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Abstract. Knowledge regarding the coronal magnetic field is important for the understanding of

many phenomena, like flares and coronal mass ejections. Because of the low plasma beta in the

solar corona, the coronal magnetic field is often assumed to be force-free and we use photospheric

vector magnetograph data to extrapolate the magnetic field into the corona with the help of a non-

linear force-free optimization code. Unfortunately, the measurements of the photospheric magnetic

field contain inconsistencies and noise. In particular, the transversal components (say Bx and By) of

current vector magnetographs have their uncertainties. Furthermore, the magnetic field in the pho-

tosphere is not necessarily force free and often not consistent with the assumption of a force-free

field above the magnetogram. We develop a preprocessing procedure to drive the observed non–

force-free data towards suitable boundary conditions for a force-free extrapolation. As a result, we

get a data set which is as close as possible to the measured data and consistent with the force-free

assumption.

1. Introduction

The structure of the solar corona out to a few solar radii is dominated by the mag-
netic field. Knowledge regarding the coronal magnetic field is therefore important
to understand physical processes like flares and coronal mass ejections. Unfortu-
nately, direct measurements of the magnetic field are difficult for the following
reasons: the high plasma temperature in the corona broadens the line profile orders
of magnitudes above the Zeeman splitting. In addition, coronal lines are optical
thin and consequently the line-of-sight integrated character of the measurements
complicates their interpretation.

It has been proposed to use magnetic sensitive coronal line observations in
order to constrain the coronal magnetic field (see, e.g., House, 1977; Arnaud and
Newkirk, 1987; Judge, 1998). Lin, Kuhn, and Coulter (2004) demonstrated that
Zeeman-effect measurements can be performed. However, due to the line-of-sight
effect, the interpretation of these lines is difficult. Also, recent measurements of
chromospheric and lower coronal magnetic fields were made for a few individual
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cases, e.g. (Solanki et al., 2003) and (Lagg et al., 2004). Such multi-wavelength
spectropolarimetric observations have not been done routinely in the past but are
believed to become much more commonplace, and reliable, in the near future.

As an alternative to these direct measurements, methods have been developed
to use the magnetic field observed on the photosphere for an extrapolation into
the corona. The extrapolation is not free from assumptions regarding the coronal
plasma. It is helpful, that the low and middle corona contains a low-β plasma,
which allows the neglect of the plasma pressure in first order, and use of a force-free
magnetic field model. A force-free magnetic field is characterized by the electric
currents parallel to the magnetic field lines, i.e.,

∇ × B = αB (1)

∇ · B = 0 (2)

where the coefficient α is constant along the field lines but may vary between dif-
ferent field lines. Since (1), due to its intrinsic nonlinearity, is difficult to solve,
simplifications of (1) are sometimes used like potential fields (α = 0, i.e., no cur-
rents; see e.g. Schmidt, 1964; Semel, 1967; Cuperman, Ofman, and Semel, 1989)
and linear force-free fields (α = constant; see e.g. Chiu and Hilton, 1977; Seehafer,
1978, 1982; Alissandrakis, 1981; Semel, 1988; Demoulin and Priest, 1992).

The nonlinear force-free case (Sakurai, 1981; Wu et al., 1990; Roumeliotis,
1996; Amari et al., 1997; Yan and Sakurai, 2000; Wheatland, Sturrock, and Roume-
liotis, 2000; Wheatland, 2004; Régnier, Amari, and Kersalé, 2002; Wiegelmann and
Neukirch, 2003; Wiegelmann, 2004; Valori, Kliem, and Keppens, 2005) is chal-
lenging both theoretically due to the nonlinearity of the underlying mathematical
problem and observationally because a measurement of the full magnetic vector on
the photospheric is required. For investigations of instabilities like filament erup-
tions, it is essential to consider the general nonlinear force-free field case because
the free magnetic energy that might drive the instability cannot be described with
the simplified field models mentioned earlier.

Moreover, a comparison between extrapolations and measured fields (Solanki
et al., 2003) in a newly developed active region revealed that a nonlinear model
agrees better with the observations than a potential and linear force-free magnetic
field model (Wiegelmann et al., 2005).

A nonlinear force-free extrapolation of coronal magnetic fields from measured
photospheric data is a challenging problem for several reasons. The magnetic field
in the photosphere is not necessarily force-free (see Gary, 2001), and one would
rather prefer to use the vector-magnetic field at the basic of the corona as bound-
ary condition for a nonlinear force-free extrapolation, but here measurements are
usually not available.

Another problem is the 180◦ ambiguity in the transverse components of the
photospheric data, which has to be removed with e.g. the minimum energy method
(Metcalf, 1994). An additional complication is that the transverse components
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are more difficult to measure and have much more noise than the line-of-sight
component. For the data of the Solar-Flare Telescope (SFT) used in Section 5,
for example, the noise level is about 10 G for the line-of-sight magnetic field and
100 G for the transverse field. The full-disk vector magnetograph SOLIS (Synoptic
Optical Long-term Investigations of the Sun, U.S. National Solar Observatory, Kitt
Peak) is expected to have a noise level of about 1 G in the line-of-sight and about
50 G in the transverse components (C. Keller, private communication). The reason
for the much higher noise in the transverse magnetic field (Bt) compared with the
line-of-sight field (BL) can be understood by the way in which the photospheric
magnetic field is derived from the four measured Stokes components. Roughly
BL = c1 V/I , where V is the circular polarization and c1 is a constant. Then

δBL = c1

δV

I
∼ δ I

I
∼

√
I , (3)

where δ I is the noise in I . This photon noise is independent of BL. Even if the Q
and U signals are generally weaker than the V signal, the major source of errors

in the force balance is the noise in Bt: B2
t = c2

√
Q2 + U 2/I where Q and U are

linear polarization intensities and c2 is another constant. Then

2Bt δBt = c2

QδQ + UδU√
Q2 + U 2 I

∼ c2

√
δQ2 + δU 2

I
∼ c2

δ I

I
∼ constant. (4)

As a consequence, the transverse magnetic field noise is in particular high in weak
field regions. In strong-field regions, vector magnetic field measurements based on
full Stokes spectro-polarimetry generally yield uncertainties of a few degrees in
the orientation angles of the field vector in active regions. This situation is also
constantly improving with improved instrumentation.

For the practical computation of the coronal magnetic field, it is also helpful if the
boundary data are smoothed to some degree. Short wavelength fluctuations in the
surface magnetic field die out rapidly with height (for a potential field with exp(−kz)
for scales of horizontal wavenumber k). Hence, boundary data with scales much
finer than the height of the numerical box require a very fine grid to be sufficiently
resolved but they hardly have an effect on the result, except in a very small boundary
layer above the surface. To keep the numerical effort limited, the boundary data are
therefore usually smoothed. In this context it should also be noted that the force-free
equation (1) is scale invariant if α is rescaled appropriately. Hence, by smoothing
of the boundary data we do not lose any physics which we have not already cast
away by the restriction to a stationary force-free field model.

A more fundamental requirement on the boundary data is its consistency with
the force-free field approximation. As has been shown by Aly (1989), a balance
of the total momentum and angular momentum exerted onto the numerical box by
the magnetic field leads to a set of boundary integral constraints for the magnetic
field. These constraints should also be satisfied on the solar surface for the field at
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the coronal base in the vicinity of a sufficiently isolated magnetic region and in a
situation where there is no rapid dynamical development.

In summary, the boundary data for the force-free extrapolation should fulfill the
following conditions:

1. The data should coincide with the photospheric observations within mea-
surement errors.

2. The data should be consistent with the assumption of a force-free magnetic
field mentioned earlier.

3. For computational reasons (finite differences), the data should be sufficiently
smooth.

Within this work we describe a numerical procedure, written in IDL, which
preprocesses vector magnetograph data so that the aforementioned conditions are
satisfied as close as possible.

We outline the paper as follows. In Section 2 we specify how to check if a
given measured vector magnetograms is consistent with the assumption of a force-
free magnetic field in the corona above the magnetogram. We describe how to
derive consistent force-free boundary conditions for a force-free magnetic field
extrapolation from the measured data in Section 3. In Section 4 we use a known
semi-analytic force-free model to check our method and we apply the method in
Section 5 to an example of the observed vector magnetogram.

2. Consistency Check of Vector Magnetograms

In the following we assume that the 180◦ ambiguity in the measured transverse
components has been removed and the magnetogram has been observed close to
the disk center. “Close” here means that the vertical component Bz in our numerical
box can be more or less identified with the line-of-sight component and bears a
smaller measurement error than the horizontal components Bx and By . Since, as
stated earlier, the measurement error between the line-of-sight and the transverse
components differs by about one order of magnitude, the angle between line-of-
sight and vertical should not exceed � 0.1 rad.

Another a-priori assumption about the photospheric data is that the magnetic flux
from the photosphere is sufficiently distant from the boundaries of the observational
domain and the net flux is in balance, i.e.,∫

S
Bz(x, y, 0) dx dy = 0. (5)

Generally, the flux balance criterion has to be applied to the whole, closed surface
of the numerical box. However, we can only measure the magnetic field vector
on the bottom photospheric boundary and the contributions of the lateral and top
boundary remain unspecified. However, if a major part of the known flux from the
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bottom boundary is uncompensated, the final force-free magnetic field solution will
markedly depend on how the uncompensated flux is distributed over the other five
boundaries. This would result in a major uncertainty of the final force-free magnetic
field configuration. We therefore demand the flux balance to be satisfied with the
bottom data alone. If this is not the case, we classify the reconstruction problem as
not uniquely solvable within the given box.

Aly (1989) used the virial theorem to define which conditions a vector mag-
netogram has to fulfill to be consistent with the assumption of a force-free field
mentioned earlier. We repeat here the force-free and torque-free condition and
refer to the paper of (Aly, 1989) for details.

1. The total force on the boundary vanishes∫
S

Bx Bz dx dy =
∫

S
By Bz dx dy = 0∫

S
(B2

x + B2
y ) dx dy =

∫
S

B2
z dx dy.

2. The total torque on the boundary vanishes∫
S

x
(
B2

x + B2
y

)
dx dy =

∫
S

x B2
z dx dy∫

S
y

(
B2

x + B2
y

)
dx dy =

∫
S

y B2
z dx dy∫

S
y Bx Bz dx dy =

∫
S

x By Bz dx dy

Note that if condition (1) is fulfilled, the constraints (2) are independent of where
the origin for x, y is located. In our code, the origin is usually at the lower left
corner of the bottom boundary face.

As with the flux balance, the Aly integral criteria in general have to be applied
to the whole surface of the numerical box. Since we assumed that the photospheric
flux is sufficiently concentrated in the center and the net flux is in balance, we
can expect the magnetic field on the lateral and top boundary to remain small and
hence these surfaces will not yield a large contribution to the integrals of the Aly
constraints mentioned earlier. We therefore impose the Aly criteria on the bottom
boundary alone.

Aly (1989) already pointed out that the magnetic field is probably not force-
free in the measured region because the plasma β in the photosphere is of the
order of one and pressure and gravity forces are not negligible. We however expect
that the observed photospheric field is, after removing scales below a super-granular
diameter by smoothing, representative of the field at the coronal base. In the corona,
however, we have β ≈ 10−4, and consequently the magnetic field should be close
to force-free in a stationary situation.
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To quantify the quality of vector magnetograms with respect to the aforemen-
tioned criteria, we introduce three dimensionless parameters:

1. The flux balance parameter

εflux =
∫

S Bz dx dy∫
S |Bz| dx dy

2. The force balance parameter

εforce =∣∣ ∫
S Bx Bz dx dy

∣∣ + ∣∣ ∫
S By Bz dx dy

∣∣ + ∣∣ ∫
S

(
B2

x + B2
y

) − B2
z dx dy

∣∣∫
S

(
B2

x + B2
y + B2

z

)
dx dy

3. The torque balance parameter

εtorque =∣∣∣ ∫S x
((

B2
x +B2

y

)
− B2

z

)
dxdy

∣∣∣+∣∣∣ ∫S y
((

B2
x +B2

y

)
− B2

z

)
dx dy

∣∣∣+∣∣∣ ∫S y Bx Bz − x By Bzdxdy
∣∣∣∫

S

√
x2 + y2

(
B2

x + B2
y + B2

z

)
dx dy

An observed vector magnetogram is then flux-balanced and consistent with the
force-free assumption if: εflux 	 1, εforce 	 1, εtorque 	 1.

3. Method

Even if we choose a sufficiently flux-balanced isolated active region (εflux 	 1)
we find that usually the force-free conditions (εforce 	 1, εtorque 	 1) are not ful-
filled for measured vector magnetograms. We conclude, therefore, that nonlinear
force-free extrapolation methods may not be used directly on observed vector mag-
netograms, in particular not on the very noisy transverse photospheric magnetic field
measurements. The large noise in the transverse components of the photospheric
field vector (∼ the horizontal Bx and By at the bottom boundary) gives us the free-
dom to adjust these data within the noise level. We use this freedom to drive the data
towards being more consistent with Aly’s force-free and torque-free conditions.

As a measure of how well a photospheric magnetic field agrees with Aly’s
criteria, the observed data, and the smoothness condition, we define the following
functional which adds up the χ2 deviations from all of the individual constraints:

L = μ1L1 + μ2L2 + μ3L3 + μ4L4 (6)

where

L1 =
[( ∑

p

Bx Bz

)2

+
( ∑

p

By Bz

)2

+
( ∑

p

B2
z − B2

x − B2
y

)2]
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L2 =
[( ∑

p

x
(
B2

z − B2
x − B2

y

))2

+
( ∑

p

y
(
B2

z − B2
x − B2

y

))2

+
( ∑

p

y Bx Bz − x By Bz

)2]

L3 =
[ ∑

p

(Bx − Bxobs)
2 +

∑
p

(By − Byobs)
2 +

∑
p

(Bz − Bzobs)
2

]

L4 =
[ ∑

p

(�Bx )2 + (�By)2 + (�Bz)
2

]
(7)

The surface integrals are here replaced by a summation
∑

p over all p grid nodes of
the bottom surface grid, and the differentiation in the smoothing term is achieved
by the usual five-point stencil for the 2D-Laplace operator. Each constraint Ln

is weighted by a yet undetermined factor μn . The first term (n = 1) corresponds
to the force-balance condition, the next (n = 2) to the torque-free condition. The
following term (n = 3) ensures that the optimized boundary condition agrees with
the measured photospheric data, and the last terms (n = 4) controls the smoothing.
The 2D-Laplace operator is designated by �.

The aim of our preprocessing procedure is to minimize L so that all terms Ln ,
if possible, are made small simultaneously. This will yield a surface magnetic field

Bmin = argmin(L) (8)

Besides a dependence on the observed magnetogram, the solution (8) now also
depends on the coefficients μn . These coefficients are a formal necessity because
the terms Ln represent different quantities with different units. By means of these
coefficients, however, we can also give more or less weight to the individual terms in
the case where a reduction in one term apposes the reduction in another. This com-
petition obviously exists between the observation term (n = 3) and the smoothing
term (n = 4).

The smoothing is performed consistently for all three magnetic field compo-
nents. For this purpose we need the derivative of L with respect to each of the
three field components at every node (q) of the bottom boundary grid. We have,
however, taken account of the fact that Bz is measured with much higher accuracy
than Bx and By . This is achieved by assuming the vertical component invariable
compared to the horizontal components in all terms where mixed products of the
vertical and horizontal field components occur, e.g., in the Aly constraints. The
relevant functional derivative of L is therefore

dL

d(Bx )q
= 2μ1

[( ∑
p

Bx Bz

)
(Bz)q − 2

( ∑
p

B2
x

)
(Bx )q

]
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− 2μ2

[
2

( ∑
p

x
(
B2

z − B2
x − B2

y

))
(x Bx )q

+ 2

( ∑
p

y
(
B2

z − B2
x − B2

y

))
(y Bx )q

−
( ∑

p

y Bx Bz − x By Bz

)
(y Bz)q

]
+ 2μ3(Bx − Bxobs)q + 2μ4(�(�Bx ))q (9)

dL

d(By)q
= 2μ1

[( ∑
p

By Bz

)
(Bz)q − 2

( ∑
p

B2
y

)
(By)q

]

− 2μ2

[
2

( ∑
p

x
(
B2

z − B2
x − B2

y

))
(x By)q

+ 2

( ∑
p

y
(
B2

z − B2
x − B2

y

))
(y By)q

+
( ∑

p

y Bx Bz − x By Bz

)
(x Bz)q

]
+ 2μ3(By − Byobs)q + 2μ4(�(�By))q (10)

dL

d(Bz)q
= 2μ3(Bz − Bzobs)q + 2μ4(�(�Bz))q (11)

The optimization is performed iteratively by a simple Newton scheme which
replaces

(Bx )q ← (Bx )q − μ
dL

d(Bx )q

(By)q ← (By)q − μ
dL

d(By)q
(12)

(Bz)q ← (Bz)q − μ
dL

d(Bz)q
(13)

at every step. The convergence of this scheme towards a solution of (8) is obvious:
L has to decrease monotonically at every step as long as (9) – (11) has a nonzero
component. These terms, however, vanish only if an extremum of L is reached. Since
L is fourth order in B, this may not necessarily be a global minimum, in rare cases
if the step size is handled carelessly it may even be a local maximum. In practical
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calculations this should, however, not be a problem and from our experience we
rapidly obtain a minimum Bmin of L , once the parameters μn are specified.

What is left is a suitable recipe to choose μn . We have four parameters (μn)
to choose and we restrict our freedom a little bit by giving the same weight μ1 =
μ2 D2 ≡ μ12 to the Aly momentum and torque constraints where D is the edge
length of our numerical square box. Accordingly, we will combine L1 + L2/D2 ≡
L12. We are then left with three parameters, only two of which are independent since
only the ratio of the parameters really counts. Multiplying all μn by a common factor
does not change the minimum-solution B of the preprocessed photospheric data.
We use this fact and specify μ12 to be 1/B2

ave where Bave is the average magnetic
field magnitude in our magnetogram.1

With the parameters μ3 and μ4 we can now control the relative influence of the
observed data and the smoothing, with respect to one another, and with respect to
the Aly constraints. For the proper selection of these parameters, we proceed in a
similar way as is customary for regularization techniques of inversion problems (e.g.
Hansen, 2001). For this purpose, we visualize the different solutions Bmin(μ3, μ4)
for different μ parameters in a phase space of log(L12), log(L3), and log(L4). Since
the L-terms depend analytically on B, the solutions Bmin span a continuous 2D
surface in this 3D phase space.

A survey of the μ parameters for one of the example computations (Low and Lou
solution with noise model I) described in the next section shows that log(L3(Bmin))
and log(L4(Bmin)) are almost entirely determined by the ratio of μ3 to μ4, while
log(L12(Bmin)) depends on the absolute magnitude of μ3 and μ4. It is therefore
convenient to display our results in a projection of the 3D phase space along the
log(L12)-axis as in Figure 1. In this projection, the surface collapses nearly to a
unique curve.

An obvious limiting value is obtained for μ3 → ∞ which yields Bmin = Bobs

with L12 ∼ 10−1, L3 = 0, and L4 ∼ 10−3. For smaller values of μ3 we obtain a
smoothed solution and, depending on μ4, also satisfy the Aly criteria much better
than the original observational data. The price we have to pay is that L3 attains
finite values, which however is tolerable as long as L3 does not exceed a noise
value L3(Bnoise) (dotted line in Figure 1). This value in our test case is known from
the amount of noise added. For actual observations, it has to be estimated. The
intersection of our solution surface with the noise level then defines the optimal
ratio of μ3 to μ4 (marked by a rhombus in Figure 1). We choose both numbers to be
small to enforce a good compliance with the Aly criteria, i.e., give great weight to
L12. This way, L12 is reduced by 6 orders of magnitude, B is conveniently smoothed
and yet it does not deviate from the observations by more than the instrumental
error. The smoothing will somewhat broaden prominent magnetic flux structures.
A careful choice of the preprocessing parameters (as described earlier) ensures

1Note that this is equivalent to a normalization of the magnetic field with Bave and the length scale

with D. With this normalization we get L1 = L2 = L12 = 1.
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Figure 1. Survey of solutions to (8) in a phase space spanned by log(L4) (abscissa), log(L3) (ordinate),

and log(L12) (color code). Every symbol corresponds to one solution Bmin. The optimal parameters

are marked with a rhombus. Here we have L12 = 7.6×10−7, L3 = 6.3×10−6, and L4 = 5.8×10−5.

The optimal parameters are μ3 = 0.01 and μ4 = 0.005.

that the magnetic flux magnitudes and the corresponding magnetic field topology
(which might become very complex for multiple magnetic sources, see Schrijver
and Title, 2002) are not affected by the preprocessing.

4. Tests With the Low and Lou Solution

For a first test we use the semi-analytic solution found by Low and Lou (1990). This
solution has been designed in particular to test nonlinear force-free extrapolation
codes. The solution contains free parameters, and we use � = π/2 and l = 0.3 (see
Low and Lou (1990) for details). We extract the bottom boundary of this equilibrium
and use it as input to our extrapolation code (see Wiegelmann (2004)). This artificial
vector magnetogram (see first row of Figure 2) extrapolated from a semi-analytic
solution is of course in perfect agreement with the assumption of a force-free field
mentioned earlier (Aly criteria), and the result of our extrapolation code showed
a reasonable agreement with the original. Real, measured, vector magnetograms
are not so ideal (and smooth) of course and we simulate this effect by adding
noise to the Low and Lou magnetogram. We add noise to this ideal solution in the
form

Noise model I: δBi = nl rn
√

Bi , where nl is the noise level and rn a random
number in the range −1 to 1. The noise level was chosen to be nl = 5.0 for
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Figure 2. The first row shows the original vector magnetogram deduced from the Low and Lou

solution. In the second row we added noise (model I) to the solution to simulate measurement errors.

In the bottom row we applied our preprocessing routine to the noisy data taken from the center row.
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the transverse magnetic field (Bx , By) and nl = 0.25 for Bz . This mimics a
real magnetogram (see center row of Figure 2) which has significantly higher
noise in the transverse components of the magnetic field.

Noise model II: δBi = nl rn , where nl is the noise level and rn a random number
in the range −1 to 1. The noise level was chosen to be nl = 10.0 for the
transverse magnetic field (Bx , By) and nl = 0.5 for Bz . This noise model adds
an additive noise, independent from the magnetic field strength.

Noise model III: δBz = constant, δBt = δB2
tmin/

√
B2

t + δB2
tmin where we

choose the constant noise level of Bz to be 1 and the minimum detection
level δBtmin = 20. This noise model mimics the effect that the transverse
noise level is higher in regions with a low magnetic field strength, which is
an immediate consequence of Equation (4).

The bottom row of Figure 2 shows the preprocessed vector magnetogram (for
noise model I) after applying our procedure. The aim of the preprocessing is to
use the resulting magnetogram as input for a nonlinear force-free magnetic field
extrapolation. Figure 3 shows in panel (a) the original Low and Lou solution and
in panel (b) a corresponding potential field reconstruction. In Figure 3 we present
only the central region of the whole magnetogram (marked with black rectangu-
lar box in Figure 2 because the surrounding magnetogram is used as a boundary
layer (16 grid points) for our nonlinear force-free code. (Our nonlinear force-free
code is explained in detail in Wiegelmann (2004). The computation was done on
a 96 × 96 × 80 grid including a 16 pixel boundary layer adjacent to the lateral
and top boundary of the computational box.) In the remaining panels of Figure 3
we demonstrate the effect of the different noise models on the reconstruction. The
noise levels were chosen so that the mean noise was similar for all three noise mod-
els. Figure 3(c) shows a nonlinear force-free reconstruction with noisy data (noise
model I, magnetogram shown in the center panel of Figures 2) and Figure 3(d)
presents a nonlinear force-free reconstruction after preprocessing (magnetogram
shown in the bottom panel of Figure 2). After preprocessing (Figure 3d) we get
a much better agreement with the original solution (Figure 3a). Figure 3(e) and
(f) show a nonlinear force-free reconstruction for noise model II without (e) and
after (f) preprocessing of the noisy data. Figures 3(g) and (h) show a nonlinear
force-free reconstruction for noise model III without (g) and after (h) preprocess-
ing of the noisy data. As for noise model I, we find that the preprocessed data
agree better with the original Figure 3(a). We check the correlation of the original
solution with our reconstruction with the help of the vector correlation function V C
defined as

V C =
∑

i vi · wi√∑
i |vi|2

√∑
i |wi|2

. (14)
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Figure 3. (a) Some field lines for the original Low and Lou solution. (b) Potential field reconstruction.

(c) Nonlinear force-free reconstruction from noisy data (noise model I) without preprocessing. (d)

Nonlinear force-free reconstruction from noisy data (noise model I) after preprocessing the vector

magnetogram with our newly developed program. (e) Nonlinear force-free reconstruction from noisy

data (noise model II) without preprocessing. (f) Nonlinear force-free reconstruction from noisy data

(noise model II) after preprocessing. (g) Nonlinear force-free reconstruction from noisy data (noise

model III) without preprocessing. (h) Nonlinear force-free reconstruction from noisy data (noise

model III) after preprocessing the vector magnetogram with our newly developed program. The color

coding shows the normal magnetic field component on the photosphere in all panel. One can see,

that after preprocessing (panel d, f, h) the agreement with the original (a) is much better than without

preprocessing (c, e, g).
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where vi corresponds to a reference field (Low and Lou solution) and wi to the
nonlinear force-free field reconstructed with our code.

Case Remark Preprocessing Vector correlation

(a) Reference 1.00

(b) Potential 0.85

(c) Noise model I No 0.94

(d) Noise model I Yes 0.98

(e) Noise model II No 0.95

(f) Noise model II Yes 0.98

(g) Noise model III No 0.93

(h) Noise model III Yes 0.98

The table confirms the visual inspection of Figure 3. The correlation of the re-
constructed magnetic field with the original becomes significantly improved after
preprocessing of the data for all noise models. We knew already from previous
studies (Wiegelmann and Neukirch, 2003; Wiegelmann, 2004) that noise and in-
consistencies in vector magnetograms have negative influence on the nonlinear
force-free reconstruction and the preprocessing routine described in this work tells
us how to overcome these difficulties.

5. Application to Data from the Solar Flare Telescope (SFT)

In this section we apply our method to vector magnetogram data of AR 7321
taken with the SFT at the National Astronomical Observatory (NAO) in Tokyo.
The SFT instrument is described by Sakurai et al. (1995) and the evolution of the
photospheric magnetic field in AR 7321 has been studied by Li et al. (2000). The
top panel of Figure 4 shows the original data (original resolution reduced by a factor
of 2). and the bottom panel after preprocessing. The structure of all components
of the magnetic field is similar to the original. The magnetogram is almost flux-
balanced (εflux = 0.045), but Aly’s criteria are not fulfilled in the original (εAly =
1.50). After preprocessing, we get εAly = 0.029 and the data are also somewhat
smoother than the original. The L-values of the original data and after preprocessing
are:

Original Preprocessed

L12 (Aly criteria) 0.58 3.6 × 10−5

L3 (data) 0.0 1.0 × 10−5

L4 (smoothing) 2.1 × 10−4 5.2 × 10−6
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Figure 4. Top panel: Vector magnetogram of AR 7321 taken with SFT on October 26, 1992. Bottom
panel: After applying our preprocessing procedure. The resolution of the original SFT magnetogram

has been reduced by a factor of two to speed up the nonlinear force-free magnetic field reconstruction.

An inspection of the top and bottom panels shows that local small scale structures with strong flux

density in the original lead to a broader structure with weaker flux density after preprocessing. Sharp

boundaries between positive and negative flux regions are also broadened due to smoothing during

preprocessing.

Figure 5(a) shows a potential field reconstruction and Figure 5(b) a nonlinear
force-free reconstruction based on the preprocessed vector magnetogram. The non-
linear force-free computation was done in a 96×96×80 box, including a boundary
layer of 16 grid points towards the lateral and top boundary. Figure 5 shows only
the center cube of 64 × 64 × 64 pixel which corresponds to the area marked with
a black rectangular box in Figure 4.
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Figure 5. AR 7321 measured with SFT data from October 26, 1992. (a) Potential field reconstruction.

(b) Nonlinear force-free reconstruction. The field lines start from the same footpoints within regions

Bz > 0 in both panels.

6. Conclusions

Within this work we presented a method for the preprocessing of vector magne-
togram data with the aim of using the result of the preprocessing as input for a
nonlinear force-free magnetic field extrapolation with the help of an optimization
code method. As a first test of the method, we use the Low and Lou solution with
overlaid noise with different noise models. A direct use of the noisy photospheric
data for a nonlinear force-free extrapolation showed poor agreement with the orig-
inal Low and Lou solution, but after applying our newly developed preprocessing
method we got a reasonable agreement with the original. The preprocessing method
uses the high noise level in the transverse vector magnetogram components to drive
the magnetogram towards boundary conditions which are consistent with the as-
sumption of a force-free field mentioned earlier. To do so we use a minimization
principle. On the one hand we require that the final boundary data are as close as
possible (within the noise level) to the original measured data and on the other hand
the data are forced to fulfill the Aly criteria and be sufficiently smooth. Smoothness
of the boundary data is required for the nonlinear force-free extrapolation code,
but also physically motivated because the magnetic field at the base of the corona
should be smoother than in the photosphere, where it is measured.

Let us remark that nonlinear force-free extrapolations are only valid as long as
the plasma β is low and nonmagnetic forces like pressure gradients and gravity can
be neglected. This is usually the case in the corona (low-β plasma, β ≈ 10−4), but
not in the photosphere (β ≈ 1). A complete understanding of how the magnetic
field evolves from the (non–force-free) photosphere through the chromosphere
and transition region into the (force-free) corona would require more advanced
models, at least magnetohydrostatic equilibria. Measurements of the photospheric
magnetic field vector are not sufficient for such models and one needs additional
observations regarding plasma quantities (e.g. density, temperature, pressure). A
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magnetohydrostatic approach is also required to model prominences where the
magnetic field counteracts the gravitational force of the material it supports.

We are applying our newly-developed preprocessing program to data taken with
the Solar Flare Telescope and use the preprocessed boundary data for a nonlinear
force-free field extrapolation.
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