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Abstract. Many authors use magnetic-field models to extrapolate the field in the solar corona from
magnetic data in the photosphere. The accuracy of such extrapolations is usually judged qualitatively
by eye, where a less judgemental quantitative approach would be more desirable. In this paper, a ro-
bust method for obtaining the best fit between a theoretical magnetic field and intensity observations
of coronal loops on the solar disk will be presented. The method will be applied to Yohkoh data using
a linear force-free field as an illustration. Any other theoretical model for the magnetic field can be
used, provided there is enough freedom in the model to optimize the fit.

1. Introduction

Since the solar corona is a low-β plasma, its structure and dynamics are dom-
inated by the local magnetic field. Eruptive events, such as flares, coronal mass
ejections (CMEs) and eruptive prominences are driven by excess energy in the
magnetic field. Knowledge of the magnetic structure of the corona plays a key role
in providing a more complete understanding of such events.

Present observations of coronal loops can be divided into two classes, namely
those observed above the solar disk and those observed above the limb. Although
the loops above the solar disk are genuinely three-dimensional structures, their ob-
servations in soft X-rays and EUV provide images that are projected onto the disk
and so only provide two-dimensional information. Essentially, detailed informa-
tion about the height is lost. These restrictions will be removed by the NASA’s
Solar Terrestrial Relations Observatory (STEREO) mission, which will use two
identically equipped spacecraft to provide 3-D imaging of the Sun. However, until
that time, two-dimensional information is all that is available. Aschwanden et al.
(1999) have developed a method of dynamic stereoscopy to reconstruct the three-
dimensional geometry of loops, where the solar rotation is used to vary the aspect
angle of otherwise static structures. This method assumes that the loops do not
change significantly in time.

Solar magnetographs use the polarization of spectral lines to measure the mag-
netic field in the photosphere. At the moment, there is no useful method for meas-
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uring the magnetic field in the corona. In principle, the polarization of emissions
from magnetic-sensitive coronal-line transitions can be used to draw conclusions
about the coronal magnetic field. These lines, however, are very faint so that in
the past they have only occasionally been used (e.g., House, 1977; Arnaud and
Newkirk, 1987).

To complement this, the new topic of coronal seismology can provide some
information about the coronal magnetic field based on a detailed knowledge of
the MHD waves modes (e.g., Roberts, Edwin, and Benz, 1984; Nakariakov and
Ofman, 2001; De Moortel and Hood, 2000).

As the coronal field is largely unknown, the only method to deduce the magnetic
structure of the corona is to extrapolate it using theoretical models from magnetic
field data in the photosphere.

One class of theoretical models are force-free fields. These have the assump-
tions discussed below.

(1) The coronal magnetic field, B, may depend on one or more parameters. For
example, in the corona, the force-free assumption

j × B = 0 (1)

is justified if the plasma β is small (for a different point of view see Gary, 2001).
So, the field can be described by

∇ × B = αB. (2)

– α = 0 corresponds to the potential case (e.g., Schmidt, 1964; Semel, 1967;
Sakurai, 1982; Rudenko, 2001).

– α = constant provides the linear, force-free case (e.g., Nakagawa and Raadu,
1972; Chiu and Hilton, 1977; Seehafer, 1978, 1982; Alissandrakis, 1981; Semel,
1988; Gary, 1989; Lothian and Browning, 1995).

– If α varies with the position, then the resulting magnetic field is a non-linear,
force-free field (e.g., Sakurai, 1981; Amari et al., 1997; McClymont, Jiao, and
Mikic, 1997; Wheatland, Sturrock, and Roumeliotis, 2000).

(2) Magnetograms of the area can provide a boundary condition for the mag-
netic field in the photosphere.

(3) Because of the small value of magnetic resistivity (or equivalently, the large
value of the magnetic Reynolds number, Rm), the magnetic field and the plasma
are ‘frozen-in’ together. The negligible perpendicular thermal conduction means
that heat rapidly spreads along the field but cannot diffuse across the field. Thus,
neighboring field lines can have a very different temperature. Hence, it is thought
that the enhanced intensity outlines the local magnetic field in coronal loops (e.g.,
Zirin, 1971; Frazier, 1972; Poletto et al., 1975; Levine, 1976).

Magnetic extrapolation has been used in many other studies. For example, Tang
et al. (2000) studied a brightening event that occurred on 18 May 1994. They used
Yohkoh soft X-ray images, vector magnetograms and Hα filtergrams and produced
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a magnetic extrapolation using a linear force-free field. The fit to the observations
was produced by trial and error.

Van Driel-Gesztelyi et al. (2000) studied two sigmoid events (on 25 October
1994 and 14 October 1995) and both were related to the onset of CMEs. Stokes
vector magnetograms, from Mees Observatory, were matched to Yohkoh soft X-ray
images using a linear force-free field. The method of construction is not specified.

Régnier and Amari (2001) and Régnier, Amari, and Kersalé (2002) studied the
active region NOAA 8151 (11–13 February 1998) in which a filament eruption
is linked to the disappearance of a sigmoidal structure. Observational data was
taken from Yohkoh soft X-ray images and vector magnetograms (from Mees Obser-
vatory) and a nonlinear force-free field using a vector potential, Grad–Rubin-like
method (Amari, Boulmezaoud, Mikic, 1999) was calculated numerically.

In order to fit the loops observed with extrapolated field lines, it is necessary to
find the best value of the parameters that define the magnetic field (for example, α

in the linear force-free case). To do that, the usual method is: choose a value of the
parameters, plot some field lines and compare them with the shape of the observed
loops. If they do not look similar, another value for the parameters is chosen until
a ‘similar’ shape is found.

In this paper the efficiency of this method is questioned. What makes one fit
better than another? In some cases, a slight change of the parameters does not
change the field line profile significantly, so no firm conclusions can be drawn
about which is the best approximation. Also, fitting a two-dimensional image to a
3D magnetic field calculation introduces an additional free parameter that has to
be determined, namely the height of the field lines.

For these reasons, it is necessary to produce a more quantitative than a qualit-
ative method to measure just how accurate the magnetic field extrapolation is. A
possible approach to this problem is presented in this paper. Section 2 describes the
general method and Section 3 illustrates its use for the particular case of a linear
force-free field (although the method can be used by any model that describes the
magnetic field using a set of parameters).

Some effort in this direction has been introduced by Wiegelmann and Neukirch
(2002). They present a similar method but for three-dimensional structures, that
will be applied to data from the SECCHI instrument aboard the STEREO mission.

2. Method of Approach

The method is split into several steps and a more detailed description of each step
will be presented in Section 3 in the form of an example. While certain parts of
the procedure can be automated, there are other sections that do require human
intervention.

(1) Align the magnetic data (e.g., from SOHO/MDI) and the loop image (e.g.,
X-ray from Yohkoh/SXT, or EUV from SOHO/EIT or TRACE, or Hα from the
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Solar Flare Telescope at the NAOJ): in general, photospheric magnetograms and
loop images are taken from different instruments and not necessarily at the same
time. For these reasons it is necessary to align both observations so that they are
looking at the same area. Standard solar-software IDL routines can be used for this
purpose.

(2) Identify the loop and its foot-point areas: the loop is identified in the in-
tensity image and care should be taken to select a loop that does not have any
other loops crossing either in front or behind it. In addition, it is essential that, to
some degree, the complete loop can be seen. The footpoints are taken as the ends
of the loop in the intensity, unless there is a dominant polarity source seen in the
magnetograms. For simplicity, each foot-point area is a circle defined by its center
and radius, although a more complex definition could be applied. The value of the
center and radius is chosen so the entire end of the loop is included on it (or the
entire source in the magnetogram).

(3) Select a value for the magnetic-field parameter, α: at this stage, α is simply
an adjustable parameter or set of parameters in the magnetic-field model. For the
force-free assumption, α describes the non-potential nature of the field. In general
though, α can be a (many) parameter(s) in the magnetic-field model and the method
is not restricted to force-free fields.

(4) Calculate a set of field lines: the starting points for the field-line calculations
are spread over both footpoint areas. Each field-line equation is integrated, from
a starting point inside one of the footpoint areas, until the field line either returns
to the photosphere or leaves the region of interest. If the ends of the field line lie
inside both footpoint areas, it is accepted, otherwise it is rejected. Thus, only the
field lines that go from one footpoint area to the other will be used. However, while
the end points may be correct, the shape of the field lines may be entirely different
from the shape of the loop. A method to describe how well a field line fits the
observed loop must be determined.

(5) For each field line, calculate the deviation between the field line and the
intensity pattern, Ci(α): a two-dimensional coordinate system is chosen that uses
the distance along the field line as one of the coordinates and the distance per-
pendicular to the field line as the other. In this manner the field line is ‘uncurled’
or straightened out. The effect is to give, at each location, j , along the loop, an
intensity variation perpendicular to the field, Ij (N), where N is the perpendicular
normal coordinate. This intensity profile is fitted by a Gaussian and the maximum
of the Gaussian is taken as the location of the loop. This will occur at N = Nmax,j .
If Nmax,j = 0, then the loop and the field line are at the same location. In general,
Nmax,j �= 0 so that there is a discrepancy between the loop location and the field
line. The standard deviation, Ci(α), of this difference is calculated. For the ith field
line this is given by

C2
i (α) =

M∑
j=1

N2
max,j

(M − 1)
, (2)
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Figure 1. The unit vectors ŝ and n̂, representing unit vectors parallel and perpendicular to the direction
of the field line, define the coordinate system for the straightened-out field line. The lines Li, Lj and
Lk are normal to the field line at locations si, sj and sk along the field line. The intensity along Lj,
i.e., across the field line, is shown.

where M is the number of locations along the S coordinate. The method is illus-
trated in Figure 1.

(6) Calculate the overall deviation for the chosen value of α, C(α): the value of
Ci(α) will vary from field line to field line. These deviations must be combined to
give a measure C(α) for a specific value of α. In this paper, both the average and
the minimum values of Ci(α) will be calculated and compared. However, more
complex strategies could be used instead.

(7) Repeat the procedure for different values of α. The value of α that gives the
overall global minimum of C provides the best fit to that particular observed loop.

3. Application to Linear Force-Free Coronal Loops

3.1. CORONAL MAGNETIC FIELD

The procedure is illustrated using an example to fit linear force-free fields to
Yohkoh/SXT images of coronal loops. In this case the parameter α is the linear
force-free constant determining the amount of non-potential current in the system.

It is likely that the actual coronal magnetic field will not be a linear force-free
field, but this provides a simple illustration of the proposed field line fitting method.

For the linear force-free field case, the problem is to solve in the upper half-
space {z ≥ 0}

∇ × B = αB, (3)

∇ · B = 0, (4)

using the magnetogram data from MDI to specify the line-of-sight magnetic field
component at the photospheric boundary.

Assuming that the region of study is near the disk center, and ignoring the
photosphere curvature, a Cartesian system of coordinates is used. In this system, z

refers to the height and (x, y) to the photospheric plane at z = 0. A magnetogram
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will give the Bz component at z = 0. If the field vanishes at large height, the
boundary conditions can be expressed as

Bz(x, y, 0) = B0(x, y), (5)

lim
z→∞ B(x, y, z) = 0. (6)

There are several ways of solving these equations to obtain the spatial variation of
B:

(1) In terms of Bessel functions (Schatzman, 1961).
(2) In terms of Fourier series (Nakagawa and Raadu, 1972).
(3) In terms of Green’s functions (Chiu and Hilton, 1977).
The method chosen in this work is the third one for which the most general

solution is

B(x, y, z) = 1

2π

∞∫

−∞

∞∫

−∞
G(x − x′, y − y′, z)Bz(x

′, y′, 0) dx′ dy′+

+ 1

2π

∞∫

−∞

∞∫

−∞
G̃(x − x′, y − y′, z)C(x′, y′) dx′ dy′.

(7)

Here C(x, y) is an arbitrary function of the source coordinates, G is the Green’s
function and G̃ is the ‘complementary’ Green’s function necessary to make Equa-
tion (7) a general solution for the magnetic field. The Green’s function components
Gx,Gy and Gz are of the form:

Gx(x, y, z, x′, y′) = x − x′

R

∂�

∂z
+ α�

y − y′

R
,

Gy(x, y, z, x′, y′) = y − y′

R

∂�

∂z
− α�

x − x′

R
,

Gz(x, y, z, x′, y′) = −�

R
− ∂�

∂R
,

(8)

where

� = z cos (αρ)

Rρ
− cos (αz)

R
. (9)

Meanwhile, G̃ has the same structure as G with � replaced by a function �̃

whose expression is

�̃ = z sin (αρ)

Rρ
− sin (αz)

R
. (10)
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Figure 2. Yohkoh image of a coronal loop. The two footpoint areas are indicated by the dashed circles.
The start area is where the starting points of the field lines are localised. Field lines that do not reach
the target area are discarded.

For any given value of α, the boundary data for Bz(x, y, 0) fix the contribution
to the field from G, but G̃ is a homogeneous solution whose contribution to the
field is not determined by the boundary conditions, except for the potential case
(α = 0), when �̃ = 0.

For the purpose of this study, C(x, y) is set equal to zero everywhere, since
varying the choice of α gives sufficient freedom to obtain a qualitative match to the
real field. This choice is often made in the literature (e.g., Lothian and Browning,
1995), and it is equivalent to setting ∂Bz/∂z = 0 everywhere on the boundary
except at the sources of B, where it is fixed by the strength of the source.

Petrie and Lothian (2003) studied the effect of including the complementary
Green’s function. Choosing C(x, y) = bBz(x, y), where b is a real parameter,
some simple systems where studied. They concluded that, the effect of b depends
on the topological stability of the system and is less straightforward than the famil-
iar response to varying α.

3.2. EXAMPLE OF METHOD USING A Yohkoh LOOP

The data used in this example corresponds to an active region studied by Glover
et al. (2001) during three consecutive rotations. During the first and the second
rotations (March and April 2000), it dominated activity on the disk. During its
third rotation two CMEs took place. This study has been done prior to the first
CME during the third rotation.

Figure 2 shows a coronal loop observed in SXT; the footpoint areas are indic-
ated in the figure and the starting footpoint area is chosen as the right-hand one.
Therefore, the target footpoint area is the left hand one. Starting points for the field
line integration are chosen inside the starting footpoint area.
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Figure 3. Four simulated field lines starting at the starting footpoint area are shown. There are clearly
acceptable field lines (dashed) and unacceptable field lines (solid) shown.

To illustrate how the proposed method works, Figure 3 shows the projection
of some simulated field lines onto the Yohkoh image. The acceptable field lines
(dashed curves) end in the target footpoint area but there are also several field lines
that are unacceptable (solid curves) since they do not reach the target area. Of the
two acceptable field lines, one looks like a better fit than the other. It is the object
of this paper to determine the quality of the field line fit. A measure of how well
the field line fits the observations is now discussed.

Each of the acceptable field lines is ‘straightened’ out along the corresponding
SXT image (Figure 4), and a measure of the deviation, C, between the field line
and the image is calculated. In this example, 330 field lines (acceptable and un-
acceptable) were calculated for each value of α; their starting points were spread
evenly through both footpoint areas. For the field line shown in Figure 4 the value
of C is 4.26 Mm, while the value of α is 0.016 Mm−1.

Finally, the value of α that provides the best fit is estimated. Figure 5 shows
C(α), for α ∈ [5, 25] × 10−3 Mm−1, plotting both the average and the minimum
of C for all acceptable field lines. For α less than 8.74 × 10−3 Mm−1 and greater
than 21.15 × 10−3 Mm−1, there are no field lines that finished in the target area.
Note that the variation of C is similar when considering either the minimum or the
average of all the field lines. The result for α is 0.016 ± 0.001 Mm−1. For such
an α, Cmin ≈ 2.80 Mm and Cavr ≈ 8.35 Mm.

4. Discussion and Conclusions

This paper has presented a simple technique for optimizing the fit of a theoretical
coronal magnetic field model to X-ray (or other coronal) observations. The method
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Figure 4. (a) The original SXT image and a superimposed acceptable field line. (b) The ‘uncurled’
field line and the transformed SXT image. (c) The transverse intensity profile and Gaussian fit at a
chord located at S = 18, as shown in (b). (d) The difference between the field line and the intensity
as a function of the distance along the loop. All the lengths on these plots (such as X, Y, S, and N)
are specified in pixels of the SXT image. Each pixel has a width of 7.13 Mm.

Figure 5. The variation of C with the value of α, showing both, the average (Cavr) and the minimum
(Cmin) values for all field lines. The error of Cavr is calculated as the mean absolute deviation.
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provides a set procedure for fitting the magnetic field in an objective manner, re-
moving the subjective nature of previous methods that simply pick field lines that
are similar in shape to an observed coronal loop. Here a collection of magnetic
field lines are fitted by minimizing the deviation between them and the intensity
pattern, rather than just picking one field line and fitting it by eye.

There are seven steps in the procedure and these are described in Section 2. Step
one consists of a proper alignment between magnetograms and coronal images.

The user has important decisions to make in step two. Here the end points of
the coronal loop are identified by eye, from either the ends of the coronal emis-
sion or from dominant polarity sources in magnetograms. These footpoints are
individually modeled by circles, whose center and radii must be given.

The remaining steps are essentially automated. The accuracy of α depends on
its range and step size (δα), bearing in mind that some values of α may produce no
acceptable field lines.

The calculation of the field lines in step four, starting from the one of the
photospheric footpoints, depends on the particular theoretical model being used.
However, enough field lines must be calculated to be representative of the flux
connectivity of the footpoints. Although the fitting procedure applies to any theor-
etical magnetic field model, the constant α solution is used here. It is determined
as an analytical expression in terms of a Green’s function solution.

Step five is the key to the field-line fitting technique. A particular acceptable
field line is selected and a coordinate system based on the distance along and per-
pendicular to this field line is constructed. The coronal image is then transformed
into this coordinate system and the position of the coronal loop, in terms of the
maximum of the coronal emission, is deduced. The position of the coronal loop
is obtained by fitting a Gaussian curve to the coronal intensity. The square of the
perpendicular distance, N2, gives a measure of the disparity of the fit at a particular
distance along the loop. The total deviation, Ci(α), for this particular field line is
calculated by summing the differences at each location. This is repeated for all the
other acceptable field lines.

In step six, either the average of C over the acceptable field lines or the min-
imum C is selected for each value of α.

Finally, step seven repeats the above for different values of α and the best fit is
given by the value of α that provides the global minimum C.

The method has been illustrated by using the example of a constant α, linear
force-free field. The only free parameter in this case is α and it is adjusted to
minimize the standard deviation between the observed and calculated field lines.
It is accepted that the constant α field is unlikely to be the correct model for the
coronal magnetic field. However, the particular magnetic-field model is not crucial
to demonstrate the feasibility of the fitting technique described in this paper.

This method is easily extendable to magnetic-field models with multiple para-
meters, though the time taken to scan multidimensional parameter space will in-
crease exponentially with the number of parameters. One example could be to
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take the complementary part of the linear force-free field into account (Petrie and
Lothian, 2003). Another possibility would be to use the method of Petrie and
Neukirch (2000) with a wider class of MHS solutions depending on additional
parameters.

In future, this method will be applied to more general magnetic field models.
To show the advantages of this fitting approach, other data sets will be studied. In
particular, it will be useful to study the same active region over a period of time.
The constant α field can be used to investigate how the value of α changes before
and after the eruption of a coronal mass ejection.

In this paper Yohkoh/SXT data has been used to judge the quality of the extra-
polated field lines for different values of the field parameters. It should be noted
that observations of the same region with different wavelength filters will outline
plasma at different temperatures. It would be interesting to see whether the different
observations of the same region are indeed represented by a common α in a linear
force-free model, or whether the value of α varies significantly. This would provide
a measure of the quality of the linear force-free model in a localised region of the
corona, and would have implications on the validity of using this model to study
changes in α over a period of time.
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