Future diagnostics of Coronal Mass Ejections with VL and UV coronagraphic data

P. Pagano¹, A. Bemporad², S.Giordano², D.Mackay¹

¹University of St Andrews, ²INAF-Osservatorio Astrofisico di Torino

6th Metis Workshop November, 22nd 2018

Established by the European Commission

METIS observing CMEs

- Maps of Visible Light
- Maps of Polarised Light
- Maps of UV intensity

・ロト・西ト・西ト・西・ うぐら

It is all together

White light/Polarised light mass Velocity trajectory structure shape

イロト イ理ト イヨト イヨト

æ

Lyman- α

• temperature

In this talk

We focus on:

- Polarisation technique
- Temperature from Lyman- α
- Effects of non-equilibrium ionisation

We use MHD models to develop diagnostic techniques in realistic conditions

- Sand box to compare observed quantities with known distributions
- Test diagnostic technique in non-idealised conditions

Patsourakos+2013

Formation of flux rope: accumulation of free magnetic energy

Flux rope formation

- Slow formation: days or weeks
- Quasi-static evolution. ($t >> \tau_{Alf}$)
- Magnetic evolution: $\beta << 1$ everywhere

Example: Life of flux Rope (ejection)

Cheng+2011

Flux rope ejection: release of energy

Flux rope ejection

- Fast ejection: flux rope travels out of the corona in \sim 2 hours
- Highly dynamic evolution. ($t \sim \tau_{Alf}$)
- Full MHD: plasma is locally compressed. ($\beta \ge 1$)

NLFF field magnetofrictional model

Flux rope formation/Magnetically driven evolution

- Decribes a magnetically dominated evolution
- Models the evolution of corona for weeks
- Computationally efficient: magnetofrictional technique

MHD Simulation - MPI-AMRVAC

Flux rope ejection/Dynamic events

- Accounts for plasma and magnetic field
- Models multi- β domain

Simulation

- 256 \times 128 \times 128 points (r: 1 4 R_{\odot})
- fixed grid in spherical geometry

$2.5 - 4 R_{\odot}$

•
$$B_{\phi} = B_{\theta} = 0$$

•
$$B_r(r) = B_r(2.5) \frac{2.5^2}{r^2}$$

$$T(\vec{B}) = F(B_{\theta}/|B|, T_{min}, T_{out})(1 - G(|B|)) + T_{out}G(|B|)$$

$$G(|B|) = e^{-\frac{|B|^2}{2B_*}}$$

$$\rho = \text{gravitational stratification}$$

$$\rho = \frac{\rho}{T(\vec{B})} \frac{\mu m_p}{k_b}$$

- $B_{\theta}/|B|$ shapes the temperature profile
- The flux rope is along θ direction
- Tout sets the outer corona temperature

MPI-AMRVAC: KU Leuven

MHD

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{\nu}) = 0 \tag{1}$$

$$\frac{\partial \rho \vec{\mathbf{v}}}{\partial t} + \vec{\nabla} \cdot (\rho \vec{\mathbf{v}} \vec{\mathbf{v}}) + \nabla \rho - \frac{(\vec{\nabla} \times \vec{B}) \times \vec{B}}{4\pi} = +\rho \vec{g}$$
(2)

$$\frac{\partial B}{\partial t} - \vec{\nabla} \times (\vec{v} \times \vec{B}) = 0, \qquad (3)$$

$$\frac{\partial \boldsymbol{e}}{\partial t} + \vec{\nabla} \cdot \left[(\boldsymbol{e} + \boldsymbol{p}) \vec{\boldsymbol{v}} \right] = \rho \vec{\boldsymbol{g}} \cdot \vec{\boldsymbol{v}} - n^2 \chi(T) - \nabla \cdot \vec{F_c}$$
(4)

$$\nabla \cdot \vec{B} = 0 \tag{5}$$

$$e = \frac{p}{\gamma - 1} + \frac{1}{2}\rho\vec{v}^2 + \frac{\vec{B}^2}{8\pi}$$
(6)

- The flux rope is ejected: dense and cold plasma is expelled
- The flux rope ejection turns into a CME
- The flux rope is ejected towards the null-point.

Polarization Ratio Technique: LOS reconstruction

Synthesis of Total and Polarized Brightness from MHD simulation Minnaert, 1930

▶ ▲ @ ▶ ▲ 注 ▶ ▲ 注 ▶ ● ① � @ ♪

Lines of sight

- We consider \sim 200 \times 400 lines of sight
- Red: cloud of points output from the polarization technique
- Green: cloud of folded centres of mass
- Subtraction of quite corona (t = 0)

Polarization Ratio Technique: Reconstruction

- Polarization technique \sim folded centre of mass. 2° red-green
- Significative offset from the centre of mass position. 10° red-blue

- The tip of the cloud gives the CME trajectory
- The CME is deflected by about 5°
- The Folded Centre of Mass cloud is 2° farther from the POS than the Centre of Mass
- The Polarization Technique cloud is 3° farther from the POS than the Centre of Mass

Polarization Ratio Technique: Column Density Reconstruction

- Column density maps are reproduced, including the internal structure
- Polarimetric reconstruction must assume all the plasma in one position

• LOS assumption reduces the error to less than 3%.

we want to use the combined information from VL,polarised light and UV to find CME temperatures. We apply this technique to a specific snapshot.

$$I_{obs} = \int_{LOS} (j_r + j_c) \, dl$$

j_r radiative component

$$j_{r} = \frac{b B_{12} h \lambda_{0}}{4\pi} n_{i} \int_{\Omega} p(\phi) d\omega \int_{0}^{+\infty} I_{ex}(\lambda - \delta\lambda) \Phi(\lambda, \mathbf{n}') d\lambda ,$$
$$\delta\lambda = \frac{\lambda_{0}}{c} \mathbf{w} \cdot \mathbf{n}' .$$
$$\sigma_{\lambda}(\mathbf{n}') = \frac{\lambda_{0}}{c} \sqrt{\frac{k_{B} T_{\mathbf{n}'}}{m_{p}}} \quad (cm),$$

j_c collisional component

$$j_c = rac{b}{4\pi} \, rac{n_e}{n_e} \, rac{n_i}{n_i} \, q_{coll}$$

 $q_{coll} = 2.73 \times 10^{-15} T_{e}^{-\frac{1}{2}} (E_{12})^{-1} f_{12} \bar{g} \exp^{-\frac{E_{12}}{k_B T_{e}}} (cm^3 s^{-1}),$

- VL and UV intensity show CME signatures
- VL generally presents more emission
- UV presents a more complex scenario

Measuring ne

An estimation of the line of sight extension is required to derive n_e from the column density.

Measuring v_r

 $0\% - 5\% \ km/s$

2D maps of radial velocity

- Normalizing Radial Graded Filter (NRGF) (Morgan+,2006)
- cross-correlation between subsequent frames (~ 174s)

Doopler dimming factor mapsScale is 0%-5%

- CME front highly dimmed
- CME front is mostly visible as dimming structure in Lyman- α images

Measuring T, which T?

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

How the non-equilibrium ionisation effects change our diagnostics?

or

Is the plasma in ionisation equilibrium during CMEs?

Work in progress. Aims:

- Better insight on plasma state during flux rope ejection
- Improved capability to interpret UVCS observations
- ...and not only
- Improved capability to interpret METIS observations

Post-processing: [similar to Pagano+2008 on O VI and Si XII]

$$\frac{\partial n_{HI}}{\partial t} = -\vec{\nabla} \cdot (n_{HI}\vec{v}) + n_{HII} (\alpha_{II}n_{HII} - q_I n_{HI})$$
$$\frac{\partial n_{HII}}{\partial t} = -\vec{\nabla} \cdot (n_{HII}\vec{v}) + n_{HII} (q_I n_{HI} - \alpha_{II} n_{HII})$$

Advection: $-\vec{\nabla} \cdot (n_X \vec{v})$

- advection of HI and HII explicit Godunov scheme
- Smoothened distribution of ρ , T, \vec{v}
- Flux limiter that slowly redistributes ions when too steep gradients

Ionization/Recombination: $n_X (q_{X-1}n_{X-1} - \alpha_X n_X)$

- ionization/recombination of HI and HII implicit scheme
- $\Delta t = 0.1 \ s$

Timescales

$$\begin{split} \frac{\partial n_{HI}}{\partial t} &= -\vec{\nabla} \cdot (n_{HI}\vec{v}) + n_{HII} \left[\alpha_{II} n_{HII} - q_I n_{HI} \right] \\ dt \left[-\vec{\nabla} \cdot (n_{HI}\vec{v}) \right] &\sim 2 \; sec \\ dt \left[n_{HII} \left(\alpha_{II} n_{HII} - q_I n_{HI} \right) \right] &\sim 10^{-7} \; sec \end{split}$$

Still quite slow computationally

Ionization equilibrium at t=0

• $\vec{v} = 0$

•
$$[\alpha_{II}n_{HII} - q_In_{HI}] = 0$$

•
$$n_{HII} = \rho/m_p$$

- * ロ > * 個 > * 注 > * 注 > - 注 - のへの

Ionization of the plasma during a flux rope ejection.

▲□▶▲圖▶▲필▶▲필▶ = 三 - のへ⊙

Ionization of the plasma during a flux rope ejection.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Using white light and polarised light we can

- Measure better the column density
- Find the position of the CME along the LOS
- Derive the 3D trajectory of the CME
- Estimate the LOS extension of the CME, i.e. its density

Adding Lyman- α

- Measuring a CME temperature
- Studying in details physics of CMEs: heating
- Studying in details physics of CMEs: reconnection

& SPACE SCIENCE

The annual meeting of the European Astronomical Society

24 - 28 JUNE 2019 Lyon, France | Manufacture des Tabacs

eas.unige.ch/EWASS2019/

ewass2019@kuoni.com

Special Session

Combining observations with models to derive CMEs properties: where we stand and what is next

Registration opens

1st December 2018

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 647214).

