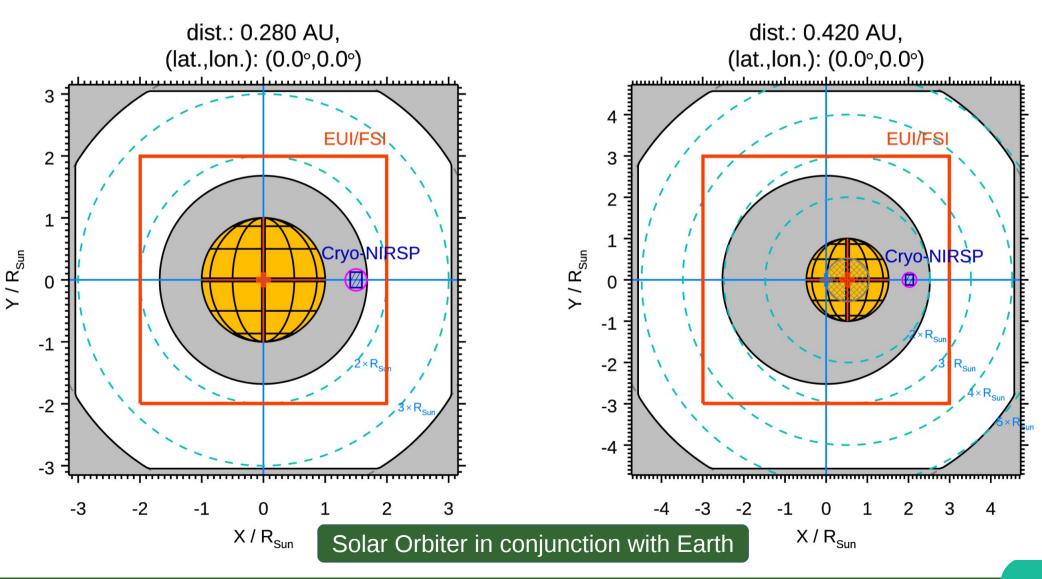

Fe XIII $\lambda 10747$; Log(T) ~ 6.22 $\lambda 10830 : Log(T) \sim 4*$ He I Si IX $\lambda 39340 : Log(T) \sim 6.04$



Field of View, Pointing Restrictions (R<1.5 R_{sun}), and Occulters



Cryo-NIRSP Example: 5 arcmin field-of-view with limb occulter (blue)



Instruments have smaller instantaneous field of views, but most can scan field.

Cryo-NIRSP 4' long coronal slit: Perpendicular/parallel to limb with occulter

DKIST and Metis

The DKIST Critical Science Plan (CSP)

(being drafted) will define critical science goals for the first two years of DKIST operations. https://www.nso.edu/telescopes/dkist/csp/

Science Use Cases (SUCs):

The Critical Science Plan will be built up from a set of Pl led Science Use Cases (SUCs).

These SUCs will be converted into Observing Proposals

for consideration by the DKIST Time Allocation Committee (TAC) before first light.

Nine workshops have taken place in the past year

to facilitate this process at several steps. These are organized by community members and supported by the NSO.

The Solar Orbiter-PSP-DKIST Workshop

Workshop #4, title:

Joint Science with Solar Orbiter and Parker Solar Probe 13-15 March 2018, JHU/APL, Laurel (MD, USA)

- Science leaders:
 - L. Harra (UCL/MSSL)
 - V. Andretta (INAF/OAC)
 - A. Vourlidas (JHU/APL) Host institution
- Local contact at host institution (JHU/APL):
 - A. E. Raouafi, A. Vourlidas

Science Use Cases from the Workshop

Almost 30 Science Use Cases (SUCs) so far

Some (18) worked on in detail during the workshop.

Others updated or even created after the workshop.

Some SUCs elaborated during other workshops could also benefit from SO and/or PSP coordination.

More SUCs involving Solar Orbiter added after/following the workshop.

Work in progress...

A follow-up workshop is needed

to consolidate SUCs with Solar Orbiter and PSP, this time involving more directly the in-situ instrument teams. Likely to be held spring 2019 in the US (at location TBD) – all PIs will be invited.

Current List of Science Use Cases

1-18 of 18 🖘	Use Case Developr https://nso-atst.atl							Column	is 💙
T Key Summary	Titips.//Tiso-atst.ati	assiaii.iii				Judiu	Updated	Due	
UC-162 DKIST and Solar Orbiter observations for understanding DKIST, quadrature for SO.	upflowing plasma on the Sun: limb observations for	Louise Harra	Louise Harra	*	OPEN	Unresolved 03/Apr/18	11/Aug/18	3	•••
UC-161 Stereoscopy of polar magnetic fields		Luis Bellot Rubio	Luis Bellot Rubio	*	OPEN	Unresolved 15/Mar/18	11/Aug/18	8	
O UC-160 What is the Magnetic Flux in Coronal Holes?		linkerj@predsci.com	n linkerj@predsci.com	*	OPEN	Unresolved 15/Mar/18	28/Sep/18	В	
O UC-159 Stereoscopic Observations of Loops and Magnetic Field	ds	Harry Warren	Harry Warren	*	OPEN	Unresolved 15/Mar/18	11/Aug/18	8	
UC-158 Understanding the Line-of-Sight integration in Coronal of	bservations	Valentin Pillet	Valentin Pillet	*	OPEN	Unresolved 15/Mar/18	11/Aug/18	8	
O UC-157 Waves and turbulences in the nascent solar wind with S	olar Orbiter and Parker Solar Probe	yuan-kuen.ko	yuan-kuen.ko	*	OPEN	Unresolved 14/Mar/18	11/Aug/18	8	
O UC-156 Plasma Dynamics and Inner Structure of Coronal Plume	s	Nour E. Raouafi	Nour E. Raouafi	*	OPEN	Unresolved 14/Mar/18	11/Aug/18	8	
Uc-155 Coronal prominence cavity systems - with DKIST-Solar (Orbiter joint observations	Susanna Parenti	Sarah.Gibson	*	OPEN	Unresolved 14/Mar/18	11/Aug/18	8	•••
 UC-154 Searching for flare current sheet instabilities with DKIST 	and Solar Orbiter	Sarah Matthews	Sarah Matthews	*	OPEN	Unresolved 09/Mar/18	11/Aug/18	8	
UC-153 Stereoscopic magnetic field measurements: joint obser	vations with Solar Orbiter / PHI	Andreas Lagg	Andreas Lagg	*	OPEN	Unresolved 06/Mar/18	11/Aug/18	8	
UC-152 Helicity mapping for dynamo studies (also in coordinate)	on with solar Orbiter high-latitude phase)	Andreas Lagg	Andreas Lagg	*	OPEN	Unresolved 06/Mar/18	10/Oct/18	3	
UC-151 Polar magnetic fields from two vantage points: joint ob	servations with Solar Orbiter	Andreas Lagg	Andreas Lagg	*	OPEN	Unresolved 06/Mar/18	11/Aug/18	8	
 UC-90 Synoptic Coronal Observations in support of PSP and S 	olar Orbiter	Valentin Pillet	Valentin Pillet	*	OPEN	Unresolved 08/Dec/17	11/Aug/18	8	
 UC-89 Tracking the evolution of Corona Mass Ejections plasm 	a	Daniele Spadaro	Daniele Spadaro	*	OPEN	Unresolved 04/Dec/17	11/Aug/18	8	
 UC-88 Properties of the solar wind source regions investigated 	l by DKIST and Solar Orbiter	Daniele Spadaro	Daniele Spadaro	*	OPEN	Unresolved 04/Dec/17	11/Aug/18	8	
 UC-64 FIP fractionation as tracer of solar wind source regions 	from joint DKIST and Solar Orbiter observations.	Susanna Parenti	Susanna Parenti	*	ACTIVE	Unresolved 12/Sep/17	11/Aug/18	8	
UC-61 DKIST and Solar Orbiter observations for understanding observations.	the creation of upflowing plasma on the Sun - on disk	Louise Harra	Louise Harra	*	OPEN	Unresolved 20/Jun/17	11/Aug/18	8	
UC-60 Coronal helium abundance from joint DKIST and Solar Coronal helium abundance from joint abundance fr	Orbiter observations	Vincenzo Andretta	Vincenzo Andretta	*	OPEN	Unresolved 16/May/17	11/Aug/18	8	

Some points worthy of note

- Connection between DKIST CSP and Solar Orbiter SAP.
 - TBW
- DKIST CSP time frame: 2020-2021 Solar Orbiter Cruise Phase.
 - For Nominal/Extended Phase science (especially polar science), the approach is still valid: relevant SUCs are carried over to the next cycle of DKIST CSP development.
- Planning with variable seeing/sky conditions at DKIST site
 - Weather forecasts at Maui are known reasonably accurately 2 days in advance. It may be sufficient for switching to alternate observing plans.
- Data policy
 - The DKIST data and access policy is being worked out in the framework of the Astronomy and Astrophysics Advisory Committee Principles for Access
 - https://www.nsf.gov/mps/ast/aaac/aaac_2014_principles_for_access-v2.pdf
 - Following these recommendations, DKIST is open access, and all the data from the facility will be openly available through the DKIST website in a timely manner. However, a period of limited access to the data might exists in some cases that are under discussion at the DKIST Science Policy Advisory Committee. NSO will publicize the final DKIST data access policy during the first half of 2019.

Additional material

The DKIST Critical Science Plan

Introduction to the DKIST Critical Science Plan; and life cycle of a Science Use Case (SUC)

- DKIST Critical Science Plan context, resource locations
- Workshop focus Science Use Case (SUC) development
- The future transition to Observing Proposals

(The following slides borrowed from Mark Rast)

DKIST Critical Science Plan (CSP):

Aim: to be ready, as a community, by science first light to execute a set of observations that take advantage of the DKIST capabilities to address critical compelling science in the first two years of operations (2020, 2021)

As a community we must:

- understand forthcoming capabilities
- define science goals
- compile Science Use Cases
- coordinate to form a complementary set of PI lead teams
- convert Science Use Cases into PI led Observing Proposals

This will enable:

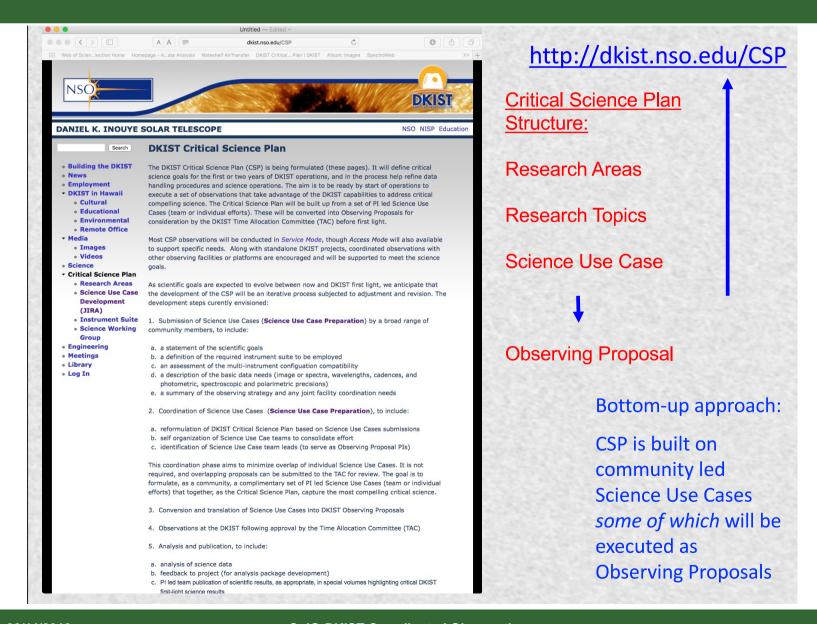
- Service Mode observations
- Scientific analysis
- PI led publication of first-light results

DKIST Critical Science Plan (CSP):

Aim: to be ready, as a community, by science first light to execute a set of observations that take advantage of the DKIST capabilities to address critical compelling science in the first two years of operations (2020, 2021)

As a community we must:

- understand forthcoming capabilities
- define science goals
- compile Science Use Cases
- coordinate to form a complementary set of PI lead teams
- convert Science Use Cases into PI led Observing Proposals


This will enable:

(Slide borrowed from Mark Rast)

Solar Orbiter Cruise Phase

- Service Mode observations
- Scientific analysis
- PI led publication of first-light results

Science Use Case → Observing Proposal → TAC Review → Observations

Important Points:

- 1. This process will likely be iterative CSP structure (that you see on the website) is intended as a helpful but non-rigid framework and the science will evolve.
- 2. The CSP process is not exclusive (all welcome) nor unique (direct submission of observing proposals to the NSO DKIST Time Allocation Committee (TAC) under a standard submission and review process will also be possible). The CSP (and this workshop) advantage is informational.
- Observing proposals developed as a result of participation in the DKIST Critical Science Plan effort (including this workshop) will be reviewed by the NSO DKIST TAC along with proposals submitted outside of the CSP structure.
- 4. There is *no* automatic conversion of Science Use Cases to Observing Proposals success is dependent on continued engagement beyond this workshop proper and beyond the completed Science Use Case.
- 5. The development of the CSP in advance of the start of operations helps the project beyond science definition – it helps in the development of essential operations and data management tools

Science Use Case → Observing Proposal → TAC review → Observations

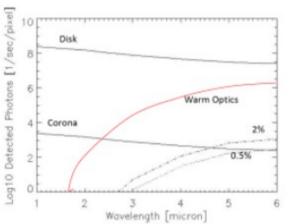
DKIST Science Working Group

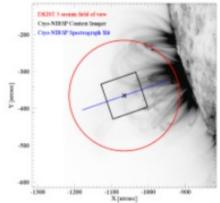
DKIST Science Working Group (DKIST SWG)

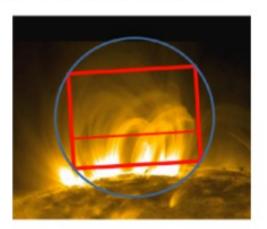
1 E	Bello-Gonzales	Nazaret	KIS	Germany	Member
2 (Cao	Wenda	NJIT	US	Member
3 (Cauzzi	Gianna	AO	Italy	Member
4 (Cranmer	Steve	U. Colorado	US	Member
5 c	da Costa	Fatima Rubio	Stanford	US	Member
6 [DeLuca	Ed	Harvard	US	Member
7 c	dePontieu	Bart	Lockheed	US	Member
8 F	letcher	Lyndsay	U. Glasgow	UK	Member
9 (Gibson	Sarah	HAO	US	Member
10 J	effries	Stuart	Georgia St	US	Member
11 J	udge	Phil	HAO	US	Member
12 K	Katsukawa	Yukio	NAOJ	Japan	Member
13 L	_andi	Enrico	Michigan	US	Member
14 P	Petrie	Gordon	NSO	US	Member
15 C	Qiu	Jiong	MSU	US	Member
16 F	Rast	Mark	U. Colorado	US	Member
17 F	Rempel	Mattias	HAO	US	Member
18 F	Rubio	Luis Bellot	IAA	Spain	Member
19 S	Scullion	Eamon	TCD	Ireland	Member
20 5	Sun	Xudong	IfA	US	Member
21 V	Welsch	Brian	Wisconsin	US	Member
22 (Goode	Phil	TILN	US	Co-I
23 K	Knoelker	Michael	HAO	US	Co-I
24 F	Rosner	Robert	U. Chicago	US	Co-I
25 K	Kuhn	Jeff	IFA	US	Co-I & Instrument PI
26 F	Rimmele	Thomas	NSO	US	Ex-Officio
27 (Casini	Roberto	HAO	US	Instrument PI
28 L	.in	Haosheng	IFA	US	Instrument PI
29 S	Schmidt	Wolfgang	KIS	Germany	Instrument PI
30 V	Noeger	Friedrich	NSO	US	Instrument PI

- SWG will try to articulate the community vision of essential DKIST science through the Critical Science Plan
- The SWG will identify Science Use Case overlap and suggest team consolidation
- The SWG will aim to minimize, NOT adjudicate, conflicts
- The SWG will assess whether the science proposed in the Science Use Cases requires DKIST capabilities
- DKIST Time Allocation
 Committee is final arbitrator,
 and will determine the order
 which the Observing Proposals
 are executed

DKIST Instruments: Coronal Capabilities


DKIST Coronal Capabilities: Cryo-NIRSP


Cryo-NIRSP: Cryogenic Coronal Spectropolarimetry


Fe XIII 1074.7nm
Fe XIII 1079.7nm
He I 1083 nm
Si X 1430nm
Si IX 3935 nm
CO 4651nm

Pioneering low background, high-dynamic-range coronal spectropolarimetry out to 5 microns. Most extensive coverage of infrared coronal lines with high efficiency.

Example 1:

Si IX 3.9 um slit-scanned spectropolarimetry

3' x 4' region, 1" samples, 5G sensitivity near limb, 15G at 1.5 solar radii, 3 hr scan

Different species (e.g. Fe XIII pair) observable in sequence with ~70 second spectrograph reconfiguration time (calibration overhead TBD). Context imager field always centered on slit.

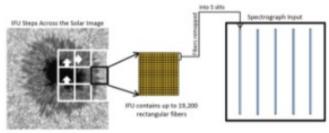
DKIST Coronal Capabilities: DL-NIRSP

DL-NIRSP: Multi-band Integral Field Coronal Spectropolarimetry

DL-NIRSP

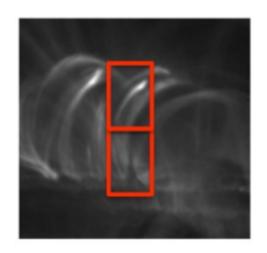
Fe XI 789nm

Ca II 854.2nm


Fe XIII 1074.7nm

He I 1083nm

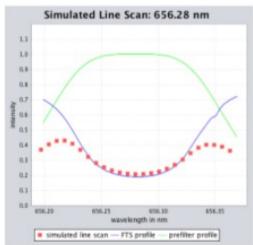
Si X 1430nm


Fe I 1565nm

More filters recently added: Fe XIV 530.3 nm He D3 587.6 nm Fe I 630.2 nm Fe XIII 1079.8 nm Fiber-optic based integral field spectropolarimetry with up to three simultaneous channels. Instantaneous spectrograph coverage over a 2D field.

One tile at a time, DL-NIRSP builds spectropolarimetric full data cubes: [X ; Y ; A ; S [=i,Q,U,V] ; t]

- DL-NIRSP wide-field mode consists of 60 x 40 IFU with 0.464" samples. (FOV: 18.6" x 27.8")
- 2D scanning for up to 2' x 2' FOV for single telescope pointing.
- Example: 1 x 2 scan pattern, total FOV 18.6" x 55.7", 16 sec integration (SNR ~50), 33 sec cadence.
- Resolve MHD wave propagation/dynamics and do temporal coadding for magnetic field inference.

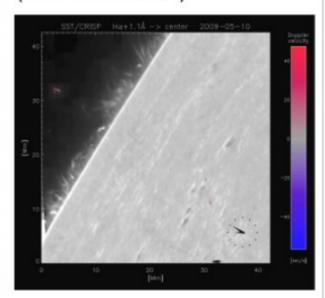

VTF: Cool Coronal Dynamics

VTF

Na D 589.6nm
Fe I 630.25nm
H-alpha 656.3nm
Ca II 854.2nm

- Thermal coverage of VTF does not include hot coronal plasma.
- High-cadence imaging spectro(polarimetry) of cool lines (H-alpha and Ca II)
- Prominences; coronal rain; post-flare cooled loops.

VTF FOV: 60" x 60" (no scanning)



Example: H-alpha spectroscopy (+/- 34 km/sec) in 4.25 sec

4.25

Coronal rain observed by SST/CRISP 60" x 60" FOV (Antolin et al. 2012)

(Slide borrowed from Tom Schad)

Cycle Time (sec)

DKIST Coronal Capabilities: ViSP

ViSP in the Corona

ViSP

Access to entire spectral range between 380-900 nm

- VISP science cases emphasize photospheric/chromospheric/prominence science.
- Attractive coronal science includes diversity of visible line diagnostics.
- Increase of scattered light in visible; Zeeman sensitivity reduced.
- IPC does not give coronal estimates (but some capabilities can be assessed).

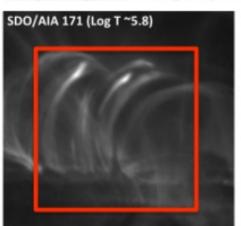
Example 1: Simultaneous scan of three coronal lines 0.214" slit width (widest), 1" scan step, 5 sec total integration 100" scan width → 9 minutes to map					Telescope + ViSP transmission	Spectral Resolution
Fe XIV	Log T ~ 6.3	530.3 nm	'Green' line	75"	1.23%	90000
Ca XV	Log T ~ 6.65	569.4 nm	'Yellow' line	60''	1.85%	89000
Fe X	Log T ~ 6.05	637.5 nm	'Red' line	50"	0.73%	79000

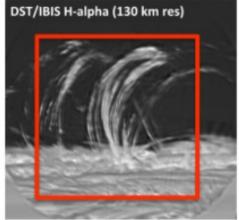
Example 3: 2MK FIP Effect S XII 761.2 nm Fe XV 706.2 nm

Example 2: Ca XV density line ratio sit and stare 0.214" slit width (widest), a few seconds of int per step			FOV along slit	Telescope + ViSP transmission	Spectral Resolution	
Ca XV	Log T ~ 6.65	569.6		75"	2.26%	78000
Ca XV	Log T ~ 6.65	544.6		60"	2.34%	75000

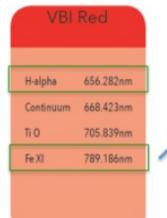
VBI in the Corona: Direct Multi-Thermal Coronal Imaging

VBI Blue

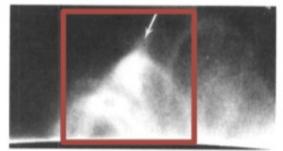

Ca II K 393.327nm


G-band 430.52nm

Continuum 450.287nm


H-beta 486.1nm

Key targets: Bright post flare loops and other cooling loops



VBI-red 69" x 69" FOV (Field sampling to 2' x 2') 0.017" spatial sampling

VBI-red coronal filter
Fe XI 789.2 nm (Log T ~ 6.13)
1 to a few second cadence
(no off-band subtraction)

Direct imaging of green line from Sac Peak (20 cm Coronal One Shot) Airapetian and Smartt, 1995, ApJ

The SolO-PSP-DKIST workshop

The Workshop

The road to the workshop:

- Splinter at Solar Orbiter Workshop #7 (Granada, Spain, 3 April 2017)
- Splinter at PSP SWG Meeting (JHU/APL, Laurel, MD, USA, 6 October 2017)

The workshop

- JHU/APL (Laurel, MD), 13-15 March 2018
- Participants, presentations, support documents:

https://eclipse2017.nso.edu/science/dkist/dkist-critical-science-plan/workshop-4/

17 participants (2 remotely)

Note: G. Cauzzi also acting as CSP Workshops Coordinator for NSO. NSO Support scientist: A. Tritschler

Also participating:

- David Boboltz (NSF, Program Director)
- Slava Lukin (NSF, Program Director)
- Ilia Roussev (NSF, Program Director)

Participants

- Vincenzo Andretta
- Luis Bellot Rubio
- Gianna Cauzzi (also NSO CSP Workshops Coordinator)
- Sarah Gibson
- Shadia Habbal
- Louise Harra
- Yuan-Kuen Ko
- Jon Linker
- Sarah Matthews
- Susanna Parenti
- Nour E. Raouafi
- Daniele Spadaro

- Ignacio Ugarte-Urra
- Angelos Vourlidas
- Harry Warren
- Andreas Lagg (remotely)
- Eamon Scullion (remotely)
- Anik De Groof (ESA)
- Valentin Martinez Pillet (NSO)
- David Boboltz (NSF)
- Slava Lukin (NSF)
- Ilia Roussev (NSF)

NSO Supporting Scientist:

Alexandra Tritschler

Current List of Science Use Cases

· Polar fields/dynamo:

- UC-161 (L. Bellot Rubio): Stereoscopy of polar magnetic field
- UC-160 (J. Linker): What is the Magnetic Flux in Coronal Holes?
- UC-152 (A. Lagg): Helicity mapping for dynamo studies (also in coordination with solar Orbiter high-latitude phase)
- UC-151 (A. Lagg): Polar magnetic fields from two vantage points: joint observations with Solar Orbiter

Stereoscopy (miscellanea)

- UC-158 (V. Martinez Pillet): Understanding the Line-of-Sight integration in Coronal observations
- UC-159 (H. Warren): Stereoscopic Observations of Loops and Magnetic Fields
- UC-154 (S. Matthews): Searching for flare current sheet instabilities with DKIST and Solar Orbiter
- UC-153 (A. Lagg): Stereoscopic magnetic field measurements: joint observations with Solar Orbiter / PHI

CMEs/Prominences

- UC-89 (D. Spadaro): Tracking the evolution of Corona Mass Ejections plasma
- UC-155 (S. Gibson): Coronal prominence cavity systems with DKIST-Solar Orbiter joint observations

Solar Wind/properties and dynamics

- UC-157 (Y.-K. Ko): Waves and turbulences in the nascent solar wind with Solar Orbiter and Parker Solar Probe
- UC-156 (N.E. Raouafi): Plasma Dynamics and Inner Structure of Coronal Plumes
- UC-162 (L. Harra): DKIST and Solar Orbiter observations for understanding upflowing plasma on the Sun: limb observations for DKIST, quadrature for SO.
- UC-61 (L. Harra): DKIST and Solar Orbiter observations for understanding the creation of upflowing plasma on the Sun on disk observations.
- UC-88 (D. Spadaro): Properties of the solar wind source regions investigated by DKIST and Solar Orbiter

Solar wind/Abundances

- UC-64 (S. Parenti): FIP fractionation as tracer of solar wind source regions from joint DKIST and Solar Orbiter observations.
- UC-60 (V. Andretta): Coronal helium abundance from joint DKIST and Solar Orbiter observations

From SUCs to observations

A possible scheme of interaction with Solar Orbiter and PSP

- Consolidation of Solar Orbiter relevant Science Use Cases, making sure that all the SUCs contain the necessary information (work in progress)
- Mapping DKIST CSP UCs with Solar Orbiter SAP and PSP science objectives (TBW).
- Workshop on operations planning, including in-situ Pls (spring 2019?).
- The team (PI of Solar Orbiter/PSP SUCs?) submits a proposal to the DKIST TAC for a "target of opportunity" observing mode.
 - For Solar Orbiter SUCs, to be done after launch date is fixed and the Solar Orbiter Windows relevant to the SUCs are known. The proposal will request the necessary observing time to develop the SUCs.
- If an unforeseen window of opportunity with Solar Orbiter appears, it is still possible to apply for NSO Director's discretionary time.
 - This, of course, may be challenging depending on what will be requested and what DKIST is doing at this time.