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[1] The coronal magnetic field is an important quantity because the magnetic field
dominates the structure of the solar corona. Unfortunately, direct measurements of coronal
magnetic fields are usually not available. The photospheric magnetic field is
measured routinely with vector magnetographs. These photospheric measurements are
extrapolated into the solar corona. The extrapolated coronal magnetic field depends on
assumptions regarding the coronal plasma, for example, force-freeness. Force-free
means that all nonmagnetic forces like pressure gradients and gravity are neglected. This
approach is well justified in the solar corona owing to the low plasma beta. One has
to take care, however, about ambiguities, noise and nonmagnetic forces in the
photosphere, where the magnetic field vector is measured. Here we review
different numerical methods for a nonlinear force-free coronal magnetic field
extrapolation: Grad-Rubin codes, upward integration method, MHD relaxation,
optimization, and the boundary element approach. We briefly discuss the main features of
the different methods and concentrate mainly on recently developed new codes.
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1. Introduction

1.1. How to Obtain the Coronal Magnetic Field?

[2] Information regarding the coronal magnetic field is
important for space weather application like the onset of
flares and coronal mass ejections (CMEs). Unfortunately,
we usually cannot measure the coronal magnetic field
directly, although recently some progress has been made
[see, e.g., Judge, 1998; Solanki et al., 2003; Lin et al.,
2004]. Because of the optically thin coronal plasma, direct
measurements of the coronal magnetic field have a line-of-
sight integrated character and to derive the accurate 3D
structure of the coronal magnetic field a vector tomographic
inversion is required. Corresponding feasibility studies
based on coronal Zeeman and Hanle effect measurements
have recently been done by Kramar et al. [2006] and
Kramar and Inhester [2006]. These direct measurements
are only available for a few individual cases and usually one
has to extrapolate the coronal magnetic field from photo-
spheric magnetic measurements. To do so, one has to make
assumptions regarding the coronal plasma. It is helpful that
the low solar corona is strongly dominated by the coronal
magnetic field and the magnetic pressure is orders of
magnitude higher than the plasma pressure. The quotient
of plasma pressure p and magnetic pressure, B2/(2 m0) is
small compared to unity (b = 2 m0 p/B

2�1). In lowest-order

nonmagnetic forces like pressure gradient and gravity can
be neglected which leads to the force-free assumption.
Force-free fields are characterized by the equations

j� B ¼ 0; ð1Þ

r � B ¼ m0j; ð2Þ

r � B ¼ 0; ð3Þ

where B is the magnetic field, j the electric current density
and m0 the permeability of vacuum. Equation (1) implies
that for force-free fields the current density and the
magnetic field are parallel, i.e.,

m0j ¼ aB; ð4Þ

or by replacing j with equation (2),

r� B ¼ aB; ð5Þ

where a is called the force-free function. To get some
insights in the structure of the space-dependent function a,
we take the divergence of equation (4) and make use of
equations (2) and (3),

B � ra ¼ 0; ð6Þ

which tells us that the force-free function a is constant on
every field line, but will usually change from one field line
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to another. This generic case is called nonlinear force-free
approach.
[3] Popular simplifications are a = 0 (current free potential

fields [see, e.g., Schmidt, 1964; Semel, 1967; Schatten et al.,
1969; Sakurai, 1982]) and a = constant (linear force-free
approach [see, e.g., Nakagawa and Raadu, 1972; Chiu and
Hilton, 1977; Seehafer, 1978; Alissandrakis, 1981; Seehafer,
1982; Semel, 1988]). These simplified models have been in
particular popular owing to their relative mathematical sim-
plicity and because only line-of-sight photospheric magnetic
field measurements are required. Linear force-free fields still
contain one free global parameter a, which can be derived by
comparing coronal images with projections of magnetic
field lines [e.g., Carcedo et al., 2003]. It is also possible
to derive an averaged value of a from transverse photo-
spheric magnetic field measurements [e.g., Pevtsov et al.,
1994;Wheatland, 1999; Leka and Skumanich, 1999]. Despite
the popularity and frequent use of these simplified models in
the past, there are several limitations in these models (see
below) which ask for considering the more sophisticated
nonlinear force-free approach.
[4] Our aim is to review recent developments of the

extrapolation of nonlinear force-free fields (NLFFF). For
earlier reviews on force-free fields we refer to Sakurai
[1989], Aly [1989], Amari et al. [1997], McClymont et al.
[1997], and chapter 5 of Aschwanden [2005]. Here we will
concentrate mainly on new developments which took place
after these earlier reviews. Our main emphasis is to study
methods which extrapolate the coronal magnetic field from
photospheric vector magnetograms. Several vector magne-
tographs are currently operating or planed for the nearest
future, for example, ground based: the solar flare telescope/
NAOJ [Sakurai et al., 1995], the imaging vector magneto-
graph/MEES Observatory [Mickey et al., 1996], Big Bear
Solar Observatory, Infrared Polarimeter VTT, SOLIS/NSO
[Henney et al., 2006] and space born: Hinode/SOT
[Shimizu, 2004], SDO/HMI [Borrero et al., 2006]. Measure-
ments from these vector magnetograms will provide us
eventually with the magnetic field vector on the photo-
sphere, say Bz0 for the normal and Bx0 and By0 for the
transverse field. Deriving these quantities from the measure-
ments is an involved physical process, which includes
measurements based on the Zeeman and Hanle effect, the
inversion of Stokes profiles [e.g., LaBonte et al., 1999] and
removing the 180 ambiguity [e.g., Metcalf, 1994; Metcalf et
al., 2006] of the horizontal magnetic field component.
Special care has to be taken for vector magnetograph
measurements which are not close to the solar disk, when
the line-of-sight and normal magnetic field component are
far apart [e.g., Gary and Hagyard, 1990]. For the purpose of
this paper we do not address the observational methods and
recent developments and problems related to deriving the
photospheric magnetic field vector. We rather will concen-
trate on how to use the photospheric Bx0, By0 and Bz0 to
derive the coronal magnetic field.
[5] The transverse photospheric magnetic field (Bx0, By0)

can be used to approximate the normal electric current
distribution by

m0 jz0 ¼
@By0

@x
� @Bx0

@y
; ð7Þ

and from this one gets the distribution of a on the
photosphere by

aðx; yÞ ¼ m0

jz0

Bz0

: ð8Þ

[6] By using equation (8) one has to keep in mind that
rather large uncertainties in the transverse field component
and numerical derivations used in (7) can cumulate in
significant errors for the current density. The problem
becomes even more severe by using (8) to compute a in
regions with a low normal magnetic field strength Bz0.
Special care has to be taken at photospheric polarity
inversion lines, i.e., lines along which Bz0 = 0 [see, e.g.,
Cuperman et al., 1991]. The nonlinear force-free coronal
magnetic field extrapolation is a boundary value problem.
As we will see later some of the NLFFF codes make use of
(8) to specify the boundary conditions while other methods
use the photospheric magnetic field vector more directly to
extrapolate the field into the corona.
[7] Pure mathematical investigations of the nonlinear

force-free equations [see, e.g., Aly, 1984; Boulmezaoud
and Amari, 2000; Aly, 2005] and modeling approaches
not based on vector magnetograms are important and
occasionally mentioned in this paper. A detailed review of
these topics is well outside the scope of this paper, however.
Some of the model approaches not based on vector mag-
netograms are occasionally used to test the nonlinear force-
free extrapolation codes described here.

1.2. Why Do We Need Nonlinear Force-Free Fields?

[8] 1. A comparison of global potential magnetic field
models with TRACE images by Schrijver et al. [2005]
revealed that significant nonpotentially occurs regularly in
active regions, in particular when new flux has emerged in
or close to the regions.
[9] 2. Usually a changes in space, even inside one active

region. This can be seen, if we try to fit for the optimal linear
force-free parameter a by comparing field lines with coronal
plasma structures. An example is given by Wiegelmann and
Neukirch [2002] where stereoscopic reconstructed loops by
Aschwanden et al. [1999] have been compared with a linear
force-free field model. The optimal value of a changes even
sign within the investigated active regions, which is a
contradiction to the a = constant linear force-free approach
(see Figure 1).
[10] 3. Photospheric a distributions derived from vector

magnetic field measurements by equation (8) show as well
that a usually changes within an active region [see, e.g.,
Régnier et al., 2002].
[11] 4. Potential and linear force-free fields are too simple

to estimate the free magnetic energy and magnetic topology
accurately. The magnetic energy of linear force-free fields is
unbounded in a halfspace [Seehafer, 1978] which makes
this approach unsuitable for energy approximations of the
coronal magnetic field. Potential fields have a minimum
energy for an observed line-of-sight photospheric magnetic
field. An estimate of the excess of energy a configuration
has above that of a potential field is an important quantity
which might help to understand the onset of flares and
coronal mass ejections.
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[12] 5. A direct comparison of measured fields in a newly
developed active region by Solanki et al. [2003] with
extrapolations from the photosphere with a potential, linear
and nonlinear force-free model by Wiegelmann et al.
[2005b] showed that nonlinear fields are more accurate than

simpler models. Figure 2 shows some selected magnetic
field lines for the original measured field and extrapolations
from the photosphere with the help of a potential, linear and
nonlinear force-free model.

Figure 1. Linear force–free field model for NOAA 7986 with the best fit for a. (top) A group of loops
with a = 2.5 and (bottom) another group of loops with a = �2.0. The different optimal values of the
linear force-free parameter within one active region are a contradiction to the linear assumption (a
constant) and tell us that a consistent modeling of this active regions requires nonlinear force-free
approach. (This figure was originally published as Wiegelmann and Neukirch’s [2002] Figure 7). Used
with permission of Springer.).
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[13] These points tell us that nonlinear force-free model-
ing is required for an accurate reconstruction of the coronal
magnetic field. Simpler models have been used frequently
in the past. Global potential fields provide some information
of the coronal magnetic field structure already, for example,
the location of coronal holes. The generic case of force-free
coronal magnetic field models are nonlinear force-free
fields, however. Under generic we understand that a can
(and usually will) change in space, but this approach also
includes the special cases a = constant and a = 0. Some
active regions just happen to be more potential (or linear
force-free) and if this is the case they can be described with
simpler models. Linear force-free models might provide a
rough estimate of the true 3D magnetic field structure if the
nonlinearity is weak. The use of simpler models was often
justified owing to limited observational data, in particular if
only the line-of-sight photospheric magnetic field has been
measured.
[14] While the assumption of nonlinear force-free fields is

well accepted for the coronal magnetic fields in active
regions, this is not true for the photosphere. The photo-
spheric plasma is a finite b plasma and nonmagnetic forces
like pressure gradient and gravity cannot be neglected here.
As a result electric currents have a component perpendicular
to the magnetic field, which contradicts the force-free

assumption. We will discuss later how these difficulties
can be overcome.

2. Nonlinear Force-Free Codes

[15] Different methods have been proposed to extrapolate
nonlinear force-free fields from photospheric vector mag-
netic field measurements. (1) The Grad-Rubin method was
proposed for fusion plasmas by Grad and Rubin [1958] and
first applied to coronal magnetic fields by Sakurai [1981].
(2) The upward integration method was proposed by
Nakagawa [1974] and encoded by Wu et al. [1985].
(3) The MHD relaxation method was proposed for general
MHD equilibria by Chodura and Schlueter [1981] and
applied to force-free coronal magnetic fields by Mikic and
McClymont [1994]. (4) The optimization approach was
developed by Wheatland et al. [2000]. (5) The boundary
element (or Greens function like) method was developed
by Yan and Sakurai [2000].

2.1. Grad-Rubin Method

[16] The Grad-Rubin method reformulates the nonlinear
force-free equations in such a way, that one has to solve a
well posed boundary value problem. This makes this
approach also interesting for a mathematical investigation
of the structure of the nonlinear force-free equations. Bineau

Figure 2. Magnetic field structure of the newly developed active region NOAA 9451. Direct
measurements of the field have been compared with potential, linear, and nonlinear force-free models.
Best agreement has been found for the nonlinear model. (This figure was originally published as part of
Wiegelmann et al.’s [2005b] Figure 1. Used with permission of Astronomy and Astrophysics).
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[1972] demonstrated that the used boundary conditions
(vertical magnetic field on the photosphere and a distribu-
tion at one polarity) ensure, at least for small values of a
and weak nonlinearities the existence of a unique nonlinear
force-free solution. A detailed analysis of the mathematical
problem of existence and uniqueness of nonlinear force-free
fields is outside the scope of this review and is given, for
example, by Amari et al. [1997, 2006].
[17] The method first computes a potential field, which

can be obtained from the observed line-of-sight photospher-
ic magnetic field (say Bz in Cartesian geometry) by different
methods, for example, a Greens function method as de-
scribed by Aly [1989]. It is also popular to use linear force-
free solvers, for example, as implemented by Seehafer
[1978] and Alissandrakis [1981] with the linear force-free
parameter a = 0 to compute the initial potential field. The
transverse component of the measured magnetic field is
then used to compute the distribution of a on the photo-
sphere by equation (8). While a is described this way on the
entire photosphere, for both polarities, a well posed bound-
ary value problem requires that the a distribution becomes
only described for one polarity. The basic idea is to
iteratively calculate a for a given B field from (6), then
calculate the current via (4) and finally update B from the
Biot-Savart problem (5). These processes are repeated until
the full current as prescribed by the a distribution has been
injected into the magnetic field and the updated magnetic
field configuration becomes stationary in the sense that
eventually the recalculation of the magnetic field with
Amperes law does not change the configuration anymore.
To our knowledge the Grad-Rubin approach has been first
implemented by Sakurai [1981]. Here a has been prescribed
on several nodal points along a number of magnetic field
lines of the initial potential field. The method used a finite-
element-like discretization of current tubes associated with
magnetic field lines. Each current tube was divided into
elementary current tubes of cylindrical shape. The magnetic
field is updated with Ampere’s law using a superposition of
the elementary current tubes. The method was limited by
the number of current-carrying field lines, nodal points and
the corresponding number of nonlinear equations (N9) to
solve with the available computer resources more than a
quarter century ago.
[18] Computer resources have increased rapidly since the

first NLFFF implementation by Sakurai [1981] and about a
decade ago the Grad-Rubin method has been implemented
on a finite difference grid by Amari et al. [1997, 1999]. This
approach decomposes equations (1)–(3) into a hyperbolic
part for evolving a along the magnetic field lines and an
elliptic one to iterate the updated magnetic field from
Amperes law. For every iteration step k one has to solve
iteratively for

BðkÞ � raðkÞ ¼ 0 ð9Þ

aðkÞ jS
¼ a0
; ð10Þ

which evolves a in the volume and

r� Bðkþ1Þ ¼ aðkÞBðkÞ; ð11Þ

r � Bðkþ1Þ ¼ 0; ð12Þ

Bðkþ1Þ
z jS
¼ Bz0; ð13Þ

lim
jrj!1

j Bðkþ1Þ j¼ 0; ð14Þ

where a0± corresponds to the photospheric distribution of a
for either on the positive or the negative polarity. The Grad-
Rubin method as described by Amari et al. [1997, 1999] has
been applied to investigate particular active regions by
Bleybel et al. [2002] and a comparison of the extrapolated
field with 2D projections of plasma structures as seen in
Ha, EUV and X ray has been done by Régnier et al. [2002]
and Régnier and Amari [2004]. The code has also been used
to investigate mutual and self helicity in active regions by
Régnier et al. [2005] and to flaring active regions by
Régnier and Canfield [2006].
[19] A similar approach as done by Sakurai [1981] has

been implemented by Wheatland [2004]. The implemented
method computes the magnetic field directly on the numer-
ical grid from Ampere’s law. This is somewhat simpler and
faster as Sakurai’s approach which required solving a large
system of nonlinear equations for this aim. The implemen-
tation by Wheatland [2004] has, in particular, been devel-
oped with the aim of parallelization. The parallelization
approach seems to be effective owing to a limited number of
interprocess communications. This is possible because as
the result of the linearity of Ampere’s law the contributions
of the different current carrying field lines are basically
independent from each other. In the original paper Wheat-
land reported problems for large currents on the field lines.
These problems have been related to an error in current
representation of the code and the corrected code worked
significantly better [see also Schrijver et al., 2006]. The
method has been further developed by Wheatland [2006].
This newest Wheatland-implementation scales with the
number of grid points N 4 for a N 3 volume, rather than N 6

for the earlier [Wheatland, 2004] implementation. The main
new development is a faster implementation of the current-
field iteration. To do so the magnetic field has been
separated into a current-free and a current carrying part at
each iteration step. Both parts are solved using a discrete
Fast Fourier Transformation, which imposes the required
boundary conditions implicitly. The code has been paral-
lelized on shared memory distributions with OpenMP.
[20] Amari et al. [2006] developed two new versions of

their Grad-Rubin code. The first version is a finite differ-
ence method and the code was called ’XTRAPOL.’ This
code prescribe the coronal magnetic field with the help of a
vector potential A. The code has obviously it’s heritage
from the earlier implementation of Amari et al. [1999], but
with several remarkable differences:
[21] 1. The code includes a divergence cleaning routine,

which takes care about r�A = 0. The condition r�A = 0 is
fulfilled with high accuracy in the new code 10�9 compared
to 10�2 in the earlier implementation.
[22] 2. The lateral and top boundaries are more flexible

compared to the earlier implementation and allow a finite Bn
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and non zero a values for one polarity on all boundaries.
This treats the whole boundary (all six faces) as a whole.
[23] 3. The slow current input as reported for the earlier

implementation, which lead to a two level iteration, has
been replaced. Now the whole current is injected at once
and only the inner iteration loop of the earlier code
remained in the new version.
[24] 4. The computation of the a characteristics has been

improved with an adaptive Adams-Bashforth integration
scheme (see Press [2002] for details).
[25] 5. The fixed number of iteration loops have been

replaced by a quantitative convergence criterium.
[26] In the same paper [Amari et al., 2006] introduced

another Grad-Rubin approach based on finite elements,
which they called ’FEMQ’. Different from alternative
implementation this code does not use a vector potential
but iterates the coupled divergence and curl system, which
is solved with the help of a finite element discretization. The
method transforms the nonlinear force-free equations into a
global linear algebraic system.
[27] Inhester and Wiegelmann [2006] implemented a

Grad-Rubin code on a finite element grid with staggered
field components [see Yee, 1966] which uses discrete
Whitney forms [Bossavit, 1988]. Whitney forms allow to
transform standard vector analysis (as the differential oper-
ators gradient, curl and divergence) consistently into the
discrete space used for numerical computations. Whitney
forms contain four types of finite elements (form 0–3).
They can be considered as a discrete approximation of
differential forms. The finite element base may consist of
polynomials of any order. In its simplest form, the 0-forms
have as parameters the function values at the vertices of the
cells and are linearly interpolated within each cell. The 1-
forms are a discrete representation of a vector field defined
on the cell edges. The 2-forms are defined as the field
component normal to the surfaces of the cells. The 3-forms
are finite volume elements for a scalar function approxima-
tion, which represents the average of a scalar over the entire
cell. The 4-forms are related to each other by GRAD (0 to 1
form), CURL (1 to 2 form) and DIV (2 to 3 form). As for
continuous differential forms, double differentiation (CURL
of GRAD, DIVof CURL) give exactly zero, independent of
the numerical precision. A dual grid, shifted by half a grid
size in each axis, was introduced in order to allow for
Laplacians. Whitney forms on the dual grid are related to
forms on the primary grid in a consistent way.
[28] The Grad-Rubin implementation uses a vector po-

tential representation of the magnetic field, where the vector
potential is updated with a Poisson equation in each
iteration step. The Poisson equation is effectively solved
with the help of a multigrid solver. The main computing
time is spend to distribute a along the field lines with (6).
This seems to be a general property of Grad-Rubin imple-
mentations. One can estimate the scaling of (6) by / N4,
where the number of field lines to compute is / N3 and the
length of a field line / N. The Biot-Savart step (5) solved
with FFT or multigrid methods scales only with / N log N.
Empirical tests show that the number of iteration steps until
a stationary state is reached does not depend on the number
of grid points N for Grad-Rubin solvers. We have explained
before, that the Grad-Rubin implementation requires the
prescription of a only for one polarity to have a well posed

mathematical problem. The Inhester and Wiegelmann
[2006] implementation allows these choice of boundary
conditions as a special case. In general one does not need
to make the distinction between (@V)+ and (@V)- in the new
implementation. A well posed mathematical problem is still
ensured, however, in the following way. Each boundary
value of a is attached with a weight. The final version of a
on each field line is then determined by a weighted average
of the a values on both endpoints of a field lines. By this
way the influence of uncertain boundary values, for exam-
ple, on the side walls and imprecise photospheric measure-
ments can be suppressed.

2.2. Upward Integration Method

[29] The basic equations for the upward integration meth-
od (or progressive extension method) have been published
already by Nakagawa [1974] and a corresponding code has
been developed by Wu et al. [1985, 1990a]. The upward
integration method is a straight forward approach to use the
nonlinear force-free equations directly to extrapolate the
photospheric magnetic field into the corona. To do so one
reformulates the force-free equations (1)–(3) in order to
extrapolate the measured photospheric magnetic field vector
into the solar corona.
[30] As a first step the magnetic field vector on the lower

boundary B0(x,y,0) is used to compute the z component of
the electric current m0 jz0 with equation (7) and the photo-
spheric a distribution (say a0) by equation (8). With the
help of equation (4) we calculate the x and y component of
the current density

m0jx0 ¼ a0Bx0 ð15Þ

m0jy0 ¼ a0By0: ð16Þ

[31] We now use equation (3) and the x and y component
of equation (2) to obtain expressions for the z derivatives of
all three magnetic field components in the form

@Bx0

@z
¼ m0jy0 þ

@Bz0

@x
; ð17Þ

@By0

@z
¼ @Bz0

@y
� m0jx0; ð18Þ

@Bz0

@z
¼ � @Bx0

@x
� @By0

@y
: ð19Þ

The idea is to integrate this set of equations numerically
upward in z by repeating the previous steps at each height.
As a result we get in principle the 3D magnetic field vector
in the corona. While this approach is straight forward, easy
to implement and computational fast (no iteration is
required), a serious drawback is that it is unstable. Several
authors [e.g., Cuperman et al., 1990; Amari et al., 1997]
pointed out that the formulation of the force-free equations
in this way is unstable because it is based on an ill-posed
mathematical problem. In particular one finds that expo-

A03S02 WIEGELMANN: CORONAL MAGNETIC FIELDS

6 of 19

A03S02



nential growth of the magnetic field with increasing height
is a typical behavior. What makes this boundary value
problem ill-posed is that the solution does not depend
continuously on the boundary data. Small changes or
inaccuracies in the measured boundary data lead to a
divergent extrapolated field (see Low and Lou [1990] for a
more detailed discussion). As pointed out by Low and Lou
meaningful boundary conditions are required also on the
outer boundaries of the computational domain. It is also
possible to prescribe open boundaries in the sense that the
magnetic field vanishes at infinity. This causes an additional
problem for the upward integration method, because the
method transports information only from the photosphere
upward and does not incorporate boundary information on
other boundaries or at infinity. Attempts have been made to
regularize the method [e.g., Cuperman et al., 1991;
Demoulin and Priest, 1992], but cannot be considered as
fully successful.
[32] Wu et al. [1990b] compared the Grad-Rubin method

in the implementation of Sakurai [1981] with the upward
integration method in the implementation of Wu et al.
[1990a]. (The authors used a somewhat different nomen-
clature: The upward integration method was called ’pro-
gressive extension method’ and the Grad-Rubin method
’iterative method’. That time the term ’iterative method’
was reasonable because Grad-Rubin was the only iterative
approach available, but now, 17 years later, several other
iterative methods are available to compute nonlinear force-
free fields.) The comparison showed qualitatively similar
results for extrapolations from an observed magnetogram,
but quantitatively differences. The NLFFF computations
have been very similar to potential field extrapolations,
however, too. One reason for this behavior was, that the
method of Sakurai [1981] is limited to small values of a
and a ’by eye’ comparison shows that the corresponding
NLFFF field is very close to a potential field configuration.
The field computed with the upward integration method
deteriorated if the height of the extrapolation exceeded a
typical horizontal scale length.
[33] The upward integration method has been recently

reexamined by Song et al. [2006] who developed a new
formulation of this approach. The new implementation uses
smooth continuous functions and the equations are solved in
asymptotic manner iteratively. The original upward integra-
tion equations are reformulated into a set of ordinary
differential equations and uniqueness of the solution seems
to be guaranteed at least locally. While Demoulin and Priest
[1992] stated that ’no further improvement has been
obtained with other types of smoothing functions’ Song et
al. [2006] point out that the transformation of the original
partial differential equations into ordinary ones eliminates
the growing modes in the upward integration method, which
have been reported before by Wu et al. [1990a] and
subsequent papers. The problem that all three components
of the photospheric magnetic field and the photospheric a
distribution has to be prescribed in a consistent way remains
in principle, but some compatibility conditions to compute a
slowly varying a have been provided by Song et al. [2006].
These compatibility conditions are slightly different for real
photospheric observations and tests with smooth boundaries
extracted from semianalytic equilibria. For the latter kind of
problems the new formulation provided reasonable results

with the standard test equilibrium found by Low and Lou
[1990]. The method seems to be also reasonably fast. Of
course, further tests with more sophisticated equilibria and
real data are necessary to evaluate this approach in more
detail.

2.3. MHD Relaxation

[34] MHD relaxation codes [e.g., Chodura and Schlueter,
1981] can be applied to solve nonlinear force-free fields as
well. The idea is to start with a suitable magnetic field
which is not in equilibrium and to relax it into a force-free
state. This is done by using the MHD equations in the
following form:

uv ¼ ðr � BÞ � B; ð20Þ

Eþ v� B ¼ 0; ð21Þ

@B

@t
¼ �r� E; ð22Þ

r � B ¼ 0; ð23Þ

where v is a viscosity and E the electric field. As the MHD
relaxation aims for a quasiphysical temporal evolution of
the magnetic field from a nonequilibrium toward a (non-
linear force-free) equilibrium this method is also called
’evolutionary method’ or ’magneto-frictional method’. The
basic idea is that the velocity field in the equation of motion
(21) is reduced during the relaxation process. Ideal Ohm’s
law (22) ensures that the magnetic connectivity remains
unchanged during the relaxation. The artificial viscosity v
plays the role of a relaxation coefficient which can be
chosen in such way that it accelerates the approach to the
equilibrium state. A typical choice is

u ¼ 1

m
j B j2; ð24Þ

with m = constant. Combining equations (20), (21), (22) and
(24) we get an equation for the evolution of the magnetic
field during the relaxation process,

@B

@t
¼ mFMHD; ð25Þ

with

FMHD ¼ r� ½ðr � BÞ � B� � B

B2

� �
: ð26Þ

This equation is then solved numerically starting with a
given initial condition for B, usually a potential field.
Equation (25) ensures that equation (23) is satisfied during
the relaxation if the initial magnetic field satisfies it. (As we
will see below the ’optimization’ approach leads to a similar
iteration equations for the magnetic field, but a different
artificial driving force F.) The difficulty with this method is
that it cannot be guaranteed that for given boundary
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conditions and initial magnetic field (i.e., given connectiv-
ity), a smooth force-free equilibrium exists to which the
system can relax. If such a smooth equilibrium does not
exist the formation of current sheets is to be expected which
will lead to numerical difficulties. Therefore care has to be
taken when choosing an initial magnetic field.
[35] Yang et al. [1986] developed a magneto frictional

method which represent the magnetic field with the help of
Euler (or Clebsch) potentials.

B ¼ rg �rh; ð27Þ

where the potentials g and h are scalar functions. The
general method has been developed for three dimensional
fields and iterative equations for g(x, y, z) and h(x, y, z) have
been derived. The Clebsch representation automatically
ensures r�B = 0. The method has been explicitly tested in
the paper by [Yang et al., 1986] with the help of an
equilibrium with one invariant coordinate. In principle it
should be possible to use this representation for the
extrapolation of nonlinear force-free fields, but we are not
aware of a corresponding implementation. On the basis of
the discussion by Yang et al. [1986] a difficulty seems to be
that one needs to specify boundary conditions for the
potentials, rather than for the magnetic fields. It seems in
particular to be difficult to find boundaries conditions for
potentials which correspond to the transverse component of
the photospheric magnetic field vector. One problem is that
boundary conditions for g and h prescribe the connectivity.
Every field line can be labeled by its (g,h) values. Hence
boundary values for g and h establish foot point relations
although the field is not known yet.
[36] The MHD relaxation (or evolutionary) method has

been implemented by Mikic and McClymont [1994] and
McClymont et al. [1997] on the basis of the time-dependent
MHD code by Mikic et al. [1988]. The code uses a
nonuniform mesh and the region of interested is embedded
in a large computational domain to reduce the influence of
the lateral boundaries. The method has been applied to
extrapolate the magnetic field above an active region by
Jiao et al. [1997]. The computations have been carried out
with a resolution of the order of 1003 points. A supercom-
puter was required for these computations that time (10 years
ago), but because of the rapid increase of computer speed and
memory within the last decade this restriction is very prob-
ably not valid anymore.
[37] Roumeliotis [1996] developed the so-called stress

and relax method. In this approach the initial potential field
becomes disturbed by the observed transverse field compo-
nent on the photosphere. The boundary conditions are
replaced in subsequently in several small steps and always
relaxed with a similar MHD relaxation scheme as de-
scribed above toward a force-free equilibrium. The code by
Roumeliotis [1996] has implemented a function w(x,y)
which allows to give a lower weight to regions where the
transverse photospheric field has been measured with lower
accuracy. Additional to the iterative equations as discussed
above, the method includes a resistivity h (or diffusivity) by
adding a term h j on the right hand site of Ohms law (21).
This relaxes somewhat the topological constrains of ideal
MHD relaxation, because a finite resistivity allows a kind of

artificial reconnection and corresponding changes of the
initial potential field topology. The method has been tested
with a force-free equilibrium found by Klimchuk and
Sturrock [1992] and applied to an active region measured
with the MSFC vector-magnetograph.
[38] The stress and relax method has been revisited by

Valori et al. [2005]. Different from the earlier implementa-
tion by Roumeliotis [1996] the new implementation uses
directly the magnetic field, rather than the vector potential
in order to keep errors from taking numerical deviations
from noisy magnetograms minimal. The solenoidal condi-
tion is controlled by a diffusive approach by Dedner et al.
[2002] which removes effectively a numerically created
finite divergence of the relaxed magnetic field. The new
implementation uses a single stress step, rather than the
multiple small stress used by Roumeliotis [1996] to speed
up the computation. The single step stress and relax method
is connected with a suitable control of artificial plasma
flows by the Courant criterium. The authors reported that a
multistep and single-step implementation do not reveal
significant differences. The numerical implementation is
based on the time-dependent full MHD code ’AMRVAC’
by Keppens et al. [2003]. Valori et al. [2005] tested their
nonlinear force-free implementation with a numerically
constructed nonlinear force-free twisted loop computed by
Török and Kliem [2003].

2.4. Optimization Approach

[39] The optimization approach has been developed by
Wheatland et al. [2000]. The solution is found by minimiz-
ing the functional

L ¼
Z
V

½B�2 j ðr � BÞ � B j2 þ j r � B j2�d3V : ð28Þ

Obviously, L is bound from below by 0. This bound is
attained if the magnetic field satisfies the force-free
equations (1)–(3).
[40] By taking the functional derivatives with respect to

some iteration parameter t we get

) 1

2

dL

dt
¼ �

Z
V

@B

@t
� ~Fd3x�

Z
S

@B

@t
� ~Gd2x; ð29Þ

with

F ¼ r� ½ðr � BÞ � B� � B

B2

� �
þ �r� ððr � BÞBÞ � B

B2

� ��
� W� ðr� BÞ � rðW � BÞ þ Wðr � BÞ þ W2Bg ð30Þ

W ¼ B�2½ðr � BÞ � B� ðr � BÞB�: ð31Þ

The surface term vanishes if the magnetic field vector is
kept constant on the surface, for example, prescribed from
photospheric measurements. In this case L decreases
monotonically if the magnetic field is iterated by

@B

@t
¼ mF: ð32Þ
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[41] Let us remark that FMHS as defined in equation (26)
and used for MHD relaxation is identical with the first term
on the right-hand-side of equation (30), but equation (30)
contains additional terms.
[42] For this method the vector field B is not necessarily

solenoidal during the computation, but will be divergence-
free if the optimal state with L = 0 is reached. A disadvan-
tage of the method is that it cannot be guaranteed that this
optimal state is indeed reached for a given initial field and
boundary conditions. If this is not the case then the resulting
B will either be not force-free or not solenoidal or both.
[43] McTiernan has implemented the optimization ap-

proach basically as described by Wheatland et al. [2000]
in IDL (see Schrijver et al. [2006] for a brief description of
the McTiernan implementation). This code allows the use of
a nonuniform computational grid. In a code intercomparison
by Schrijver et al. [2006] the IDL optimization code by
McTiernan was about a factor of 50 slower compared to an
implementation in parallelized C by Wiegelmann [2004]. To
our knowledge McTiernan has translated his IDL code into
FORTRAN in the meantime for faster computation (J. M.
McTiernan, personal communication on the NLFFF work-
shop Palo Alto, June 2006 [see also Metcalf et al., 2007]).
[44] Several tests have been performed with the optimi-

zation approach of Wiegelmann and Neukirch [2003]. It has
been investigated how the unknown lateral and top bound-
ary influence the solution. The original optimization ap-
proach by Wheatland et al. [2000] has been extended
toward more flexible boundary conditions, which allow
@B
@t 6¼ 0 on the lateral and top boundaries. This has been
made with the help of the surface integral term in (29) and
led to an additional term @B

@t ¼ mG on the boundaries. This
approached improved the performance of the code for cases
where only the bottom boundary was prescribed. No im-
provement was found for a slow multistep replacement of
the boundary and this possibility has been abandoned in
favor of a single step method. It has been also investigated
how noise influences the optimization code and this study
revealed that noise in the vector magnetograms leads to less
accurate nonlinear force-free fields.
[45] Wiegelmann [2004] has reformulated the optimiza-

tion principle by introducing weighting functions One
defines the functional

L ¼
Z
V

½wB�2 j ðr � BÞ � B j2 þw j r � B j2�d3x; ð33Þ

where w(x, y, z) is a weighting function. It is obvious that (for
w > 0) the force-free equations (1–3) are fulfilled when L
is equal zero. Minimization of the functional (34) lead to

@B

@t
¼ m~F; ð34Þ

~F ¼ wFþ ðWa � BÞ � rwþ ðWb � BÞrw; ð35Þ

Wa ¼ B�2½ðr � BÞ � B�; ð36Þ

Wb ¼ B�2½ðr � BÞB�; ð37Þ

with F as defined in (30). With w(x, y, z) = 1 this approach
reduces to the Wheatland et al. [2000] method as described
above. The weighting function is useful if only the bottom
boundary data are known. In this case we a buffer boundary
of several grid points toward the lateral and top boundary of
the computational box is introduced. The weighting
function is chosen constant in the inner, physical domain
and drop to 0 with a cosine profile in the buffer boundary
toward the lateral and top boundary of the computational
box. In the work of Schrijver et al. [2006] some tests have
been made with different weighting functions for the force-
free and solenoidal part of the functional (34), but the best
results have been obtained if both terms got the same
weight. The computational implementation involves the
following steps.
[46] 1. Compute start equilibrium (e.g., a potential field)

in the computational box.
[47] 2. Replace the bottom boundary with the vector

magnetogram.
[48] 3. Minimize the functional (33) with the help of

equation (34). The continuous form of (34) guaranties a
monotonically decreasing L. This is as well ensured in the
discretized form if the iteration step dt is sufficiently small.
The code checks if L(t+dt) < L(t) after each time step. If the
condition is not fulfilled, the iteration step is repeated with
dt reduced by a factor of 2. After each successful iteration
step we increase dt slowly by a factor of 1.01 to allow the
time step to become as large as possible with respect to the
stability condition.
[49] 4. The iteration stops if L becomes stationary. Sta-

tionarity is assumed if @L
@t =L < 1.0 10�4 for 100 consecutive

iteration steps.
[50] The program has been tested with the semianalytic

nonlinear force-free configuration of Low and Lou [1990]
and Titov and Démoulin [1999] by Wiegelmann et al.
[2006a]. The code has been applied to extrapolate the
coronal magnetic field in active regions by Wiegelmann et
al. [2005b, 2005a].
[51] A finite element optimization approach has been

implemented by Inhester and Wiegelmann [2006] using
the Whitney elements as for the Grad-Rubin code (which
has been described above). The optimization method uses
exactly the same staggered finite element grid as described
above, which is different from the finite difference grids
used in the earlier implementations by Wheatland et al.
[2000], Wiegelmann and Neukirch [2003], and Wiegelmann
[2004]. Another difference is that earlier implementations
discretized the analytical derivative of the functional L (28),
while the new code takes the numerical more consistent
derivative of the discretized function L. All other imple-
mentations used a simple Landweber scheme for updating
the magnetic field, which is replaced here by an unprecon-
ditioned conjugate gradient iteration, which at every time
step performs an exact line search to the minimum of L in
the current search direction and additional selects an im-
prove search direction instead of the gradient of the func-
tional L. To do so the Hessian matrix of the functional L is
computed during every iteration step. An effective compu-
tation of the Hessian matrix is possible, because the refor-
mulated function L(s) is a fourth-order polynomial in B and
all five polynomial coefficients can be computed in one go.
The code has been tested by Low and Lou [1990] and the
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result of twisted loop computations of the Grad-Rubin
implementation on the same grid.
[52] The optimization code in the implementation of

Wiegelmann [2004] has recently been extended toward
using a multiscale implementation. The main difference
from the original code are [see also Metcalf et al., 2007]
as follows. (1) The method is not full multigrid, but
computes the solution on different grids only once, for
example, something like 503, 1003, 2003. (2) The main idea
is to get a better (than potential field) start equilibrium on
the full resolution box. (3) Solution of smaller grids are
interpolated onto larger grids as initial state for the magnetic
field in the computational domain of the next larger box.
The multiscale implementation has been tested as part of a
code-intercomparison test by Metcalf et al. [2007] with
the help of solar-like reference model computed by van
Ballegooijen [2004] and van Ballegooijen et al. [2007].
[53] The optimization approach has recently been imple-

mented in spherical geometry by Wiegelmann [2007] and
tested by Low and Lou [1990]. The original longitudinal
symmetric Low and Lou solution has been shifted by 1/4 of
a solar radius to test the code without any symmetry with
respect to the Suns surface. The numerical implementation
is very similar as the Cartesian implementation described by
Wiegelmann [2004]. The spherical implementation con-
verged fast for low-latitude regions, but the computing time
increased significantly if polar regions have been included.
It has been suggested to implement the code on a so called
’Yin and Yang’ grid as developed by Kageyama and Sato
[2004] to reduce the computing time. The ’Yin and Yang’
grid is suitable for massive parallelization, which is neces-
sary for full-sphere high-resolution NLFFF computations.

2.5. Boundary Element or Greens-Function-Like
Method

[54] The boundary integral method has been developed
by Yan and Sakurai [2000]. The method relates the mea-
sured boundary values with the nonlinear force-free field in
the entire volume by

ciBi ¼
I
S

�Y
@B

@n
� @ �Y

@n
B0

� �
dS; ð38Þ

where ci = 1 for points in the volume and ci = 1/2 for
boundary points and B0 is the measured vector magnetic
field on the photosphere. The auxiliary vector function is
defined as

�Y ¼ diag
cosðlxrÞ
4pr

;
cosðlyrÞ
4pr

;
cosðlzrÞ
4pr

� �
; ð39Þ

and the li, (i = x, y, z) are computed in the original approach
by Yan and Sakurai [2000] with integrals over the whole
volume, which define the li implicitly,

Z
V

Yi½l2
i Bi � a2Bi � ðra� BiÞ�dV ¼ 0: ð40Þ

This volume integration, which has to be carried out for
every point in the volume is certainly very time consuming
(a sixth-order process). The li have the same dimension as

the magnetic field. The existence of the li has been
confirmed for the semianalytic field of Low and Lou [1990]
by Li et al. [2004]. While the work of Li et al. [2004]
showed that one can find the auxiliary function �Y for a
given force-free field in 3D, the difficulty is that �Y is a
priori unknown if only the photospheric magnetic field
vector is given. Yan and Sakurai [2000] proposed an
iterative scheme to compute the auxiliary functions and the
nonlinear force-free magnetic field self-consistently. They
use the approximate solution k on the right-hand side of
equation (38) to compute a better solution k + 1 by

ciB
ðkþ1Þ
i ¼

I
S

�YðkÞ @B
ðkÞ

@n
� @ �YðkÞ

@n
B0

� �
dS; ð41Þ

where the initial guess for the magnetic field in the volume
is B = 0 and also the initial @ �Y

@n ¼ 0. In principle it would be
also possible to compute a potential field first and derive the
auxiliary functions for this field as done by Li et al. [2004]
and iterate subsequently for the nonlinear force-free fields
and the associated auxiliary functions with equation (41).
This possibility has not been tried out to our knowledge
until now, however. The method iterates the magnetic field
until B and @B

@n converge. In an inter code comparison by
Schrijver et al. [2006] one iteration step of (41) took about
80 hours for this method and only this one step was carried
out without further iteration. This seems, however, not to be
sufficient to derive an accurate nonlinear force-free solution.
The method has been applied for the comparison with soft
X-ray loops observed with YOHKOH byWang et al. [2000]
and Liu et al. [2002] and to model a magnetic flux robe by
Yan et al. [2001a, 2001b].
[55] In a new implementation of the boundary element

method by Yan and Li [2006] the auxiliary functions are
computed iteratively with the help of a simplex method.
This avoids the numerical expensive computation of the
volume integral (40). The boundary element method is still
rather slow if a magnetic field has to be computed in an
entire 3D domain. Different from other method, it allows,
however, to evaluate the NLFFF field at every arbitrary
point within the domain from the boundary data, without the
requirement to compute the field in an entire domain. This
is in particular useful if one is interested to compute the
NLFFF field only along a given loop.
[56] He and Wang [2006] investigated the validity of the

boundary integral representation for a spherical implemen-
tation. The method has been tested with the longitudinal
invariant [Low and Lou, 1990] solution. The spherical
implementation method of this method revealed reasonable
results for smooth modestly nonlinear fields, but a poor
convergence for complex magnetic field structures and large
values of a.

3. How to Deal With Non-Force-Free Boundaries
and Noise?

[57] Given arbitrary boundary conditions of the magnetic
field vector on the photosphere, the solution to the force-
free equations in 3D may not exist. Nonlinear force-free
coronal magnetic field models assume, however, that the
solution exists. It is certainly possible and necessary to
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check after or during the computation if a solution has been
found. In the following we will discuss what we can do if
the measured photospheric data are incompatible with the
assumption of a force-free coronal magnetic field.

3.1. Consistency Check of Vector Magnetograms

[58] We reexamine some necessary conditions with the
photospheric field (or bottom boundary of a computational
box). These conditions have to be fulfilled in order to be
suitable boundary conditions for a nonlinear force-free
coronal magnetic field extrapolation. An a priori assumption
about the photospheric data is that the magnetic flux from
the photosphere is sufficiently distant from the lateral
boundaries of the observational domain and the net flux is
in balance, i.e.,

Z
S

Bzðx; y; 0Þdxdy ¼ 0: ð42Þ

Molodensky [1969, 1974], Aly [1989], and Sakurai [1989]
used the viral theorem to define which conditions a vector
magnetogram has to fulfill to be consistent with the
assumption of a force-free field in the corona above the
boundary. These conditions are as follows.
[59] 1. The total force on the boundary vanishes

Z
S

Bx Bzdxdy ¼
Z
S

By Bzdxdy ¼ 0 ð43Þ

Z
S

ðB2
x þ B2

yÞdxdy ¼
Z
S

B2
z dxdy: ð44Þ

[60] 2. The total torque on the boundary vanishes

Z
S

xðB2
x þ B2

yÞdxdy ¼
Z
S

xB2
z dxdy; ð45Þ

Z
S

yðB2
x þ B2

yÞdxdy ¼
Z
S

yB2
z dxdy; ð46Þ

Z
S

yBxBzdxdy ¼
Z
S

xByBzdxdy: ð47Þ

[61] In an earlier review, Aly [1989] has mentioned
already that the magnetic field is probably not force-free
in the photosphere, where B is measured because the plasma
b in the photosphere is of the order of 1 and pressure and
gravity forces are not negligible. The integral relations
(43)–(47) are not satisfied in this case in the photosphere
and the measured photospheric field is not a suitable
boundary condition for a force-free extrapolation. Metcalf
et al. [1995] concluded that the solar magnetic field is not
force-free in the photosphere, but becomes force-free only
at about 400 km above the photosphere. Gary [2001]
pointed out that care has to be taken when extrapolating
the coronal magnetic field as a force-free field from photo-
spheric measurements, because the force-free low corona is
sandwiched between two regions (photosphere and higher

corona) with a plasma b � 1, where the force-free assump-
tion might break down. An additional problem is that
measurements of the photospheric magnetic vector field
contain inconsistencies and noise. In particular the trans-
verse components (say Bx and By) of current vector mag-
netographs include uncertainties.
[62] The force-free field in a domain requires the Max-

well stress (43)–(47) to sum to zero over the boundary. If
these conditions are not fulfilled a force-free field cannot be
found in the volume. A faithful algorithm should therefore
have the capability of rejecting a prescription of the vector
field at the boundary that fails to produce zero net Maxwell
stress. A simple way to incorporate these conditions would
be to evaluate the integrals (43)–(47) within or prior to the
NLFFF computation and to refuse the vector field if the
conditions are not fulfilled with sufficient accuracy. Current
codes do run, however, although if feeded with inconsistent
boundary data, but they certainly cannot find a force-free
solution in this case (because it does not exist). This
property of current codes does, however, not challenge the
trustworthiness of the algorithms, because the force-free and
solenoidal conditions are checked in 3D, for example, with
the help of the functional L as defined in (28). A non zero
value of L (within numerical accuracy) tells the user that a
force-free state has not been reached. In principle it would
be possible that the codes do refuse to output the magnetic
field in this case. For current codes this is not automatically
controlled but responsibility of the user.
[63] Unfortunately current measurements of the magnetic

field vector are only available routinely in the photosphere,
where we have a finite b plasma and nonmagnetic forces
might become important. The force-free compatibility con-
ditions (43)–(47) are not fulfilled in the photosphere, but
they should be fulfilled in the low b chromospheric and
coronal plasma above. The question is if we still can use the
photospheric measurements to find suitable consistent
boundary conditions for a nonlinear force-free modeling.
Such an approach has been called preprocessing of vector
magnetograms.

3.2. Preprocessing

[64] The preprocessing routine has been developed by
Wiegelmann et al. [2006b]. The integral relations (43)–(47)
have been used to define a 2D functional of quadratic forms:

Lprep ¼ m1L1 þ m2L2 þ m3L3 þ m4L4; ð48Þ

where

L1 ¼
X
p

Bx Bz

 !2

þ
X
p

By Bz

 !2

þ
X
p

B2
z � B2

x � B2
y

 !2
2
4

3
5;

ð49Þ

L2 ¼
" X

p

xðB2
z � B2

x � B2
yÞ

 !2

þ
X
p

yðB2
z � B2

x � B2
yÞ

 !2

þ
X
p

yBx Bz � xBy Bz

 !2#
; ð50Þ
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L3 ¼
X
p

ðBx � BxobsÞ2 þ
X
p

ðBy � ByobsÞ2 þ
X
p

ðBz � BzobsÞ2
" #

;

ð51Þ

L4 ¼
X
p

ðDBxÞ2 þ ðDByÞ2 þ ðDBzÞ2
" #

: ð52Þ

The surface integrals are here replaced by a summation
P

p

over all grid nodes p of the bottom surface grid and the
differentiation in the smoothing term is achieved by the
usual five-point stencil for the 2D-Laplace operator. Each
constraint Ln is weighted by a yet undetermined factor mn.
The first term (n = 1) corresponds to the force-balance
conditions (43)–(44), the next (n = 2) to the torque-free
condition (45)–(47). The following term (n = 3) ensures
that the optimized boundary condition agrees with the
measured photospheric data and the last terms (n = 4)
controls the smoothing. The 2D-Laplace operator is
designated by D. The aim of the preprocessing procedure
is to minimize Lprep so that all terms Ln if possible are made
small simultaneously. A strategy on how to find the optimal
yet undefined parameters mn is described by Wiegelmann et
al. [2006b]. As result of the preprocessing we get a data set
which is consistent with the assumption of a force-free
magnetic field in the corona but also as close as possible to
the measured data within the noise level.

4. Code Testing and Code Comparisons

4.1. Code Testing

[65] Newly developed codes for the extrapolation of
nonlinear force-free fields from boundary data have to be
tested before they are applied to measurements. In principle
any analytical or numerically created solution of the force-
free equations (1)–(3) can be used as a reference case.
One cuts a plane (artificial photosphere, bottom boundary)
out of the 3D reference solution (for the pure task of code
testing it is also acceptable to use all six boundaries of the
reference solution; these kind of data are not available for
real solar cases of course) and uses the above described
extrapolation codes to reconstruct the magnetic field. The
result of this extrapolation is then compared with the
reference to rate the quality of the reconstruction. Unfortu-
nately, it is very hard to find a truly nonlinear 3D solution of
(1)–(3) analytically and very few solutions are known. Low
and Lou [1990] (LL) found a class of solutions which have
become a standard reference for testing NLFFF extrapola-
tion codes. LL found axisymmetric equilibria which are
separable in spherical coordinates. They are self-similar in
the radial coordinate, and the polar angle dependence is
determined from a nonlinear eigenvalue equation. The
symmetry is broken by cutting out a rectangular chunk of
the solution by using a Cartesian coordinate system which is
shifted and rotated with respect to the original coordinate
system in which the LL equilibria are calculated. The
parameters of the LL solutions and the parameters of the
new Cartesian coordinate system allow for a large number
of different situations which can be used for tests. The
original axisymmetric spherical LL solution has also been

used (with and without symmetry breaking by shifting the
origin of the coordinate system) to test spherical NLFFF
programs. To our knowledge all recent implementations of
the described NLFFF approaches have been tested with LL,
either immediately in the original code-describing papers or
in subsequent works, for example, in a blind-algorithm test
within the NLFFF consortium, as described below.
[66] The MHD relaxation method and the optimization

approach have been compared byWiegelmann and Neukirch
[2003]. Both methods have been applied to the Low and Lou
[1990] equilibrium with exactly the same finite difference
grid. The iterative equations for MHD relaxation and
optimization have both the form @B

@t ¼ mF but the structure
of F is more complicated for optimization than for MHD
relaxation. The MHD relaxation term is indeed identical
with the first term of the optimization approach. While
MHD relaxation minimizes only the Lorentz force, the
optimization does additional minimize r � B, while a
decreasing magnetic field divergence during MHD relaxa-
tion [as shown by Wiegelmann and Neukirch, 2003] is the
result of numerical diffusion. Despite the numerical over-
head in computing F for the optimization code, optimization
provided more accurate results and faster convergence.
[67] A practical advantage of the MHD approach is that

several time-dependent MHD codes are well known and
established and can be used for the force-free relaxation
discussed here. The inclusion of nonmagnetic forces like
pressure gradients and gravity looks straight forward for the
MHD approach. Other methods are usually developed with
the only task of computing nonlinear force-free coronal
magnetic fields, also a generalization toward magnetohy-
drostatic and stationary MHD equilibria is possible and has
been done for the optimization approach [see Wiegelmann
and Inhester, 2003; Wiegelmann and Neukirch, 2006].
Another advantage of using time-dependent MHD codes
for relaxation is that the computed force-free equilibrium
can be used on the same grid and with the same code as
initial state for time-dependent MHD simulations. One can,
in principle, use the force-free equilibria computed with any
of the described method as initial state for time-dependent
MHD simulation, but having the initial equilibrium state
already directly on the MHD grid might be very handy,
because no further adjustments are needed.

4.2. NLFFF Consortium

[68] Since the year 2004 activities are ongoing to bring
NLFFF modelers together and to compare the different
existing codes. A workshop series has been organized for
this aim by Karel Schrijver and three workshops took place
so far from 2004–2006. The next workshop is planed for
June 2007. As we have been asked to summarize the
workshop results on the CSWM meeting, we give also a
very brief overview in the corresponding special issue paper
here. The main results of the first two workshops have been
published by Schrijver et al. [2006]. In this paper six
different NLFFF implementations (Grad-Rubin codes of
Amari et al. [1999] and Wheatland [2004], MHD relaxation
code of Valori et al. [2005], optimization codes by
McTiernan and by Wiegelmann [2004], boundary element
method by Yan and Sakurai [2000]) have been compared.
The codes have been tested in a blind algorithm test with the
help of the semianalytic equilibrium by Low and Lou [1990]

A03S02 WIEGELMANN: CORONAL MAGNETIC FIELDS

12 of 19

A03S02



in two cases. In case I all six boundaries of a computational
box have been described, and in case II only the bottom
boundary has been described. The comparison of the
extrapolation results with the reference solution has been
done qualitatively by magnetic field line plots (shown here
in Figure 3 for the central region of case II) and quantita-
tively by a number of sophisticated comparison matrices.
All NLFFF fields agreed best with the reference field for the
low-lying central magnetic field region, where the magnetic
field and electric currents are strongest and the influence of
the boundaries lowest. The code converged with speeds that
differed by a factor of one million per iteration steps. (The
codes run on different machines, have been written in
different programming languages and used different com-
pilers. A real test of the exact computing time would
comprise a proper operation count, for example, the number
of fixed point additions and multiplications per iteration
step.) The fastest-converging and best-performing code was
the Wheatland et al. [2000] optimization code as imple-
mented by Wiegelmann [2004]. Recent implementations of
the Grad-Rubin code by Amari et al. [2006] and Inhester
and Wiegelmann [2006] and a new implementation of the
upward integration method by Song et al. [2006] did not
participate in the blind-algorithm intercomparison by
Schrijver et al. [2006], but these three new codes have been
tested by the authors with similar measures and revealed
similar accuracy as the best performing codes in the blind
algorithm test. It seems that the somewhat more flexible
boundary conditions used in the Grad-Rubin approaches of
Amari et al. [2006] and Inhester and Wiegelmann [2006] are
responsible for the better performance compared to the
earlier implementation by Amari et al. [1999], which has
been used in the blind algorithm test.
[69] The widely used LL equilibrium contains a very

smooth photospheric magnetic field and an extended current
distribution. It is therefore also desirable to test NLFFF
codes also with other, more challenging boundary fields,
which are less smooth, have localized current distribution
and to investigate also the effects of noise and effects from
non-force-free boundaries. A somewhat more challenging
reference case is the equilibrium found by Titov and
Démoulin [1999] (TD). Similar to LL, the TD equilibrium
is an axisymmetric equilibrium. The TD model contains a
potential field which is disturbed by a toroidal nonlinear
force-free current. This equilibrium has been used for
testing the MHD relaxation code (G. Valori and B. Kliem,
personal communication, 2006) and the optimization code
from Wiegelmann et al. [2006a].
[70] Any numerically created NLFFF model might be

suitable for code testing, too. It is in particular interesting to
use models, which are partly related on observational data.
Very recently, van Ballegooijen et al. [2007] used line-of-
sight photospheric measurements from SOHO/MDI to com-
pute a potential field, which was then disturbed by inserting
a twisted flux robe and relaxed toward a nonlinear force-free
state with a magnetofrictional method as described by van
Ballegooijen [2004]. The van Ballegooijen et al. [2007]
model is not force-free in the entire computational domain,
but only above a certain height above the bottom boundary
(artificial chromosphere). On the lowest boundary (photo-
sphere) the model contains significant nonmagnetic forces.
Both the chromospheric as well as the photospheric mag-

netic field vector from the van Ballegooijen et al. [2007]
model have been used to test four of the recently developed
extrapolation codes (one Grad-Rubin method, one MHD
relaxation code and two optimization approaches) in a
second blind algorithm test by Metcalf et al. [2007]. While
the NLFFF consortium paper, part I [Schrijver et al., 2006],
used a domain of just 643 pixel, the part II paper used a
computational domain of 320 � 320 � 258 pixel and
modern NLFFF codes where able to compute the nonlinear
force-free field in such relatively large boxes within a few
hours for a moderate parallelization on only 1–4 processors
and a memory requirement of 2.5–4 GB of RAM. This very
recent code comparison shows a major improvement re-
garding computing time and suitable grid sizes within less
than 3 years. On the first NLFFF consortium meeting in
2004, box sizes of some 643 have been a kind of standard or
computing times of some 2 weeks have been reported for
1503 boxes.We briefly summarize the results ofMetcalf et al.
[2007] as: (1) NLFFF extrapolations from chromospheric
data recover the original reference field with high accuracy;
(2) when the extrapolations are applied to the photospheric
data, the reference field is not well recovered; and (3)
preprocessing of the photospheric data improve the result,
but the accuracy is still lower as for extrapolations from the
chromosphere.

5. Conclusions and Outlook

[71] Within the last few years the scientific community
showed a growing interest into coronal magnetic fields.
(Publications containing the phrase ’coronal magnetic
fields’ in title or abstract have been cited less than about
50 times per year until the early 1990s and this number
increased to about 150 citations per year in 2004. A peak
year was 2006 (last year) with more than 300 citations
(source: ISI Web of Knowledge, March 2007)). The devel-
opment of new ground based and space born vector mag-
netographs provide us measurements of the magnetic field
vector on the suns photosphere. Accompanied from these
hardware development, software has been developed to
extrapolate the photospheric measurements into the corona.
Special attention has recently been given to nonlinear force-
free codes. Five different numerical approaches (Grad-
Rubin, upward integration, MHD relaxation, optimization,
boundary elements) have been developed for this aim. It is
remarkable that new codes or major updates of existing
codes have been published for all five methods within the
last two years, mainly in the last year (2006). A workshop
series (NLFFF consortium) since 2004 on nonlinear force-
free fields has recently released synergy effects, by bringing
modelers of the different numerical implementations togeth-
er to compare, evaluate and improve the programs. Several
of the most recent new codes and utility programs (e.g.,
preprocessing) have at least been partly inspired by these
workshops. The new implementations have been tested with
the smooth semianalytic Low-Lou equilibrium and showed
reasonable agreement with this reference field. While all
methods aim for a reconstruction of the coronal magnetic
field from the photospheric magnetic field vector, the way
how these measurements are used to prescribe the bound-
aries of the codes is different.
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Figure 3. Evaluation of six nonlinear force–free codes. The (a) reference solution has been
compared with extrapolations with (b, c) optimation, (d) MHD relaxation, (e, f) Grand–Rubin, and
(g) boundary element. For comparison, (h) linear-force-free and (i) potential fields are shown, too.
The images show the central domain of the model. Only the bottom boundary has been provided for
the extrapolation. (This figure was originally published as Schrijver et al.’s [2006] Figure 4. Used
with permission of Springer.)
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[72] 1. MHD relaxation and optimization use Bx0, By0, Bz0

on the bottom boundary. This overdetermines the boundary
value problem. Both methods are closely related and com-
pute the magnetic field in a computational box with

@B

@t
¼ mF; ð53Þ

where the structure of F is somewhat different (the
optimization approach has more terms) for both methods.
Usually a potential field is used as initial state for both
approaches, also the use of a linear force-free initial state is
possible. Recently a multiscale version of optimization has
been installed, which uses a low-resolution NLFFF field as
input for higher-resolution computations. Specifying the
entire magnetic field vector on the bottom boundary is an
overimposed problem and a unique NLFFF field (or a
solution at all) requires that the boundary data fulfill certain
consistency criteria. A recently developed preprocessing
routine helps to find suitable consistent boundary data from
inconsistent photospheric measurements. Earlier and current
comparisons showed a somewhat higher accuracy for the
optimization approach. A practical advantage of the MHD
approach is that in principle any available time-dependent
MHD code can be adjusted to compute the NLFFF field.
[73] 2. The Grad-Rubin approach uses Bz0 and the distri-

bution of a computed with equation (8) for one polarity,
which corresponds to well posed mathematical problem. A
practical problem is that the computation of a requires
numerical differences of the noisy and forced transverse
photospheric field Bx0, By0 with (7) leading to inaccuracies
in the normal electric current distribution and in a. For
smooth semianalytic test cases this is certainly not a
problem, but real data require special attention (smoothing,
preprocessing, limiting a 6¼ 0 to regions where Bz0 is above
a certain limit) to derive a meaningful distribution of a.
While the method requires only a for one polarity, the
computation from photospheric data provide a for both
polarities. We are not aware of any tests on how well
NLFFF solutions computed from a prescribed on the
positive and negative polarity coincide. It is also unclear
how well the computed transverse field components on the
bottom boundary agree with the measured values of Bx0,
By0. (In principle Bx0, By0 may have an additional field (Bx0,
By0) + (@x@y) 8 without making a difference for a and hence
for the Grad-Rubin result.) More tests on this topics are
necessary, including the recently installed possibility to
prescribe a for both polarities and adjust the boundary by
a weighed average of a on both polarities to fulfill
equation (6). As initial state the Grad-Rubin method uses
a potential field, which is also true for MHD relaxation and
optimization.
[74] 3. The upward integration and the boundary element

method prescribe both all components of the bottom bound-
ary magnetic field vector and the a distribution computed
with equation (8). This approach over imposes the boundary
and Bx0, By0, Bz0 and a have to be consistent which each
other and the force-free assumption. This is certainly not a
problem at all for smooth semianalytic test equilibria and
strategies to derive consistent boundary data from measured
data have been developed recently. Different from the three

approaches discussed above, upward integration and bound-
ary element methods do not require to compute first an
initial potential field in the computational domain. It is well
known that the upward integration method is based on an
ill-posed problem and the method has not been considered
for several years, but a recent implementation with smooth
analytic functions might help to regularize this method. First
tests showed a reasonable results for computations with the
smooth semianalytic Low-Lou solution.
[75] The boundary element method has the problem to be

very slow and an earlier implementation of this method
could not reach a converged state for a 643 boxed used in
the NLFFF consortium paper, part I, owing to this problem.
A new ’direct boundary method’ has been developed, which
seems to be faster than the original ’boundary element
method’, but still slower compared with the four other
NLFFF approaches if the task is to compute a 3D magnetic
field in an entire 3D domain. Different from all other
described methods the boundary element approach allows
to compute the nonlinear force-free field vector at any
arbitrary point above the boundary and it is not necessary
to compute the entire 3D field above the photosphere. This
might be a very useful feature if one is interested in
computing the magnetic field only along a single loop and
not interested in an entire active region.
[76] The new implementations of upward integration and

boundary element method show both reasonable results for
first tests with the smooth semianalytic Low and Lou
equilibrium. Further tests with more sophisticated equilib-
ria, for example, a solar-like test case as used in the
NLFFF consortium paper, part II, would be useful to
come to more sound conclusions regarding the feasibility
of these methods.
[77] Most of the efforts done in nonlinear force-free

modeling until now concentrated mainly on developing
these models and testing their accuracy and speed with
the help of well known test configuration. Not too many
applications of nonlinear force-free models to real data are
currently available, from which we learned new physics.
One reason was the insufficient access to high-accuracy
photospheric vector magnetograms and a second one were
limitations of the models. Force-free field extrapolation is a
mere tool, if properly employed on vector magnetograms, it
can help to understand physical, magnetic field dominated
processes in the corona. Both the computational methods as
well as the accuracy of required measurements (e.g., with
Hinode, SDO) are rapidly improving. Within the NLFFF
consortium we just started (since April 2007) to apply the
different codes to compute nonlinear force-free coronal
magnetic fields from Hinode vectormagnetograms. This
project might provide us already some new insights about
coronal physics.
[78] To conclude, we can say that the capability of

Cartesian nonlinear force-free extrapolation codes has rap-
idly increased in recent years. Only 3 years ago most codes
run usually on grids of about 643 pixel. Recently developed
or updated codes (Grad-Rubin by Wheatland, MHD relax-
ation by Valori, optimization by Wiegelmann, optimization
by McTiernan) have been applied to grids of about 3003

pixel. Although this increase of traceable grid sizes is
certainly encouraging, the resolution of current and near-
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future vector magnetographs (which of course measure only
data in 2D!) is significantly higher. We should keep in mind,
however, that the currently implemented NLFFF codes have
been only moderately parallelized using only a few pro-
cessors. The CSWM conference, where this paper has been
presented, took place at the ’Earth simulator’ in Yokohama,
which contains several thousands of processors used for
Earth-science computer simulations. An installation of
NLFFF codes on such massive parallel computers (which
has been briefly addressed on NLFFF consortium meetings)
combined with adaptive mesh refinements might enable
drastically improved grid sizes. One should not underesti-
mate the time and effort necessary to program and install
such massive parallelized versions of existing codes. As full
disk vectormagnetograms will become available soon
(SOLIS, SDO/HMI) it is also an important task to take a
spherical geometry into account. First steps in this direction
have been carried out with the optimization and boundary
element methods. Spherical NLFFF geometries are current-
ly still in it’s infancy and have been tested until now only
with smooth semianalytic Low and Lou equilibria and
require further developments.
[79] Attention has also recently been drawn to the prob-

lem that the coronal magnetic field is force-free, but the
photospheric one is not. Tests with extrapolations from
solar-like artificial photospheric and chromospheric meas-
urements within the NLFFF consortium paper, part II,
revealed that extrapolations from the (force-free) chromo-
spheric field provide significantly better results as extrap-
olations using directly the (forced) photospheric field.
Applying a preprocessing program on the photospheric
data, which effectively removes the nonmagnetic forces,
leads to significantly better results, but they are not as good
as by using the chromospheric magnetic field vector as
boundary condition. An area of current research is the
possibility to use chromospheric images to improve the
preprocessing of photospheric magnetic field measure-
ments. Improvements in measuring the chromospheric mag-
netic field directly [e.g., Lagg et al., 2004] might further
improve to find suitable boundary conditions for NLFFF
extrapolations. Force-free extrapolations are not suitable,
however, to understand the details of physical processes on
how the magnetic field evolves from the forced photosphere
into the chromosphere, because nonmagnetic forces are
important in the photosphere. For a better understanding
of these phenomena more sophisticated models which take
pressure gradients and gravity (and maybe also plasma
flow) into account are required. Some first steps have been
done with a generalization of the optimization method by
Wiegelmann and Neukirch [2006], but such approaches are
still in their infancy and have been tested so far only with
smooth MHD equilibria. It is also not entirely clear how
well necessary information regarding the plasma (density,
pressure, temperature, flow) can be derived from measure-
ments. Nonmagnetic forces become important also in quiet
sun regions [Schrijver and van Ballegooijen, 2005] and in
the higher layers of the corona, where the plasma b is of the
order of unity. Coronagraph measurements, preferably from
two viewpoints as provided by the STEREO mission,
combined with a tomographic inversion might help here
to get insights in the required 3D structure of the plasma
density. One should also pay attention to the combination of

extrapolation methods, as described here, with measure-
ments of the Hanle and Zeeman effects in coronal lines
which allows the reconstruction of the coronal magnetic
field as proposed in feasibility studies of vector tomography
by Kramar et al. [2006] and Kramar and Inhester [2006].
Other measurements of coronal features, for example,
coronal plasma images from two STEREO viewpoints,
can be used for observational tests of coronal magnetic
field models. Using two viewpoints provide a much more
restrictive test of models as images from only one view
direction. While a nonlinear force-free coronal magnetic
field model helps us to derive the topology, magnetic field
and electric current strength in coronal loops, they do not
provide plasma parameters. One way to get insights regard-
ing the coronal plasma is the use of scaling laws to model
the plasma along the reconstructed 3D field lines and
compare correspondent artificial plasma images with real
coronal images. Schrijver et al. [2004] applied such an
approach to global potential coronal magnetic fields and
compared simulated and real coronal images from one
viewpoint. A generalization of such methods toward the
use of more sophisticated magnetic field models and coro-
nal images from two STEREO viewpoints will probably
provide many insights regarding the structure and physics of
the coronal plasma. An important challenge is for example
the coronal heating problem. The dominating coronal mag-
netic field is assumed to play an important role here,
because magnetic field configuration containing free energy
can under certain circumstances reconnect Priest [1996,
1999] and supply energy for coronal heating. Priest et al.
[2005] pointed out that magnetic reconnection at separators
and separatrices plays an important role for coronal heating.
Nonlinear force-free models can help here to identify the
magnetic field topology, magnetic null points, separatrices
and localized strong current concentration. While magnetic
reconnection [see, e.g., Priest and Schrijver, 1999] is a
dynamical phenomenon, the static magnetic field models
discussed here can help to identify the locations favorable
for reconnection. Time sequences of nonlinear force-free
models computed from corresponding vector magnetograms
will also tell wether the topology of the coronal magnetic
field has changed due to reconnection, even if the physics of
reconnection is not described by force-free models. Sophis-
ticated 3D coronal magnetic field models and plasma
images from two viewpoints might help to constrain the
coronal heating function further, which has been done so far
with plasma images from one viewpoint [Aschwanden,
2001a, 2001b] (by using data from Yokoh, Soho and Trace).
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