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Abstract. We compare magnetic field extrapolations from a photospheric magnetogram with the observationally inferred struc-
ture of magnetic loops in a newly developed active region. This is the first time that the reconstructed 3D-topology of the
magnetic field is available to test the extrapolations. We compare the observations with potential fields, linear force-free fields
and non-linear force-free fields. This comparison reveals that a potential field extrapolation is not suitable for a reconstruction
of the magnetic field in this young, developing active region. The inclusion of field-line-parallel electric currents, the so called
force-free approach, gives much better results. Furthermore, a non-linear force-free computation reproduces the observations
better than the linear force-free approximation, although no free parameters are available in the former case.
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1. Introduction

Due to the low plasma β the magnetic field is the dominat-
ing quantity in the low solar corona. Thus, the 3-D magnetic
field structure is of basic importance for physical processes
in the solar atmosphere, such as flares, coronal mass ejections
and X-ray jets. Direct observations of chromospheric and coro-
nal magnetic fields are difficult, but significant progress has
been made within the last few years, e.g. Lee et al. (1999);
Lin et al. (2000); Kundu et al. (2001); White (2002); Raouafi
et al. (2002); Solanki et al. (2003); Lagg et al. (2004); Lin
et al. (2004). Here we compare magnetic loops reconstructed
from magnetic field measurements by Solanki et al. (2003)
with magnetic fields extrapolated from a photospheric magne-
togram. The measured fields allow a much more sensitive test
of extrapolations than other observations.

2. Measurements of magnetic fields in the upper
chromosphere

The inference of the magnetic vector is based on an inver-
sion technique applied to spectropolarimetric data of the pho-
tospheric Si I line at 1082.7 nm and the chromospheric He I
1083 nm triplet. The data were recorded with the Tenerife
Infrared Polarimeter mounted on the German Vacuum Tower
Telescope (VTT). The spatial resolution of the data was lim-
ited by seeing to 1.5′′.

The photospheric magnetic vector map was obtained by ap-
plying the inversion code SPINOR to the Si I Stokes profiles
(Frutiger et al. 2000). The He I triplet provided the maps of
the chromospheric vector magnetic field. This triplet, which

has a complex non-LTE line formation (Avrett et al. 1994) but
is nearly optically thin (Giovanelli & Hall 1977), was anal-
ysed by applying the Unno-Rachkowsky solution (Unno 1956;
Rachkowsky 1967) to describe the individual Zeeman compo-
nents of each member of the triplet, together with a simple im-
plementation of the Hanle effect based on recent developments.
These have convincingly demonstrated that the Hanle effect in
forward scattering close to the solar disk center creates measur-
able linear polarization in spectral lines (Trujillo Bueno et al.
2002).

The inclination and azimuthal angle from the chromo-
spheric magnetic field map was used to trace magnetic field
lines. We identified field lines as magnetic loops if the follow-
ing criteria were fulfilled: the magnetic field strength must de-
crease with height, the inclination and azimuthal angles must
not vary strongly from one pixel to the other and the height of
the two footpoints must be similar. For a more detailed descrip-
tion of the observations and the analysis technique we refer to
Lagg et al. (2004) and Solanki et al. (2003).

We are aware of the assumptions and approximations which
enter the magnetic field reconstruction from the polarimetric
observations: the Milne-Eddington approach neglects vertical
gradients and the simple implementation of the Hanle-effect
restricts the reliable determination of the azimuthal angle to
regions where the magnetic field is strongly inclined to the
line of sight. Furthermore this method neglects the changes in
the polarization signal caused by the incomplete Paschen-Back
splitting (Socas-Navarro et al. 2004). From a preliminary com-
parison of the obtained Hα slit jaw images and the inferred
magnetic loops we are confident that the retrieved magnetic
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field topology is close to the real situation. In the following
we use the term “observed loops” to name the loops inferred
under these assumptions and to distinguish them from loops
computed with the help of extrapolations from a photospheric
magnetogram.

3. Computation of 3D magnetic fields
from photospheric magnetic field
measurements

A number of authors have modelled the coronal magnetic
field by extrapolating from photospheric magnetic field ob-
servations. It is generally assumed that the magnetic pres-
sure in the corona is much higher than the plasma pres-
sure (small plasma β) and that therefore the magnetic field
is nearly force-free. The extrapolation methods based on this
assumption include potential field extrapolation (e.g. Semel
1967), linear force-free field extrapolation (e.g. Chiu & Hilton
1977; Seehafer 1978, 1982; Semel 1988) and nonlinear force-
free field extrapolation (e.g. Sakurai 1981; Roumeliotis 1996;
Amari et al. 1997, 1999; Wheatland et al. 2000; Wiegelmann
2004). Force-free magnetic fields have to obey the equations

(∇ × B) × B = 0, (1)

∇ · B = 0, (2)

which are equivalent to

(∇ × B) = αB, (3)

B · ∇α = 0. (4)

In general α is a function of space. Taking this into account cor-
responds to the non-linear force-free approach. A popular sim-
plification is to choose α = constant in the entire computational
domain, the linear force-free approach. The choice α = 0 cor-
responds to current-free potential fields. In this paper we com-
pute potential fields, linear force-free and non-linear force-free
fields and compare the result with the magnetic loops recon-
structed from the observations.

3.1. Potential and linear force-free fields.

We use the method of Seehafer (1978) for calculating the lin-
ear force-free field. The method requires a line-of-sight mag-
netogram and contains a free scalar parameter α, where α = 0
corresponds to potential fields. The method gives the compo-
nents of the magnetic field in terms of a Fourier series. The
observed magnetogram which covers a rectangular region ex-
tending from 0 to Lx in x and 0 to Ly in y is artificially ex-
tended onto a rectangular region covering −Lx to Lx and −Ly
to Ly by taking an antisymmetric mirror image of the original
magnetogram in the extended region, i.e. Bz(−x, y) = −Bz(x, y)
and Bz(x,−y) = −Bz(x, y). The advantage of taking the anti-
symmetric extension of the original magnetogram is that the
extended magnetogram is automatically flux balanced. We use
a Fast Fourier Transformation (FFT) scheme to determine the
coefficients of the Fourier series. α has the dimension of an
inverse length. As a characteristic length scale we choose the
harmonic mean L of Lx and Ly. (See Seehafer 1978, for details.)

3.2. Non-linear force-free fields.

We solve Eqs. (1) and (2) by means of an optimization principle
(Wheatland et al. 2000; Wiegelmann 2004):

L =
∫

V
w(x, y, z)

[
B−2 |(∇ × B) × B|2 + |∇ · B|2

]
d3x, (5)

where w(x, y, z) is a weighting function. It is obvious that (for
w > 0) the force-free Eqs. (1)–(2) are fulfilled when L equals
zero. We compute the magnetic field in a box with nx = 95,
ny = 68 and nz = 40 points. The numerical method works
as follows. As an initial configuration we compute a potential
magnetic field in the whole box with the help of the Seehafer
(1978) method. As the next step we use photospheric vector
magnetic field data to prescribe the bottom boundary (photo-
sphere) of the computational box. On the lateral and top bound-
aries the field is chosen from the potential field above. We it-
erate for the magnetic field inside the computational box by
minimizing Eq. (5). The weighting function w equals 1 every-
where in the computational box except in a boundary layer of
10 points towards the lateral and top boundary of the compu-
tational box, where w decreases smoothly to 0 with a cosine
function. The boundary layer diminishes the influence of the
lateral and top boundary conditions onto the magnetic field in
the box. (See Wiegelmann 2004, for details.)

4. Results

To compare the reconstructed magnetic field with the observed
magnetic loops we compute magnetic field lines from the re-
constructed fields using a fourth order Runge-Kutta field-line
tracer. The field-line tracer starts the integration at any arbi-
trary point in space and traces the magnetic field in the +B
and −B direction until the photosphere is reached in both di-
rections. As a measure of how well the magnetic field lines and
the observed loops agree, we compute the spatial distance of
the two curves in 3D integrated along the whole loop length l
from τ = 0 to τ = l. As a result we get a dimensionless number

C = 1
l2

∫ l

0

√(
robs(τ) − rextrapol(τ)

)2
dτ, where τ is the geometri-

cal length measured along the loop and C = 0 if both curves
coincide. This comparison method has been previously used
by Wiegelmann & Neukirch (2002) to compare magnetic field
lines with stereoscopically observed loops.

We start the field line integration at 20 points each chosen
to lie along an observed field line robs(τ) and compute 20 corre-
sponding field lines. We compare the shapes of these computed
field lines (loops) with the observed field line and compute the
quantitative measure C. The lowest value of C corresponds to
the optimal computed magnetic field line. For potential fields
and non-linear force-free fields the choice of the starting point
is the only free parameter and finding the optimal field line
is a one-dimensional minimization problem. Linear force-free
fields have the free parameter α and computing the optimal
linear force-free field line is a two-dimensional minimization
problem with respect to α and the integration starting point.

Fourteen representative loops are shown in Fig. 1 with ob-
served, potential, linear and non-linear force-free loops being
plotted from top to bottom. This figure shows that force-free
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Fig. 1. Observed and extrapolated fields. The left panels show the field lines in 3D and the right panels projections on the photosphere. The
photospheric LOS field is represented by colour-coding. Top panels: original observed loops. We show 14 out of a total of 39 loops studied
here. Second row: potential field extrapolation. Third row: linear force-free field extrapolation with α · L = 3.0. Fourth: non-linear force-free
field extrapolation. The fifth row shows one loop. (Black: original, white: potential field, orange: linear force-free field with α · L = 3.0, yellow:
non-linear force-free field.)
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Fig. 2. Correspondence of extrapolated loops and measured loops
for all 39 observed loops. The panels a)–c) show distributions over
C for potential, linear and non-linear force-free fields, respectively.
Panel d) shows the value for all loops. The rhombi correspond to a
potential field reconstruction, the stars to the optimal linear force-free
reconstruction and the triangles to a non-linear force-free reconstruc-
tion. (See also Table 1 for the C-values of the individual loops.)

extrapolations are superior to potential fields, with non-linear
force-free being apparently the closest to the observations. A
more quantitative measure is provided by the C values, which
are given for all 39 observed loops in Fig. 2 and Table 1. The
lower the value of C the better the reconstructed loops agree
with the observed loops. A value of C ≤ 0.35 seems to be
acceptable.

We find that the simplest magnetic field model, potential
fields (second row in Figs. 1 and 2a), provides no agreement
with any observed loop (top row in Fig. 1) within the C ≤ 0.35
limit.

The inclusion of electric currents, in lowest order with
the linear force-free approximation (Fig. 2b) provides bet-
ter results, and for 35% of the observed loops we get satis-
fying agreement with the observations. One has to keep in
mind, however, that a consistent linear force-free reconstruc-
tion requires a unique value of α in the entire considered vol-
ume. Most of the loops have an optimum value of αL in the
range 3−4 and the quality criterion C only changes slightly
within this range, so that a unique value of α in this range does
not give significantly worse results than the optimal value of α.
The linear force-free fields in Fig. 1, third row have been com-
puted with αL = 3.

The most involved model used here, the non-linear force-
free approach (fourth row in Figs. 1 and 2c), gives even better
results than the linear force free approach. We get a suitable
agreement with the observed loops for 64% of the loops within
the C ≤ 0.35 limit. Let us remark that all observed loops which
cannot be reconstructed with this model have at least one foot
point close to the boundary of the available vector magnetic
field data (see Fig. 3).

Table 1. The first column corresponds to an arbitrary loop number of
the observed loops, the second column compares the measured loops
with a potential field extrapolation. Columns 3 and 4 compare the ob-
served loops with linear force-free fields and αL = 3 and αL = 4,
respectively. The fifth column contains the optimal linear force-free
parameter αL and the sixth column the comparison with the observed
loops for this optimal value. In the last column we compare the obser-
vations with non-linear force-free reconstructed magnetic loops.

No. Cpot Clin Clin αopt Clin Cnonlin

αL = 3 αL = 4 αopt

0 1.69 1.40 1.06 4.2 1.04 1.60
1 1.13 0.83 0.86 2.6 0.79 0.86
2 0.48 0.30 0.28 3.5 0.27 0.15
3 0.57 0.34 0.31 3.7 0.30 0.14
4 0.75 0.64 0.65 3.2 0.63 0.65
5 0.80 0.52 0.45 3.8 0.45 0.19
6 0.69 0.37 0.31 4.1 0.30 0.17
7 0.90 0.56 0.43 4.3 0.40 0.12
8 0.58 0.35 0.30 3.8 0.29 0.14
9 1.90 1.57 1.39 4.2 1.05 1.38

10 0.68 0.44 0.51 3.0 0.44 0.59
11 0.43 0.26 0.29 2.9 0.25 0.25
12 0.98 0.56 0.73 3.5 0.52 1.01
13 0.89 0.86 0.87 3.5 0.85 0.95
14 1.12 0.66 0.53 3.7 0.52 0.26
15 1.05 0.63 0.49 4.0 0.49 0.20
16 0.66 0.35 0.29 4.1 0.29 0.15
17 0.43 0.27 0.28 3.0 0.27 0.21
18 0.41 0.26 0.26 3.3 0.25 0.16
19 0.48 0.30 0.30 3.3 0.28 0.16
20 0.67 0.35 0.31 4.4 0.29 0.19
21 0.49 0.34 0.30 3.6 0.29 0.20
22 0.74 0.53 0.42 4.4 0.42 0.18
23 0.45 0.31 0.28 3.3 0.27 0.34
24 0.48 0.35 0.31 3.4 0.31 0.29
25 0.52 0.38 0.36 4.2 0.34 0.20
26 0.52 0.38 0.34 4.0 0.34 0.26
27 0.58 0.40 0.48 2.6 0.37 0.24
28 0.66 0.45 0.57 2.5 0.39 0.23
29 0.81 0.61 0.84 2.8 0.60 0.82
30 1.01 0.68 1.25 3.2 0.67 1.40
31 1.44 0.98 0.80 3.6 0.63 2.73
32 1.33 0.70 0.79 3.0 0.70 0.72
33 1.30 0.71 0.71 3.2 0.64 0.53
34 1.25 0.72 0.60 3.4 0.57 0.34
35 1.02 0.64 0.49 4.0 0.49 0.20
36 1.94 1.66 1.32 4.2 1.30 1.57
37 0.79 0.48 0.37 4.0 0.37 0.28
38 1.11 1.27 1.30 −0.2 1.11 1.50

5. Conclusions

We have compared the observationally inferred structure of
magnetic loops in the upper chromosphere with magnetic fields
extrapolated from photospheric measurements. We find that the
simplest model, potential fields, is not sufficient to reproduce
the observations. The inclusion of field-line-parallel currents,
the so called force-free approach, gives much better results.
Among force-free models, a linear one gives less accurate
results than the non-linear force-free extrapolation.
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Fig. 3. A projection of all observed loops on the photosphere. We can
reconstruct the white loops with the help of a non-linear force-free
field extrapolation with an accuracy of C < 0.35. The black loops
cannot be reconstructed with adequate accuracy.

We find that the observed and extrapolated loops agree
quite well for almost 2/3 of the loops, while the remaining
1/3 might suffer from the limited field of view of the available
vector magnetogram.

The investigated active region is quite young. With a ver-
tical upflow speed of v = 1.5+−0.5 km s−1 at the loop apex and
a maximum loop height of 10 Mm we can estimate the time
elapsed since the loop tops first emerged as 2h+−40 min assum-
ing a constant rise speed. A horizontal shear flow of 1 km s−1

on the photosphere would give a shear of 7.2 Mm. This value is
comparable to the difference of the footpoint locations between
potential field loops and observed loops. It is therefore not clear
whether the electric current has been caused by shear flow mo-
tion or if the magnetic loops already contain the current during
their emergence. The rise of the loops may also explain some
of the discrepancy between observed and extrapolated loops,
since the loops may change somewhat during the time needed
for the instrument to scan the region.
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