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Abstract. Magnetic reconnection is an important process in
many space plasmas (e.g. geomagnetic substorms, coronal
mass ejections). The large scale structure of these phenom-
ena is usually described within MHD. Reconnection requires
a non ideal region (resistivity) in the plasma. The cause of
a non ideal behaviour in localized regions could for exam-
ple be anomalous resistivity in thin current sheets. The for-
mation of these thin current sheets can be understand within
the framework of MHD. The further evolution of the current
sheets cannot be investigated with MHD, because the sheet
width becomes comparable with kinetic scales like the ion
gyro radius and kinetic effects have to be taken into account.
For many space plasmas, the kinetic processes are collision-
less and can thus be described by the Vlasov equation. A
code to solve the Vlasov equation has been developed and
we report first results obtained with the code. To test the
accuracy and limits of our code we carry out several consis-
tency checks, which can be compared with analytic results,
in particular phase mixing and Landau damping. We also ap-
ply our Vlasov code to collisionless magnetic reconnection in
the magnetospheric plasma sheet and at the magnetopause.

1 Introduction

Magnetic reconnection caused by thin current sheets plays
an important role for the dynamics of many space plasma.
Thin current sheets occur for example at the magnetopause
and prior to a substorm in the magnetospheric plasma sheet.

The paper is organized as follows. In Sect. 2 we present
time-dependent solutions of the force free Vlasov equation,
where an initial inhomogenity is damped by phase mixing.
In Sect. 3 we compare the analytic and numeric results for
Landau damping. In Sect. 4 we apply our Vlasov code to
null-helicity and co-helicity reconnection.

We use the following symbols for electron thermal ve-
locity vTe =

√
kBTe/Me , electron plasma frequency
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Ωpe =
√

4πnq2
e/Me and electron Debye lengthΛDe

=
√

kBTe/(4πnq2
e). Useful abbreviations area =

Me/(2 kB Te) = 1/(2 v2
Te), k1 = 2πk/L, c1 =√

Me/(2πkBTe).

2 Phase mixing

As a first step we investigate the one-one-dimensional (in
configuration space and velocity space,f = f(x, v, t) ) force
free Vlasov equation.

∂f

∂t
+ v · ∂f

∂x
= 0

We find the exact solution of this equation with help of the
method of characteristics as:

f(x, v, t) = f(x− v t, v, 0)

As initial distribution we choose a homogeneous, isothermal
Maxwellian distribution with a periodic perturbation:

f(x, v, 0) = c1 · [n0 + ε1 · sin(k1x)] · exp(−av2)

which leads us to the time dependent solution

f(x, v, t) = c1 · [n0 + ε1 · sin(k1(x− v t))] · exp(−av2)

(Figure 4 shows the comparison of the exact solution with
numeric solutions.) The particle density(n =

∫∞
−∞ fdv) is

given by:

n(x, t) = c1

√
π

a
·
[
n0 + ε1 exp

(
−k2

1 t2

4 a

)
sin(k1x)

]
where the integration over the velocity space has been carried
out from−∞ to∞. In a numerical code, with a finite extent
of the numerical box in the velocity space this is not possi-
ble and one has a finite velocity space (usual several thermal
velocities). Ifvmax is normalized by thermal velocities the
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Fig. 1. Time evolution of the density perturbation amplitude. Upper
panel shows the amplitude forvmax = ∞ (solid line), vmax =
3 vTe (dashed line) andvmax = 1 vTe (dashdotted line). The lower
panel shows the logarithm of the amplitude forvmax = ∞ (solid
line) andvmax = 10 vTe (dashdotted line).

term exp
(
−k2

1 t2/(4 a)
)

in the previous formula has to be
replaced by:(

Erf(
−i k1 t+

√
2 a
√

vmax
a

2
√

a
) + iErfi(

k1 t−i
√

2 a
√

vmax
a

2
√

a
)
)

2 e
k12 t2

4 a

While the exact theory (infinite velocity space) predicts
an exponential (witht2) decreasing of inhomogenities due to
phase mixing, a finite velocity space leads to an additional
oscillatory part in the density evolution. Figure 1 shows the
analytic solutions for the time evolution of the density per-
turbation amplitude for several velocity space size and Fig.
2 the corresponding numerical solutions with different size
and resolution of the phase space.

3 Landau damping

Here we integrate the electron Vlasov equation and use the
ions as background to investigate electrostatic phenomena.
An electrostatic perturbation in a cold plasma oscillates with

Fig. 2. Evolution of the phase space for a force free plasma. (only
perturbation, background removed). The upper panel corresponds
to the initial distribution and the lower panel aftert ·Ωpi = 10 after
phase mixing has occurred.

the plasma frequencyΩr = Ωpe. In a warm plasma the Lang-
muir oscillations are weakly damped due to Landau damp-
ing φ(x, t) = φ1 exp[i (k x − Ωr t)] exp(Ωi t). We get the
simplified dispersion relation (Krall and Trivelpiece, 1986;
Spatschek, 1990)

Ωr = Ωpe

(
1 + 1.5k2Λ2

De

)
Ωi = −

√
π

8
Ωpe

|k3 Λ3
De|

exp
(
−

(
1

2 k2 Λ2
De

+ 1.5
))

Please note that this simplified form is only valid for
Ωr/(k vTe) � 1, kΛDe � 1, Ωi/Ωr � 1 andL � 1/k.
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Fig. 3. Damping of inhomogenities by phase mixing. The solid line
corresponds to the exact solution, the dotted lines to numerical solu-
tions with−3vTe ≤ v ≤ 3vTe (nv = 20, 40, 80 respectively) and
the dashed lines to numerical solutions with−10vTe ≤ v ≤ 10vTe

(nv = 66, 132, 264 respectively). The lowest lines correspond to
the highest velocity space resolution.

In Fig. 5 we compare these analytic results with numeric
solutions. The solid lines correspond to the amplitude de-
rived from our Vlasov code. (L = 100ΛDe, vmax = 10vTe,
nv = 132, nx = 400, k = 6, ε = 0.01)

The differences (error of5− 10%) in the analytic and nu-
meric solutions are due to the fact that the limits for the va-
lidity of the analytic theory are fulfilled only very roughly.

1
kL kΛDe

Ωr

k vT e
Ωr Ωr Ωi Ωi

num theo num theo

3 0.19 5.3 0.95 1.05 ≈ 0 −10−5

6 0.38 2.7 1.10 1.19 −0.110 −0.08
8 0.50 2.0 1.25 1.32 −0.17 −0.15

4 Null-helicity and co-helicity reconnection

The local structure of the reconnecting plasma is described
with Harris sheet like current sheet. The pure Harris sheet

Fig. 4. Comparison of analytic and numeric solution for force
free phase mixing. We plotln(

∑
x

∑
v
|fanalytic− fnumeric|)

for different resolution and size of the velocity space (dotted line
vmax = 3 vTe, nv = 20, dashed linevmax = 3 vTe, nv = 80,
solid linevmax = 10 vTe, nv = 66.

corresponds to a shear angle of reconnecting field lines of
180◦ and corresponds to reconnection at a neural line (B =
0 reconnection, null-helicity reconnection). While a shear
of exactly 180◦ is only a very special case, in general the
angle between reconnecting field lines may be different to
this strictly anti-parallel case. This more general case leads
to magnetic reconnection at a magnetic field line (B 6= 0
reconnection, co-helicity reconnection).

Null-helicity reconnection (orB = 0 reconnection) oc-
curs at a magnetic neutral line. In thin current sheets ki-
netic effects are important, because the limits of MHD break
down. One important purely kinetic effect is the evolution
of a perpendicular magnetic field. Due to the different mass
of electrons and ions the mobility is different. Consequently
the particle flux of ions and electrons out of the reconnection
zone (X-point) is different. The ions are streaming mainly
parallel to thex-axis, but the electrons along the separatri-
ces of the magnetic field. The different particle flows cause
Hall currents in the wings of the reconnected magnetic field
around the X-point. Each of these currents in thexz-plane
naturally causes a magnetic fieldBy perpendicular to the re-
connection plane. Due to the orientation of the Hall currents
the perpendicular magnetic fieldBy exhibits a quadrupolar
structure. The quadrupolar structure ofBy causes a disortion
of the reconnected magnetic field lines (see Wiegelmann and
Büchner, 2001a, for details).

Co-helicity reconnection (orB 6= 0 reconnection) occurs
at a magnetic field line. Due to the existence of a magnetic
field at the reconnection line the mobility of the electrons
becomes reduced because the accelerated electrons become
magnetized in the perpendicular magnetic fieldBy. The ac-
celerated electrons are trapped in this field and gyrate around
theBy direction. Thus the perpendicular magnetic field re-
duces the mobility of the electrons. Consequently the Hall
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Fig. 5. Landau damping for different wavelength. The solid lines
correspond to our numerical solutions and the dotted lines to the
analytic solution.

currents, which occur inB = 0 reconnection, do not occur
for B 6= 0 reconnection. One observes ring currents around
the O-lines carried by the electrons. Due to these ring cur-
rents the magnetic fieldBy(x, z) becomes enhanced around
the O-lines. This reconnected magnetic field gets a helical
structure (see Wiegelmann and Büchner, 2001b, for details).

5 Conclusions

In this paper we presented tests and limits of Vlasov code
simulations. Our results show that a finite velocity space
leads to a less effective phase mixing, a process which is
important for collisionless dissipation in plasmas and other
collisionless multi particle systems. For a phase space limit
of 3vTe the error compared with exact theory is of the order
of 10−2 and for10vTe of 10−4 which seems to be reason-
able for most purposes. Due to the huge increase in required
computer resources for5D or 6D Vlasov code simulation
one will, however, often have content with the error of10−2

caused by the lower velocity space limits.
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