6th Metis meeting, Göttingen (DE) 2018 November 21-23

Measuring the coronal and heliospheric magnetic field with visible-light images of CME-driven shock waves

R. Susino, A. Bemporad, S. Mancuso, F. Frassati INAF - Osservatorio Astrofisico di Torino

Coronal magnetic-field measurements

- Knowledge of coronal magnetic field strength and orientation is primarily based on extrapolations of photospheric magnetic fields derived from spectro-polarimetric measurements (Zeeman effect)
- Different techniques have been developed to estimate magnetic fields in the outer corona
 - radio techniques
 - Faraday rotation
 - circular polarization in radio bursts
 - spectro-polarimetry in IR and UV emission lines (Hanle effect)
 - coronal seismology applied to EUV images of EIT waves
 - analysis of the dynamics of CME-driven shocks in visible-light images
 - plasma compression ratio
 - stand-off distance

CME-driven shocks

- Fast CMEs can drive shock waves in the corona and heliosphere
 - they can be identified in coronagraphic visible-light images as thin layers of enhanced emission located ahead of the driver (CME front)
- Visible-light images can be used for the determination of:
 - shock front geometry
 - shock velocity
 - plasma compression ratio ($X = \rho_d / \rho_u$)
 - shock stand-off distance (ΔR)

Previous works

- Unique information can be derived from the analysis of simultaneous visible-light and UV data (Bemporad & Mancuso 2010; Bemporad, Susino, & Lapenta 2014; Bacchini et al. 2015):
- LASCO plus UVCS observations
 - plasma compression ratio along the shock front
 - full set of upstream plasma parameters (T, n, v_{sw})
- Rankine-Hugoniot equations for oblique shocks
 - downstream parameters including *B* vector on the plane of the sky
 - plasma heating

3

2

0

-1

-2

-3

Y (R)

- magnetic field compression
- v and B vector deflection

Magnetic field deflection

Magnetic field from shock dynamics

Test case

- Analysis of a CME associated with an M2.5 flare, an EUV wave, type-II and III radio bursts, and gamma-ray emission
- Shock front is identified in LASCO-C2 and C3 images up to $\sim 10 R_{\odot}$
 - \circ measurement of angle ϑ between radial direction and shock normal
 - derivation of shock velocity v_{sh} (from the ratio $\Delta r/\Delta t$)

Test case

- Analysis of a CME associated with an M2.5 flare, an EUV wave, type-II and III radio bursts, and gamma-ray emission
- Shock front is identified in LASCO-C2 and C3 images up to $\sim 10 R_{\odot}$
 - \circ measurement of angle ϑ between radial direction and shock normal
 - derivation of shock velocity v_{sh} (from the ratio $\Delta r/\Delta t$)

Compression ratio and Mach number

- Compression ratio X is inferred all along the shock front curves by:
 - taking into account LOS integration effects by estimating the shock depth
 L along the LOS from its projected thickness
 - deriving the density jump in the shock region of length L giving the best reproduction of the visible-light brightness variation across the shock
- Mach number M is derived by applying an empirical formula that is valid in the case of oblique shock (for $\beta < 1$ plasma conditions)

Compression ratio and Mach number

- Compression ratio X is inferred all along the shock front curves by:
 - taking into account LOS integration effects by estimating the shock depth
 L along the LOS from its projected thickness
 - deriving the density jump in the shock region of length L giving the best reproduction of the visible-light brightness variation across the shock
- Mach number M is derived by applying an empirical formula that is valid in the case of oblique shock (for $\beta < 1$ plasma conditions)

Compression ratio and Mach number

- Compression ratio X is inferred all along the shock front curves by:
 - taking into account LOS integration effects by estimating the shock depth
 L along the LOS from its projected thickness
 - deriving the density jump in the shock region of length L giving the best reproduction of the visible-light brightness variation across the shock
- Mach number M is derived by applying an empirical formula that is valid in the case of oblique shock (for $\beta < 1$ plasma conditions)

Alfvén velocity

30

40

-20

Latitude (deg)

-10

0

10

20

-30

Heliocentric distance (R_{\circ})

-80

-70

-60

-50

-40

 Upstream magnetic field is derived from the Alfvén speed, assuming either no solar wind (upper limit) or fast solar wind (lower limit) using the model of Hu, Esser & Habbal (1997)

Alfvén velocity

Coronal magnetic field / 1

Coronal magnetic field / 2

Stand-off distance method

- Hydrodynamic relationship between the standoff distance ΔR of a shock, the radius of curvature (R_c) of the driver, and the Mach number
- Assumptions on wind velocity and plasma density are needed to derive B
- Limited to radial profiles of magnetic field, but up to 1 AU following the interplanetary shock

Stand-off distance method

- Hydrodynamic relationship between the standoff distance ΔR of a shock, the radius of curvature (R_c) of the driver, and the Mach number
- Assumptions on wind velocity and plasma density are needed to derive B
- Limited to radial profiles of magnetic field, but up to 1 AU following the interplanetary shock

Comparison with stand-off distance

• R_c is derived from the estimated values of M along the front

Conclusions

- Visible-light coronagraphic images can provide many information on CME-driven shocks and the ambient solar corona they cross
 - 2D maps of the average magnetic field strength can be derived (*under certain assumptions*) from the analysis of the shock dynamics
- Metis will provide high-resolution, high-cadence images of the solar corona in the polarized visible light and H I Lyman-α line
 - compression ratio and Mach number will be derived from visiblelight images
 - outflow wind velocity will be derived from combination of *pB* and UV Lyman-α images using Doppler dimming analysis
 - the full set of pre-/post-shock plasma parameters could be also determined, provided a method to estimate the electron temperature from combination of Metis visible-light and UV images