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ABSTRACT

Context. As the coronal magnetic field can usually not be measured directly, it has to be extrapolated from photospheric measure-
ments into the corona.
Aims. We test the quality of a non-linear force-free coronal magnetic field extrapolation code with the help of a known analytical
solution.
Methods. The non-linear force-free equations are numerically solved with the help of an optimization principle. The method mini-
mizes an integral over the force-free and solenoidal condition. As boundary condition we use either the magnetic field components on
all six sides of the computational box in Case I or only on the bottom boundary in Case II. We check the quality of the reconstruction
by computing how well force-freeness and divergence-freeness are fulfilled and by comparing the numerical solution with the ana-
lytical solution. The comparison is done with magnetic field line plots and several quantitative measures, like the vector correlation,
Cauchy Schwarz, normalized vector error, mean vector error and magnetic energy.
Results. For Case I the reconstructed magnetic field shows good agreement with the original magnetic field topology, whereas in
Case II there are considerable deviations from the exact solution. This is corroborated by the quantitative measures, which are signif-
icantly better for Case I.
Conclusions. Despite the strong nonlinearity of the considered force-free equilibrium, the optimization method of extrapolation is
able to reconstruct it; however, the quality of reconstruction depends significantly on the consistency of the input data, which is given
only if the known solution is provided also at the lateral and top boundaries, and on the presence or absence of flux concentrations
near the boundaries of the magnetogram.
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1. Introduction

Several methods have been proposed to compute the non-linear
force-free coronal magnetic field in active regions from mea-
surements of the photospheric magnetic field vector, e.g. the
direct upward integration method (Wu et al. 1990), the Grad-
Rubin method (e.g. Sakurai 1981; Amari et al. 1999; Régnier
et al. 2002; Bleybel et al. 2002; Wheatland 2004; Amari et al.
2006; Inhester & Wiegelmann 2006), the Green’s function like
methods (Yan & Sakurai 2000), the stress and relax method
(Roumeliotis 1996; Valori et al. 2005) and the optimization
method (Wheatland et al. 2000; Wiegelmann 2004; Wiegelmann
et al. 2006).

A standard test for force-free extrapolation methods is the
application of the codes to known analytical or numerical non-
linear force-free equilibria. Due to the general mathematical dif-
ficulty of the problem, only very few such solutions are known.
The comparison of numerical nonlinear force-free extrapolation
codes with the class of nonlinear force-free equilibria found by
Low & Lou (1990, LL from here on) has in the past ten years
emerged as a certain standard test. The LL equilibria are a class
of axisymmetric equilibria which are separable in spherical co-
ordinates. They are self-similar in the radial coordinate, and the

polar angle dependence is determined from a non-linear eigen-
value equation. The symmetry is broken by cutting out a rect-
angular chunk of the solution by using a Cartesian coordinate
system which is shifted and rotated with respect to the original
coordinate system in which the LL equilibria are calculated. The
parameters of the LL solutions and the parameters of the new
Cartesian coordinate system allow for a large number of differ-
ent situations which can be used for tests.

Nevertheless, it is highly desirable to also use tests differ-
ent from LL. A first step has been made by Valori et al. (2005),
who used an equilibrium taken from a numerical investigation of
a twisted flux rope. Valori & Kliem (2005, private communica-
tion) have further tested their nonlinear force-free extrapolation
code with configurations containing a flux rope by considering
the approximate analytical force-free equilibrium established
by (Titov & Démoulin 1999, henceforth TD). In a recent re-
view talk on nonlinear force-free extrapolation, T. Neukirch also
strongly recommended the use of other equilibria, in particular
the TD-equilibrium, to test the quality of non-linear force-free
extrapolation codes. The TD equilibrium has a much more con-
centrated current density than LL, and the magnetogram is more
structured. Also, the final equilibrium has a different topology
than the corresponding potential field, which is not true for LL.
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Table 1. Parameter set of the TD equilibrium.

R =110 Mm = 2.2 (major torus radius)
a = 35 Mm = 0.7 (minor torus radius)
d = 50 Mm = 1.0 (depth of torus center)
L =100 Mm = 2.0 (monopole distance)
q =100 T Mm2 (magnetic charge)
I0 =-13 TA (line current)
I = 3.391 TA (ring current)
hapex = 1.2 (apex height)
yfoot = 1.960 (footpoint position)
Bapex = 1.0 (norm. apex field strength)
〈Φ〉 = −1.41π (average twist)

The aim of this research note is to study the performance the
optimization method in reconstructing the TD equilibrium. The
optimization code has so far only been tested with the LL so-
lution with rather small resolution (40 × 40 × 20) in Wheatland
et al. (2000), on 80 × 80 × 40 grids in Wiegelmann & Neukirch
(2003) and on a 643 grid as part of a comparison of six differ-
ent extrapolation methods in Schrijver et al. (2006). The op-
timization code in the implementation of Wiegelmann (2004)
was the fastest-converging and best-performing model of the
six tested extrapolation codes. Here we test this optimization
code with the TD equilibrium using a high numerical resolution
(150 × 250 × 100).

2. The TD equilibrium

Like the LL solutions, the TD equilibrium is an axisymmet-
ric equilibrium and the symmetry is broken by choosing the
boundaries appropriately. The TD equilibrium has originally
been constructed as a model of an active region containing a
current- carrying flux tube. The model has later been used in a
number of investigations of the initiation of CME eruptions (e.g.,
Roussev et al. 2003; Török et al. 2004; Kliem et al. 2004; Török
& Kliem 2005; Williams et al. 2005).

The axis of symmetry of the TD equilibrium is placed at a
distance d beneath the lower boundary (the photosphere). A line
current of strength I0 runs along the line of symmetry, which
creates a potential magnetic field with circular field lines. Titov
& Démoulin (1999) then added a toroidal nonlinear force-free
current around the axis of symmetry with minor radius a and
major radius R and total current I, assuming a � R (see also
Fig. 2 in Titov & Démoulin 1999). Similar to a tokomak, the
ring current would not be in equilibrium with the potential field
created by the line current. Therefore, two magnetic monopoles
(strength q) of opposite polarity are placed on the symmetry axis
at a distance L from each other, with the force-free ring cur-
rent half-way between them. The monopoles create a potential
poloidal magnetic field which has field lines lying above the
force-free ring current and thus holding it down. In this way a
stable equilibrium situation can be achieved for certain param-
eter combinations (unstable cases have been investigated in the
studies of CME initiation mentioned above).

For the present investigation we use the TD equilibrium
(given by their Eqs. (16)−(22) and (31)) with the set of param-
eters given in Table 1. This yields a stable equilibrium because
the twist of the flux rope is clearly sub-critical with respect to
the kink instability (Török et al. 2004) and the monopoles are
placed sufficiently distant (Titov & Démoulin 1999). In Table 1
we have also included the derived parameters of the apex height
of the ring current above the photosphere (=R− d), the footpoint
position of the ring current (=

√
R2 − d2), the average field line

twist in the nonlinear force-free ring current (averaged over the
toroidal cross section), and the normalization of the field and of
the various length parameters.

The TD equilibrium has a number of properties which we
mention here explicitly because they are relevant for magnetic
field extrapolation methods. The artificial magnetogram of the
TD equilibrium basically has a large-scale bipolar structure
(due to the line current), but this structure is modified by the
monopoles and the ring current to an almost quadrupolar struc-
ture. Because the line current extends from −∞ to ∞, the mag-
netic field on the photosphere does not drop to zero with larger
distance from the nonlinear force-free region in the direction of
the line current. This is different from the LL solutions, for which
the photospheric magnetic field can be made very small at the
edges of the magnetogram if the computational box is chosen
large enough. On the other hand, the coronal current density (and
therefore the region with non-vanishing α on the photospheric
boundary) is strongly concentrated for the TD equilibrium (to
the region of the ring current). In the LL case α is distributed
over extended regions of the lower boundary. Finally, as already
mentioned above, the TD equilibrium magnetic field has a dif-
ferent topology than the corresponding potential magnetic field
calculated from the Bz component of the magnetic field on the
lower boundary. This is not the case for the standard LL cases
usually used for testing nonlinear force-free extrapolation codes.

3. Method

Force-free coronal magnetic fields have to obey the equations

(∇ × B) × B = 0, (1)

∇ · B = 0. (2)

We solve these equations with the help of an optimization prin-
ciple, as proposed by Wheatland et al. (2000) and generalized by
Wiegelmann & Inhester (2003). We define the functional

L =
∫

V
w(x, y, z)

[
B−2 |(∇ × B) × B|2 + |∇ · B|2

]
d3x, (3)

where w(x, y, z) is a weighting function. It is obvious that (for
w > 0) the force-free Eqs. (1)−(2) are fulfilled when L equals
zero. We compute the magnetic field in a box with nx = 150,
ny = 250 and nz = 100 points. The numerical method works
as follows. As an initial configuration we compute a potential
magnetic field in the whole box with the help of a Green’s func-
tion method as described in Aly (1989). The next step is slightly
different for the two cases.

– Case I: we impose the exact TD magnetic field vector on
all six boundaries of the computational box. The weighting
function is w = 1 in the entire box.

– Case II: we impose the exact TD magnetic field vector only
on the bottom boundary (photosphere). The boundary condi-
tions on the lateral and top boundaries of the computational
box are given by the initial potential field. The weighting
function is w = 1 in the center 118 × 218 × 84 region and
drops to 0 with a cosine profile in a 16-pixel boundary layer
towards the lateral and top boundaries of the computational
box.

In both cases we iterate for the magnetic field inside the compu-
tational box by minimizing Eq. (3). The program is written in C
and has been parallelized with OpenMP. The computations have
been done on 8 Procs. The details of the current implementation
of our code are described in Wiegelmann (2004).
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Table 2. Figures of merit for the comparison of our reconstruction with the original TD equilibrium. See Sect. 4 for details. The diagnostic was
done on the center 118× 218× 84 grid and a boundary layer of 16 points towards the lateral and top boundaries of the computational box has been
omitted.

Model Linner L1 inner L2 inner ‖ ∇ · B ‖∞ ‖ j × B ‖∞ Cvec CCS E
′
N E

′
M ε εP It. Steps comp. Time

T & D 0.015 0.013 0.002 3.13 5.54 1 1 1 1 1 2.36 – –
Potential 0.26 5.5 × 10−8 0.26 11.89 0.076 0.82 0.82 0.39 0.35 0.42 1 – 22 min
Case I 0.0016 0.0012 0.0004 1.92 2.36 0.9996 0.9998 0.99 0.99 0.999 2.36 22 180 6 h 37 min
Case II 0.37 0.34 0.02 2.88 10.48 0.96 0.94 0.66 0.58 0.66 1.56 5330 1 h 35 min

Fig. 1. We compare the magnetic field
structure of the original Titov Demoulin
equilibrium (Titov Demoulin) with a po-
tential field extrapolation (Potential), a
non-linear force-free extrapolation with
all six boundary surfaces prescribed
(Case I) and a non-linear force-free ex-
trapolation which uses only the photo-
spheric magnetic field data (Case II). The
panels show the center 118 × 218 × 84 re-
gion of the original 150 × 250 × 100. The
colour coding shows the magnetic field
strength on the photosphere. We used the
same start points for the magnetic field
line computation in the positive (yellow)
magnetic field region on the photosphere
in all panels.

4. Figures of merit

To assess the quality of our reconstruction we introduce several
figures of merit in Table 2. The first column of the table gives the
name of model, column two contains the integral L = L1+L2 de-
fined in Eq. (3), the third column L1 shows how good the force-
free condition (first term of the integral in Eq. (3)) is fulfilled
and the forth column L2 corresponds to the solenoidal condition
(second term of the integral in Eq. (3)). L, L1 and L2 are calcu-
lated with the magnetic field normalized by the average magnetic
field strength on the photosphere and the length scale normal-
ized by the average box length. We emphasize, however, that we
restrict the integration domain to the inner part of the computa-
tional box, excluding the boundary layer in which w(x, y, z) � 1.
Thus strictly speaking the diagnostic quantities differ from the
integrals given in Eq. (3). We therefore call them Linner, L1 inner
and L2inner. Columns five to eleven contain quantitative mea-
sures on how good the reconstructed solution agrees with the
original Titov & Demoulin equilibrium. These figures of merit
have been introduced by Schrijver et al. (2006) to compare the
results of six different extrapolation codes (including the code
used here) with the Low & Lou solution. In a coordinated study
Amari et al. (2006) used the same figures of merit to compare
the reconstruction of two Grad-Rubin codes also with the Low
& Lou solution. These figures quantify the agreement between
vector fields B (Titov & Demoulin equilibrium) and b (recon-
structed fields). We use exactly the same definitions as given in

Sect. 4 of Schrijver et al. (2006), in order to allow also an com-
parison of how well our code reconstructs the Low & Lou solu-
tion (see Tables I and II in Schrijver et al. 2006) and the Titov &
Demoulin solution (Table 2 here).

Column five contains the L∞ norm of the divergence of the
magnetic field

‖ ∇ · B ‖∞= sup
x∈V
|∇ · B|. (4)

Column six contains the L∞ norm of the Lorentz force of the
magnetic field

‖ j × B ‖∞= sup
x∈V
| j × B|. (5)

Column seven contains the vector correlation

Cvec =
∑

i

Bi · bi/

⎛⎜⎜⎜⎜⎜⎝
∑

i

|Bi|2
∑

i

|bi|2
⎞⎟⎟⎟⎟⎟⎠

1/2

, (6)

Col. eight the Cauchy-Schwarz inequality

CCS =
1
N

∑
i

Bi · bi

|Bi||bi| , (7)

where N is the number of vectors in the field. The normalized
vector error is defined as

EN =
∑

i

|bi − Bi|/
∑

i

|Bi|, (8)
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Fig. 2. The TD equilibrium has a current ring surrounded by poten-
tial field. Being force-free this means that there is a semi-circular flux
rope in correspondence of the current ring. Here we check how good
the extrapolated final topology reproduces that. We plot two sets of
6 field lines, each set defining a flux tube. The field lines start from
6 equally spaced points on two circles of radius 0.1, each centered at
one of the intersections of the current ring axis with the magnetogram
(x = z = 0, y = ±yfoot). The aim of such a plot is to visualize the flux
rope that sustains the current ring in TD. In the original TD field the two
flux tubes overlap completely: one ends where the other starts. Case I
confirms that the extrapolation using the information on all six bound-
aries recovers the flux rope to an excellent degree of accuracy. However,
when only one boundary is used for the extrapolation the two flux tubes
do not coincide (Case II).

Titov Demoulin Case I

Case II

and the mean vector error as

EM =
1
N

∑
i |bi − Bi |∑

i |Bi| · (9)

Columns nine and ten contain E
′
N = 1 − EN and E

′
M = 1 −

EM, respectively. In column eleven we show the total magnetic
energy of the reconstructed field normalized with the energy of
the input field

ε =

∑
i |bi|2∑
i |Bi|2 · (10)

The two vector fields agree perfectly if the figures of merit
(Cvec,CCS, E

′
N, E

′
M, ε) are unity. In the twelves column we list εP

which is the magnetic energy normalized by the energy of the
corresponding potential field. Column thirteen contains the num-
ber of iteration steps until convergence and column fourteen the
computing time on 8 processors.

5. Results

In Fig. 1 we compare the original TD equilibrium with a po-
tential field extrapolation (Potential), a non-linear force-free ex-
trapolation with all six boundaries prescribed (Case I) and a non-
linear force free extrapolation where only the bottom boundary

has been prescribed (Case II). The potential field does obviously
not agree with the original. Case I shows a very good agreement
with the original. Case II reconstructs the magnetic field approx-
imately. Deviations of the magnetic field lines between Case II
and the original are visible, in particular for field lines emerging
in the nonlinear force-free region of the bottom boundary.

The visible inspection of Fig. 1 is supported by the figures of
merit in Table 2. The figures of merit (Cols. 7−11) are for Case I
better than 1% for all figures, mostly even better than 0.1%.
The integral force and divergence free conditions (Cols. 1−3)
are even one order of magnitude better than the discretization
error of the exact solution. The L∞ norms (Cols. 4 and 5) are of
the same order of magnitude as the the discretization error.

The reason is that the optimization code minimizes L with
respect to the numerical grid. For Case II, on the contrary, L is
one order of magnitude higher than the discretization error of the
exact solution. The reason is that for Case II an inconsistency
exists between the bottom boundary and the other boundaries,
where the initial potential field is kept. Correspondingly, the fig-
ures of merit are less good than in Case I.

The lateral and upper boundaries try to feed information
about the original potential field into the solution, and because
the potential field has a different topology, the flux rope of the
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TD equilibrium is not correctly reproduced in Case II. Figure 2
shows that the field lines calculated from start points lying on
symmetric circles at the footpoints of the flux rope do outline a
single flux rope only in Case I, but outline two flux ropes that
separate with height in Case II.

6. Conclusions

We used the TD equilibrium to test a non-linear force-free
optimization code. In Case I we prescribed all six boundaries
of the computational box and in Case II only the bottom
boundary. For Case I we get an almost perfect agreement with
the original, and for Case II also a reasonable agreement. Case I
is the real performance test of the code, because only if the
correct boundary conditions on all boundaries are prescribed
we have exactly the same physical problem and can expect
to find the exact solution. For the reconstruction of magnetic
fields from observed vector magnetograms the results of Case II
are more important, however, because for real active regions
the lateral boundaries are unknown. Let us also remark that
the figures of merit here are comparable with the figures
of merit in the LL case (Table 1 rows b) in Schrijver et al.
(2006). For Cases II the results for TD are slightly worse for
L, L1,Cvec, E

′
N and somewhat better for L2,CCS, E

′
M compared

with the LL case. The reconstructed magnetic energy in the
TD case discussed here is not as accurate (only for Case II) as
for the LL case. One has to consider, however, that the magnetic
energy of the corresponding LL field (Case II in Schrijver
et al. 2006) is only 1.10 times the potential field, where the
TD equilibrium has a magnetic energy which is 2.36 higher
than the potential field. The magnetic field strength on the
photosphere for the LL field becomes very low close to the
lateral boundaries, which is not the case for TD. Despite
these difficulties, our code reconstructed the magnetic field
topology approximately correct, even if the lateral boundaries
are unknown. Current vectormagnetograms often have a lim-
ited field of view and consequently also significant magnetic
flux close to the lateral boundaries. A comparison of direct
measurements of chromospheric magnetic loops by Solanki
et al. (2003) with a non-linear force-free extrapolation from a
photospheric vectormagnetogram with a limited field of view in

Wiegelmann et al. (2005) showed a reasonable agreement,
except for loops close to boundaries of the magnetogram.
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