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Abstract. Magnetic reconnection is an important process in2,. = +/47ng¢2/M. and electron Debye lengtih .

many space plasmas (e.g. geomagnetic substorms, coronal \/m_ Useful abbreviations ares =
mass ejections). The large scale structure of these phenony/, /(2 kg T.) = 1/(2v2.), ki = 27k/L, ¢ =

ena is usually described within MHD. Reconnection requires\/m_

a non ideal region (resistivity) in the plasma. The cause of

a non ideal behaviour in localized regions could for exam-

ple be anomalous resistivity in thin current sheets. The for-2  pPhase mixing

mation of these thin current sheets can be understand within

the framework of MHD. The further evolution of the current As a first step we investigate the one-one-dimensional (in
sheets cannot be investigated with MHD, because the sheebnfiguration space and velocity spages f(z,v,t) ) force
width becomes comparable with kinetic scales like the ionfree Vlasov equation.

gyro radius and kinetic effects have to be taken into account.

For many space plasmas, the kinetic processes are collision./ ) of -0

less and can thus be described by the Vlasov equation. A0t ox

code to solye the Viasov equation has been developed an\%e find the exact solution of this equation with help of the
we report flrst.re_sults obtained with the code. To test themethod of characteristics as:

accuracy and limits of our code we carry out several consis-

tency checks, which can be compared with analytic resultsf(x, v,t) = f(z —vt,0,0)

in particular phase mixing and Landau damping. We also ap-

ply our Vlasov code to collisionless magnetic reconnection inAs initial distribution we choose a homogeneous, isothermal
the magnetospheric plasma sheet and at the magnetopausaviaxwellian distribution with a periodic perturbation:

f(z,v,0) = ¢; - [ng + €1 - sin(ky)] - exp(—av?)
1 Introduction which leads us to the time dependent solution

Magnetic reconnection caused by thin current sheets playg(x, v,t) = ¢y - [ng + € - sin(ky(z — v t))] - exp(—av?)

an important role for the dynamics of many space plasma.

Thin current sheets occur for example at the magnetopausg@rigure 4 shows the comparison of the exact solution with

and prior to a substorm in the magnetospheric plasma sheetiumeric solutions.) The particle density = ffooo fdv)is
The paper is organized as follows. In Sect. 2 we presengiven by:

time-dependent solutions of the force free Vlasov equation, 5

where an initial inhomogenity is dgmped by phgse mixing. , . 4) — 01\/?- [no + e exp (_ kit ) sin(klx)}

In Sect. 3 we compare the analytic and numeric results for a 4a

Landau damping. In Sect. 4 we apply our Vlasov code to

null-helicity and co-helicity reconnection.

where the integration over the velocity space has been carried

e s e ollowing symools o lecron thermal ve- 1T 105, 18 e g, e bert

locit = kgT./M. , electron plasma frequenc T ) )
Y Ure sle/Me P g y ble and one has a finite velocity space (usual several thermal

Correspondence tof. Wiegelmann (tw@mcs.st-and.ac.uk) velocities). Ifv,., iS normalized by thermal velocities the
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Fig. 1. Time evolution of the density perturbation amplitude. Upper

panel shows the amplitude fey,.x = oo (solid line), vmax =

3vr. (dashed line) and.x = 1vr. (dashdotted line). The lower

panel shows the logarithm of the amplitude fef.x = oo (solid -5
line) andvmax = 10 vr. (dashdotted line).

termexp (—k7 t/(4 a)) in the previous formula has to be —to bl
replaced by: O 20 40 60 S0 100
=</ Noe
—i k1 t+V/2 a 4/ tmax . kit—iv2a,/tmax
<Erf( 2va ) + 1 Erfi( 2va )> Fig. 2. Evolution of the phase space for a force free plasma. (only
kq2 2 perturbation, background removed). The upper panel corresponds
€ da to the initial distribution and the lower panel afterQ,; = 10 after

While the exact theory (infinite velocity space) predicts phase mixing has occurred.
an exponential (with?) decreasing of inhomogenities due to
phase mixing, a finite velocity space leads to an additional
oscillatory part in the density evolution. Figure 1 shows thethe plasma frequendy,. = (. Inawarm plasma the Lang-
analytic solutions for the time evolution of the density per- Muir oscillations are weakly damped due to Landau damp-

turbation amplitude for several velocity space size and Fig!™Y ¢(x,t) = ¢rexpli(kz — Q. 1)] exp({; ). We get the
2 the corresponding numerical solutions with different suesmphf'ed dispersion relation (Krall and Trivelpiece, 1986;

and resolution of the phase space. Spatschek, 1990)
Q= Qe (14 1.5kA%,,)

3 Landau damping T Q. 1
2 = ‘\/gugsh exp (‘ (M + 1-5))
Here we integrate the electron Vlasov equation and use the De De

ions as background to investigate electrostatic phenomen&@lease note that this simplified form is only valid for
An electrostatic perturbation in a cold plasma oscillates withQ,./ (kvre) > 1, kAp. < 1, Q;/Q. < 1andL > 1/k.
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T ] Fig. 4. Comparison of analytic and numeric solution for force
free phase mixing. We pldn(}_ >/ |fanalytic_ Trnumerid)
_ >k for different resolution and size of the velocity space (dotted line
Umax = 3vTe, nv = 20, dashed liney.x = 3vre, nv = 80,
o solid line vmax = 10 v, nv = 66.
g et
£
= —et corresponds to a shear angle of reconnecting field lines of
180° and corresponds to reconnection at a neural liBe<{
=L 0 reconnection, null-helicity reconnection). While a shear
1 of exactly 180° is only a very special case, in general the
| angle between reconnecting field lines may be different to
! OO T . ~o this strictly anti-parallel case. This more general case leads

O
t Qe to magnetic reconnection at a magnetic field lidg¢ ¢ 0

reconnection, co-helicity reconnection).
Fig. 3. Damping of inhomogenities by phase mixing. The solid line

corresponds to the exact solution, the dotted lines to numerical solu- Null-helicity recpnnectlon (OE =0 _reconnectlon) oc- .
tions with—3vr. < v < 3vre (nv = 20, 40, 80 respectively)and ~ CUrS at a magnetic neutral line. In thin current sheets ki-
e = = e - b )

the dashed lines to numerical solutions WithOvr. < v < 10v7. netic effects are important, because the limits of MHD break
(nv = 66, 132, 264 respectively). The lowest lines correspond to down. One important purely kinetic effect is the evolution
the highest velocity space resolution. of a perpendicular magnetic field. Due to the different mass
of electrons and ions the mobility is different. Consequently
the particle flux of ions and electrons out of the reconnection
In Fig. 5 we compare these analytic results with numericzone (X-point) is different. The ions are streaming mainly
solutions. The solid lines correspond to the amplitude de-parallel to thez-axis, but the electrons along the separatri-
rived from our Vlasov code.l{ = 100A pe, Vmax = 1007, ces of the magnetic field. The different particle flows cause
nv = 132, nx = 400, k = 6,¢ = 0.01) Hall currents in the wings of the reconnected magnetic field
The differences (error df — 10%) in the analytic and nu-  around the X-point. Each of these currents in theplane
meric solutions are due to the fact that the limits for the va-naturally causes a magnetic fieglj, perpendicular to the re-
lidity of the analytic theory are fulfilled only very roughly. ~ connection plane. Due to the orientation of the Hall currents
the perpendicular magnetic field, exhibits a quadrupolar

ﬁ kApe % Q, Q, Q; Q; structure. The quadrupolar structure8)f causes a disortion
“ | hum | theo | num theo of the reconnected magnetic field lines (see Wiegelmann and
3 0.19 5.3 0951 1.05 [ ~0 —10~5 BUChner, 20014, for details).
6 038 | 2.7 1.10 | 1.19 | —0.110 | —0.08 Co-helicity reconnection (aB # 0 reconnection) occurs
8 050 |20 125 1 1321 —0.17 | =0.15 at a magnetic field line. Due to the existence of a magnetic

field at the reconnection line the mobility of the electrons
becomes reduced because the accelerated electrons become
4 Null-helicity and co-helicity reconnection magnetized in the perpendicular magnetic fiBlgl The ac-
celerated electrons are trapped in this field and gyrate around
The local structure of the reconnecting plasma is describedhe B, direction. Thus the perpendicular magnetic field re-
with Harris sheet like current sheet. The pure Harris sheetiuces the mobility of the electrons. Consequently the Hall
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Fig. 5. Landau damping for different wavelength. The solid lines

5 Conclusions

In this paper we presented tests and limits of Vlasov code
simulations. Our results show that a finite velocity space
leads to a less effective phase mixing, a process which is
important for collisionless dissipation in plasmas and other
collisionless multi particle systems. For a phase space limit
of 3vr, the error compared with exact theory is of the order
of 102 and for10vy,. of 10~* which seems to be reason-
able for most purposes. Due to the huge increase in required
computer resources farD or 6D Vlasov code simulation
one will, however, often have content with the erron6f2
caused by the lower velocity space limits.

AcknowledgementsiVe thank Karl Schindler, Gunnar Hornig and
llya Silin for useful discussions. This work was supported by
PPARC.

References

Krall, N. A. and Trivelpiece, A. W., Principles of plasma physics,
San Francisco Press, Inc., 1986.

Spatschek, K.H. Theoretische Plasmaphysik, B. G. Teubner,
Stuttgart 1990.

Wiegelmann, T. and &chner, J., Evolution of magnetic helicity in
the course of kinetic magnetic reconnection, Nonlinear Processes
in Geophysics, in press, 2001a.

Wiegelmann, T. and &chner, J., Evolution of magnetic helicity un-
der kinetic magnetic reconnection, PartBl £ 0 reconnection,
Nonlinear Processes in Geophysics, accepted, 2001b.

correspond to our numerical solutions and the dotted lines to the

analytic solution.

currents, which occur itBB = 0 reconnection, do not occur
for B # 0 reconnection. One observes ring currents around
the O-lines carried by the electrons. Due to these ring cur-
rents the magnetic fiel®, (z, z) becomes enhanced around
the O-lines. This reconnected magnetic field gets a helical
structure (see Wiegelmann andd@hner, 2001b, for details).



