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Abstract. We compare six algorithms for the computation of nonlinear force-free (NLFF) magnetic
fields (including optimization, magnetofrictional, Grad—Rubin based, and Green’s function-based
methods) by evaluating their performance in blind tests on analytical force-free-field models for
which boundary conditions are specified either for the entire surface area of a cubic volume or for
an extended lower boundary only. Figures of merit are used to compare the input vector field to the
resulting model fields. Based on these merit functions, we argue that all algorithms yield NLFF fields
that agree best with the input field in the lower central region of the volume, where the field and
electrical currents are strongest and the effects of boundary conditions weakest. The NLFF vector
fields in the outer domains of the volume depend sensitively on the details of the specified boundary
conditions; best agreement is found if the field outside of the model volume is incorporated as part of
the model boundary, either as potential field boundaries on the side and top surfaces, or as a potential
field in a skirt around the main volume of interest. For input field (B) and modeled field (b), the best
method included in our study yields an average relative vector error E, = (|B—Db|)/(|B|) of only 0.02
when all sides are specified and 0.14 for the case where only the lower boundary is specified, while
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the total energy in the magnetic field is approximated to within 2%. The models converge towards
the central, strong input field at speeds that differ by a factor of one million per iteration step. The
fastest-converging, best-performing model for these analytical test cases is the Wheatland, Sturrock,
and Roumeliotis (2000) optimization algorithm as implemented by Wiegelmann (2004).

1. Introduction

The geometry and dynamics of the solar corona are determined by the evolving
electromagnetic field at the Sun’s surface. The coronal extension of the magnetic
field and the electrical currents that it carries determine the confining forces for
the multitude of plasma atmospheres that emit predominantly X-ray and EUV
radiation. The energy in the electrical currents may at times be (partially) released
in impulsive solar flares, in eruptive coronal mass ejections, or most commonly
in gradual rearrangements of the magnetic field and in the plasma volumes that it
contains.

Understanding the coronal electromagnetic field is a complex problem because
of both intrinsic physical problems and observational limitations. On the observa-
tional side, we face the problem that we cannot measure the magnetic field reliably
in enough of the solar outer atmosphere to compare models directly to observations.
This problem will likely persist for a considerable time, because even if we suc-
ceed in learning to employ coronal diagnostics to measure the magnetic field, the
line-of-sight integration in optically thin (X-ray and EUV) radiation and the lack of
a height scale for optically thick (radio) radiation will preclude the unambiguous
determination of the spatially resolved vector-magnetic field in the solar corona.

The only environment for which we can currently measure the vector magnetic
field is the photosphere of the Sun. Even there the measurement is subject to sub-
stantial observational noise and modeling biases which complicate the inversion
of the polarization signals. Moreover, there is an intrinsic 180° ambiguity in the
direction of the vector components perpendicular to the line of sight (e.g., Metcalf,
1994). In these relatively dense layers of the solar atmosphere, the plasma forces
are still considerable compared to the magnetic forces. Extrapolating the measured
photospheric vector field into the solar corona consequently requires knowledge
of the plasma forces that act on that magnetic field at least throughout the upper
photospheric and chromospheric domains.

In the corona, the lack of observational constraints for the magnetic field is
alleviated by the fact that much of the time, most of the coronal field is not affected
by the plasma that it carries. The coronal field is therefore often said to be “force-
free,” i.e., free of forces other than the balancing electromagnetic forces that it
exerts on itself (but see, e.g., Gary, 2001).

Even the simplification that the coronal field is force free does not solve all our
problems, however, because we have — at least at present — inadequate access to the
upper chromospheric field from where the forces of the field are generally assumed
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to dominate those of the plasma (Metcalf ez al., 1995). Hence the observable photo-
spheric vector field needs to be extrapolated through the non-force-free environment
of the upper photosphere and lower chromosphere, which is a problem that remains
to be solved.

Moreover, the computation of a force-free field itself is subject to numerical
instabilities that require considerable attention. On top of all this, the nonlinearity
of the problem makes it unavoidable that the results are highly sensitive to even
relatively distant fields or — in case a partial coronal volume is computed — on how
much is known about the boundary conditions at the edges of the model volume.

As a consequence of these problems, many quantitative studies of the solar
coronal field continue to use the simplest of the force-free fields, namely the current-
free potential field. Such models, although often fairly good approximations (e.g.,
Schrijver et al., 2005), cannot be used to determine the energy contained in electrical
currents and magnetic fields available for driving instabilities, or even provide the
simple assessment of where such energy might exist within active regions.

Potential fields are often not suitable to describe the magnetic field topology in
active regions. The next level of model is the so-called linear force-free-field model,
which assumes a fixed ratio (o) between electrical current density and magnetic field
strength throughout the corona. Whereas this often provides a fair approximation
to the coronal field over active regions, the unphysical assumption of a constant o
precludes the measurement of the available, or free, energy in the corona (in fact,
it results in a formally unbounded energy if applied to the entire volume above the
solar surface, e.g., Seehafer, 1978).

Several methods have been developed over the past few decades to compute the
most general class of force-free fields, the so-called nonlinear force-free (NLFF)
field (described in Sections 2 and 3). This class of field configuration is difficult to
compute, and solutions depend strongly on the implementation of the boundaries.

The study described in this paper is part of a project that aims to evaluate and
address these problems, with the ultimate goal of developing a fast, reliable method
of measuring coronal free energy in active regions. We focus here on a quantitative
assessment of several existing NLFF field modeling methods by applying them first
to known analytical test cases, to later evaluate their results when applied to vector
magnetic field measurements of solar active regions. We also discuss the effects of
different methods of applying boundary and initial conditions, and evaluate required
computing times and scalings with grid sizes.

2. Some Properties of Force-Free Fields

Force-free coronal magnetic fields are defined entirely by requiring that the field
has no Lorentz force and is divergence free (the “solenoidal condition”):

1o xB=(V xB)xB =0, (1)
V-B=0, ()
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where B and J are the vectors of the magnetic field strength and of the electrical
current density. Equation (1) can be rewritten by introducing a scalar function (),
sometimes known as the torsion function, so that

woJ =V x B =aB, 3)
B-Va =0, “4)

where Equation (4), which results by taking the divergence of Equation (3) and
using Equation (2), shows that « is constant along field lines for any NLFF
field.

For o = 0 the above equations describe a potential field, which is both force-free
and current-free. For « = constant, they describe a current-carrying linear force-
free (LFF) field, and for « = f(r) a general nonlinear force-free field (referred to
below as a NLFF field), depending on position ().

The modeling of a NLFF field is, not surprisingly, sensitive to the boundary
conditions. Some insight into this can be gained directly from Equation (4): as
there can be no gradient in « along individual magnetic field lines, all field lines
that intersect the photosphere on both ends, must end on locations with the same
value of &, i.e., with the same ratio and relative direction between field strength and
current density.

Equation (3) indicates that the value of « at the photospheric boundary specified
by a vector field measurement with horizontal components B, and B, and vertical
component B, is given by

1 (3B B,
o= (98 _9B:) (5)
B, \ 0x ay

In other words, the photospheric vector field uniquely defines the map of « for
the lower boundary condition (disregarding the non-force-free nature of the photo-
sphere for a moment). As field lines must connect pairs of points (x; 2, y1,2) with
a(xy, y1) = a(x, ¥2), the connectivity that is to be established by the NLFF field
modeling is strongly constrained by that map. Low and Lou (1990) illustrate the
consequences of measurement noise for this connectivity problem by pointing out
the particular case of a field line that connects the absolute minima in « on the lower
(photospheric) boundary: if ¢ at one of the footpoints of that field line is increased
by the measurement errors, then the problem becomes formally unsolvable. We
note that in practice, this problem is commonly avoided — not solved — by applying
the « field only in one polarity of the vector magnetic field at the lower boundary.

This same problem for the field solution shows up equally forcefully when we
realize that vector fields are measured for only a small part of the solar surface.
Such measurements are often available only for a field of view that does not contain
an entire active region or is generally not flux balanced, while coronal observations
readily show that active regions are generally connected to distant field either in
other active regions or in the surrounding quiet Sun (see, e.g., TRACE images
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in Schrijver et al., 1999). Imposing flux balance, or requiring all field lines to
close within the computational volume unavoidably affects the connectivity of
the field, and that in turn affects the field structure and the free energy contained
within it.

The mathematical difficulties that these problems pose are often circumvented
by restricting the information used from the vector magnetic field measurement to,
for example, the normal component of the field, B,, and « for only one polarity
of the field (see the discussion by Wheatland, Sturrock, and Roumeliotis, 2000).
But removing a mathematical difficulty is not the same as addressing the physical
problem: we ultimately need to find a modeling approach that allows for the fact
that the vector magnetic field in the photosphere is really only an approximate
boundary condition.

2.1. Low-Lou MODEL

Low and Lou (1990) describe a special class of NLFF fields for which Equations (1)
and (2) can be written as a second-order partial differential equation (with eigen-
values myy and nyy ). These fields are axially symmetric, but Low and Lou (1990)
show that arbitrary positioning of a plane (characterized by the parameters ¢
and @) within these solutions to represent the Sun’s surface under active region
fields can provide boundary conditions and overlying fields that are useful as test
cases for NLFF field modeling algorithms. We use two of these solutions as test
cases:

Case I: np. =1, my =1, £ = 0.3, ® = /4. The vector field on all six bound-
aries of a 643—pixel cubic volume bounded by x,y € [—-1, +1] and z € [0, 2]
was provided, with the aim of determining the NLFF field in this volume. This
input field is shown in Figure 4 of Low and Lou (1990) and was used by Wheat-
land, Sturrock, and Roumeliotis (2000) as a test case in the development of the
optimization method. The vector field for all six boundaries of a cubic volume
is specified for Case I on a 64 x 64 grid.

Casell: nyy =3,my = 1,£ = 0.3, ® = 47/5. The vector field on only the surface
bounded by x, y € [—3, +3] was provided. The surface vector field is specified
as the boundary condition for Case I on a 192 x 192 pixel grid centered on the
643-pixel test region.

These fields are shown in panels a of Figures 1—4. Case I is significantly more
non-potential over a greater fraction of the model volume than Case II, even as
Case Il is more non-potential near the center of the model region (compare also
the field energies contained in the model volume listed in Tables I and II). The
region of strongest field is more compact in Case II than in Case I in order to
reduce the relative sensitivity to the unspecified “far field” in Case II, as described
in Section 5.1.
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Figure 1. Magnetic fields for Case I in which all six side boundaries were provided to the modelers.
The field lines were started from a regular rectangular grid. The field lines within the inner half of the
model volume (as outlined by the smaller cube) are shown in black. The field in the inner volume is
shown enlarged in Figure 2. The panels are in the same order as the entries in Table I: (a) Low and
Lou input model; (b) Wiegelmann; (c) McTiernan; (d) Valori; () Wheatland; (f) Régnier; (g) Liu; (h)
LFF field; (i) potential field.



COMPARISON OF NLFFF METHODS 167

Figure 2. As Figure 1, but showing only the central domain of the model volume, as outlined by the
small cube in Figure 1. Note that more field lines are drawn in this figure than in Figure 1.

3. Description of Methods
3.1. POTENTIAL AND LINEAR FORCE-FREE fiELDS

The linear force-free field was computed using the Fourier method described by
Gary (1989) with the vertical Low and Lou field as the boundary condition. The
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Figure 3. Same as Figure 1, but for analytical Case II, for which only the lower boundary was
provided.

boundary is periodic in the Fourier solution of the linear force-free equations, but
the magnetogram was padded with zeroes to reduce the effect of the periodicity.
The constant value of the linear force-free parameter () was selected to minimize
the differences between the horizontal field from the Low and Lou field and the
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(d) Val

Figure 4. As Figure 3, but showing only the central domain of the model volume, as outlined by the
small cube in Figure 3.

horizontal field from the linear force-free solution (the so-called o, in, e.g., Leka
and Skumanich, 1999). The minimization was applied only over the core region of
the Low and Lou solution. A potential field solution was also computed with this
method by setting o = 0.
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TABLE 1

Model results for Case I, specifying all six sides of the box (upper table), and Case II, specifying
only the lower boundary (bottom table).

Model Cyec! Ccs? EI E* &  o° 7 1T BC

(Case I) All boundaries provided, entire volume
(a) Low and Lou 1 1 1 1 1 1.29 -

(b) Wiegelmann  1.00  1.00 0.98 098 1.02 131 5 6B

(c) McTiernan 1.00  0.99 0.92 087 1.00 130 5 6B

(d) Valori 099  0.68 0.71 033 098 121 5 3By

(e) Wheatland 098 0.83 0.64 042 090 1.17 6 5By +

(f) Régnier 093 049 0.41 0.09 0.80 1.04 6 B, ., 0

(g) Liu 088 046 —-0.10 —=3.00 1.13 147 o6+ B+, ®

(h) LinearFF 0.88  0.90 0.50 042 077 1.00 ~3 Olbest

(i) Potential 085 0.82 0.45 035 077 1 ~3 By ;
(Case II) Only lower boundary provided, entire volume

(a) Low and Lou 1 1 1 1 1 1.10

(b) Wiegelmann  1.00 0.57 0.86 —-025 1.04 1.14 B B, ®

(c) McTiernan 1.00  0.51 0.84 —-0.38 1.04 1.14 C B,9o

(d) Valori 099 055 075 —-0.15 1.02 1.12 D 4By

(e) Wheatland 099 0.8 0.69 0.13 096 1.05 E B¢+

(f) Régnier 094  0.28 049 —-1.7 074 0382 F B¢, O

(g) Liu 097 041 —-0.02 -—14. 1.00 1.09 G Byt ©

(h) LinearFF 093 0.08 —-0.80 -—37. 1.04 1.15 Obest

(i) Potential 092 035 047 —0.63 091 1 By,

Note. The letter coding in the first column is the same as for the panels in Figures 1-4. The
NLFF field models are listed in order of decreasing quality of agreement, as ranked by the vector
correlation, Cyec, and the normalized vector error, or its listed complement EI’1 = 1 — E,. The linear
force-free field and potential field cases are listed at the bottom of the tables.

1 Cyec, vector correlation, Equation (28).

2 Ccs, Cauchy-Schwarz, Equation (29).

3 E; =1 — E,, complement of normalized vector error, Equation (30).

4 E/, =1 — Ep, complement of mean vector error, Equation (31).

3 ¢, total magnetic energy normalized to the input case.

6 ep, magnetic energy relative to a potential field.

7 Scaling exponent for number of grid points, N, per dimension in the top panel, and computational
resources and run times in the bottom panel: B = 15 minutes on two 666 MHz Compaq UNIX «o
processors (80 x 80 x 72 gridpoints); C = 14 hours on a 2.4 GHz processor (102 x 102 x 101 grid
points); D = 2 hours on a four-processor Hitachi sr 8000; E = 9.5 hours on a dual 2.4 GHz Opteron;
F = 56 hours on Sun V880 using 3 processors of 2 GB; G = 9 hours on 2.2 GHz Intel Pentium 4.
8 6B: vector field on all 6 sides; By : vector field on (8: partial) lower boundary in one polarity to
derive «, using only the vertical field (B;) in the other polarity; [: no field lines can leave the box;
©: no field assumed outside the box; afix: see Section 3.1; By . : vertical component of photospheric
field only; ®: potential field specified on side and top boundaries.
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TABLE 1II
As Table I, but for the inner volume of 323 pixels outlined by the cubes in
Figures 1 and 3, showing only the figures of merit for Cases I and II in the top
and bottom parts of the Table, respectively.

Model Cvec! Ccs?  E3 E4Y & ep®

(Case I) All boundaries provided, inner volume
(a) Low and Lou 1 1 1 1 1 1.24
(b) Wiegelmann 1.00 1.00 0.97 096 1.02 126
(c) McTiernan 1.00 0.99 0.94 0.85 1.01 1.25

(d) Valori 1.00 0.98 0.90 087 098 121
(e) Wheatland 0.99 0.89 0.75 057 093 1.16
(f) Régnier 0.95 0.74 0.59 039 0.82 1.02
(g) Liu 0.98 0.85 0.71 043 089 1.11
(h) LinearFF 0.88 0.91 0.54 049 0.80 1.00
(i) Potential 0.86 0.87 0.50 044 081 1
(Case II) Only lower boundary provided, inner volume
(a) Low and Lou 1 1 1 1 1 1.10

(b) Wiegelmann 1.00 0.91 0.92 066 1.04 1.14
(c) McTiernan 1.00 0.88 0.91 062 1.04 1.14

(d) Valori 0.99 0.82 0.83 039 1.02 1.12
(e) Wheatland 0.99 0.88 0.77 057 096 1.05
(f) Régnier 0.94 0.80 0.63 043 074 0.82
(g) Liu 0.97 0.54 048 =22 099 1.09
(h) LinearFF 0.94 0.53 039 =31 1.01  1.10
(i) Potential 0.92 0.66 0.57 030 091 1

3.2. NONLINEAR FORCE-FREE FIELDS

The six NLFF field modeling methods that are tested in this study fall into four
general classes of algorithms:

1. Optimization methods, in which the field is evolved to match the boundary
conditions, and the force-free and divergence-free conditions in some way that
guarantees that the volume integral of the Lorentz force plus divergence (with
weighted terms, if desired) always decrease;

2. Magnetofrictional method, in which the field is evolved by the Lorentz force
acting against an artificial friction;

3. Boundary integral methods, in which the field is explicitly integrated for the
boundaries and then iterated towards a best fit;

4. Grad—Rubin like methods in which a current-field iteration procedure is applied.
A current distribution is chosen aligned with the initial field, the perturbation to
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the field due to the currents is calculated, and then the current is redistributed
along the perturbed field. This procedure is repeated until (hopefully) conver-
gence is achieved. In some of these methods, the boundary currents are increased
from step to step, gradually forcing the field away from an initial potential state.

We discuss examples of each type of method in order:

3.2.1. Optimization methods

Wheatland, Sturrock, and Roumeliotis (2000) developed a method that minimizes
a joint measure (L) for the normalized Lorentz forces and the divergence of the
field (each of which should equal zero, c.f., Equations (1) and (2)) throughout the
volume of interest, V:

L= %/ [B2|(V xB) x B|>+ |V -B|*] dV, (6)
14
where B = |B|.

This method involves minimizing the quantity L by optimizing the solution
function B(x, t) through states that are increasingly force- and divergence-free,
where an artificial time-like parameter (¢) is introduced as follows. Differentiating
the expression for L by ¢ yields integrals over the volume V and the bounding
surface S:

1dL oB oB

——:—/F-—dV—ng'—dS, (7
2 dt v ot s ot

where G — defined in Equation (8) in Wheatland, Sturrock, and Roumeliotis (2000)

—can be ignored if % = 0 on the boundary, and F is a function of the field (B) with
second-order derivatives:

F=Vx(QxB)—Qx(VxB)
-V Q- -B)+ V- -B)+ (2- Q)B, €))
with the vector field (2 defined by
Q=B2[(VxB)xB—-(V-B)B]. 9)
If the temporal evolution of B inside S is defined by 0B/d¢t = «F (where k > 0 is
an arbitrary function, usually set to unity), setting dB/d¢ = 0 on the boundary, then

dL 5
— =2 kF*dv . (10)
dt v

With this prescribed evolution, L is guaranteed to decrease in each step.

For each iteration step (k), the vector field F®) is calculated from the known
field B®, then a new field may simply be computed as B¥*D = B® 4+ F® At for
small At¢, although a higher-order, smoother updating may also be employed.
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3.2.1.1. Optimization Method, as Implemented by McTiernan. For Cases I and
II in this paper, the starting point is a potential field extrapolated from the vector
magnetogram, because the field is expected to be roughly potential far from ac-
tive regions. The potential field extrapolation is derived from the Green’s function
solution of Chiu and Hilton (1977). For Case I, the initial field is potential inside
the volume, but the Low and Lou vector field is used on the boundaries. For Case
I, only the lower boundary magnetic vector field is used, while the initial field is
taken to be potential elsewhere in the volume.

At the start of the iterative process, the field is thus only non-potential at the
lower boundary. Non-potentiality propagates outward as the iterations increase.

The change in the objective function becomes smaller with each iteration. The
code stops when |AL|/L reaches 1078, or AL becomes greater than zero.

For Case I, a uniform cubic grid is used with N = 64 grid points to each side.
For Case I1, a cube with 104? x 102 volume elements is used with a uniform spacing
for the inner grid with N = 64, but with increased grid spacing beyond that in order
to incorporate the field specified on a 1922-pixel plane.

3.2.1.2. Optimization Method with Weighting Function; Wiegelmann. Wiegel-
mann (2004) introduces two weighting functions into Equation (6), thus expanding
on the single-weighting-function approach suggested by Wheatland, Sturrock, and
Roumeliotis (2000):
L, = %/ [we(r) B2 |[(V x B) x B + wq(r) |V - B|*] dV, (11)
14
where wy and wq are positive definite weighting functions for the force and di-
vergence terms. For Case I, wy = wgq = 1. For Case II, for which only the bottom
boundary data are given, Wiegelmann uses the position-dependent weighting func-
tions to introduce a buffer boundary of N, = 8 grid points towards the side and
top boundaries of the computational box. The weighting functions are chosen to
be constant in the inner domain and drop to O with a cosine profile in the buffer
boundary region.

The Wiegelmann algorithm starts with a potential field within the computational
box, replaces either the bottom boundary or all six boundaries with the specified
vector field as available, and proceeds to minimize the functional in Equation (11).
The code checks if L, (t + At) < L,/(t) after each time step. If the condition is
not fulfilled, the iteration step is repeated with At reduced by a factor of 2. After
each successful iteration step, Wiegelmann’s code increases At by a factor of 1.01
to allow the time step to become as large as possible with respect to the stability
condition. The iteration stops if | AALI"’ |/L, < 10~* for 100 consecutive iterations.

The code has been applied to active regions by Wiegelmann ef al. (2005a,b)
and Wiegelmann, Inhester, and Sakurai (2005). The force-free optimization prin-
ciple used here has been generalized to include non-magnetic forces like pressure
gradients and gravity in Wiegelmann and Inhester (2003).
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3.2.2. Magnetofrictional Method, Valori

The MHD relaxation method (Yang, Sturrock, and Antiochos, 1986; McClymont
and Miki¢, 1994; Roumeliotis, 1996; McClymont, Jiao, and Mikié, 1997) evolves a
vector field into a nonlinear force-free field by integrating an approximate form of
the MHD equations. As formulated by Roumeliotis (1996), the tangential compo-
nents in the magnetogram plane are evolved from an initial (often potential) state to
approach the vector magnetogram, which stresses the field at the bottom of the box
(stress phase). In the subsequent relaxation phase, the system is driven toward a
static state by integrating the MHD equations in an approximate form. A dissipative
term, D(v), is included in the momentum equation,

p(%+V-VV)+Vp=JxB+D, (12)
where p is the plasma density, v the velocity, and p the gas pressure. This dissipative
term must vanish for vanishing velocities, but can otherwise be specified relatively
arbitrarily, since intermediate states of the field in the course of the stress-and-relax
procedure are considered to possess no physical significance. A series of stress-and-
relax cycles can be applied until the tangential components of the magnetogram are
matched to some specified degree. If an equilibrium is reached, then any non-zero
terms in Equation (12) correspond to real Lorentz forces and pressure-gradient
forces. If the additional assumption of low plasma § is made, as is done here,
then the pressure term drops out so that a fully relaxed field satisfies the force-free
condition of Equation (1).

Here, the specific version of the so-called magneto-frictional method (Yang,
Sturrock, and Antiochos, 1986) is adopted, which for plasma 8 = 0 neglects the
entire left-hand side of Equation (12) and uses a friction-like dissipative term:

D(v) = —v v. Hence, Equation (12) reduces to
1
v=-J xB, (13)
v
leaving only the induction equation
oB
EZVX(VXB), (14)

with v specified by Equation (13). The quantity v is chosen here to be a convenient
function of space, that optimizes the progress of the relaxation throughout the box
(Yang, Sturrock, and Antiochos, 1986), and it is also chosen to be time dependent to
reduce oscillations in the final phase of the relaxation (Valori, Kliem, and Keppens,
2005).

On the photospheric boundary the general stress-and-relax strategy prescribes
how to impose the magnetic field. Results of a single-step stress version of the
method are presented here, i.e., the magnetogram is directly overwritten onto
the photospheric boundary before the system is advanced in time. At the side
and top boundaries, the tangential components of the magnetic field are linearly
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extrapolated onto ghost cell layers, while the normal component is fixed at each
iteration by requiring that the field remains divergence free. Additionally, a bound-
ary layer (of three and seven points in Cases I and II, respectively) is used where
the velocity field (Equation (13)) is windowed in the outer part of the grid by a
parabolic decrease toward all of the boundaries except z = 0.

Finally, the divergence-free property of the relaxed magnetic field is ensured by
a diffusive approach (Marder, 1987; Dedner et al., 2002).

At the present stage of code development, the spatial discretization is a pure
second-order central differencing combined with a time stepping in a single-step
forward Eulerian manner, where the time stepping is dynamically adapted in order
to insure stability. Such simple discretization leads to an even-odd grid point de-
coupling that results in a weak spatially oscillating modulation of the field values
(Valori, Kliem, and Keppens, 2005). This aspect of the implementation and speed
optimization are currently being improved.

In both Cases I and II, only information from the photospheric boundary was
used. The results presented here were obtained on grids of 66 x 66 x 70 for Case |
and 86 x 86 x 80 for Case II.

3.2.3. lIterative Boundary Integral Method; as Used by Liu

Yan and Sakurai (1997, 2000) proposed an integral equation representation for a
nonlinear force-free field in terms of the field and its normal gradient at the boundary.
In their model, the field (By) at the lower boundary surface (Sp) can be taken from
observations or models. The upper boundary is open to infinity, and field is assumed
to vanish following an asymptotic condition, B = O(riz) for r — oo which ensures
a finite energy content.

Yan and Sakurai (2000) showed how Green’s second identity allows the solution
of the force-free field with these boundary conditions to be represented by a surface
integral involving the values and gradients normal to the surface of the magnetic
field B and an auxiliary function Y:

_0B 0Y
¢B; = yf(Y— — —B) ds, (15)
S on on

where ¢; = 1 for point i in the volume V and ¢; = 1/2 if i is on the volume’s surface
(S). The auxiliary function Y is written as a diagonal matrix,

cos(ryr) cos(ryr) cos(kzr)}

(16)

Y:diag{Yx,Yy,YZ}=diag{ dnr " dmr ' dmr

where r is the distance between point i and another point for which Y is computed.
The vector field specified by the three components A, (p = x, y, z) is determined
by the requirement that the field vanishes at infinity, which is true if

/Y,,[xf,Bp —a’B, — (va xB),]JdV =0, p=x,yz (17)
\4
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Yan and Sakurai (2000), note that Equation (17) does not necessary hold for the
near field, but the method as implemented prescribes it.

This model can be numerically solved by an iterative process. If one assumes at
internal points B&™) = 0 and at the boundary that the gradient normal to the surface
S is zero, i.e., that 9BD/dn = 0, and one starts from k = 0, the force-free field
represented by the boundary integral equation can be calculated. For each boundary
node point with A(, 149, 2% one has in this first step from Equation (15) that

1 o 0BY  9Y®
By = YV — - By ) ds. (18)
2 Ky on on

The boundary unknowns dB%® /dn can be obtained from Equation (18) by the
boundary element method for arbitrary boundary shape with prescribed boundary
values By. Then for each internal point in V with A%, kg,"), AP, the field ng) can
be computed by

(k) v (k)
B® — f g0 BT e A s, (19)
! B on on

The iteration stops when |B® —B*~D| < §, where § is a small positive number.
As long as this is not satisfied, the process iterates by modifying A, A, A, to reach
a nonlinear force-free solution. The scheme to iterate the functions A, is described
by Yan and Sakurai (2000) in their Section 4.1.

The process must also maintain [0B® /dn — dB*~D /9n| < 85 on the boundary,
where Jg is a small positive number. If this inequality is not satisfied, then Equation
(18)is iterated until it is. Once the inequality is met, then set dB*+D /9n = 9B® /9n
and go to Equation (19) for the next iteration.

The input to this model is the known field over an arbitrarily-shaped local bound-
ary as stated in Yan and Sakurai (2000), and it is assumed that the flux extends from
the surface in all directions to infinity from the boundary surface so that the net
flux is zero in the volume. That allows the side boundary conditions to be incorpo-
rated in the model by applying the equivalence principle as described in Yan and
Liu (1995). However, in the above iterative process, the volume integration is only
carried out over an appropriately large space, which introduces a truncation error
in the numerical results.

The numerical code of this method has been used to model soft X-ray loops seen
in Yohkoh images (Wang et al., 2000; Liu ef al., 2002) and to model a magnetic
flux rope (Yan et al., 2001). These tasks, however, did not carry out an iteration to
search for A. An attempt was made to verify the existence of A factors by Li, Yan,
and Song (2004).

For Case I, the three components of magnetic field (B, By, B;) on the lower
boundary and the four side boundaries were used. For Case II, the vector field over
the whole lower boundary (192 x 192) was employed. For both cases, no iteration
was performed to determine the set of A factors, because at our resolution the code
required 80 hours for the first step only, deemed too long to be practical. However,
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a new algorithm has been developed recently, and has been proven to be feasible
and effective (Yan and Li, 2005). It greatly reduces the computation time, so that
completion of the iteration appears feasible in the near future.

3.2.4. Iterative Grad—Rubin-Like Methods

3.2.4.1. Grad-Rubin-like as implemented by Régnier. Régnier adopted the ap-
proach proposed by Grad and Rubin (1958) and implemented by Amari and col-
leagues to solve the nonlinear force-free reconstruction problem as a well-posed
boundary value problem (Amari et al., 1997; Amari, Boulmazaoud, and Mikic¢,
1999). He computes the nonlinear force-free magnetic field in a volume by solving
two sets of equations iteratively for each step k:

B®.Va® =0 inV (20)
aPlgx =h (21)
and

V x B&tD = ¢®OB® jpy (22)
V.-B¥D =0 inv (23)
B V|ge =g 24)
lim BV =0 (25)
|r|]—o00

where S is the surface of the volume V and ST corresponds to the surface where
the normal component of B is positive or negative. To ensure that the divergence
of B vanishes, the two sets of equations are reformulated using the vector potential
A associated with B = V x A (see Amari, Boulmazaoud, and Miki¢, 1999).

To compute the NLFF field, a staggered grid is used in order to define the
magnetic field, the vector potential, and their derivatives. For the test cases, we
use a uniform grid similar to the analytical input cases. the effect of the staggered
uniform grid results in some discrepancies at the bottom boundary as shown by
Amari, Boulmezaoud, and Aly (2005).

The bottom boundary conditions g and 4 are the vertical magnetic field on the
entire surface and the torsion function « specified for one polarity. Regions for
which B, and B, are below a certain threshold are assumed to be potential; this
affects 1.4% of the area for Case I and 3.2% of the area in the 64*-pixel model
region for Case II. On the other boundaries, Equation (25) is satisfied by imposing
that no field line leaves the volume, i.e., that B - n = 0 (for n normal to S) at the
boundary, and that o = 0 there.

The iterative scheme is initiated from a potential field with the vertical magnetic
field component as bottom boundary conditions and satisfying B - n = 0 on the
other boundaries. The algorithm then starts with the « distribution multiplied by
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a small constant by solving Equations (20) and (21), and a new magnetic field
configuration is then computed by solving Equations (22)—(25). The algorithm then
increases the multiplier for the bottom « field, and iterates until the full value of « is
reached.

The numerical code has been successfully tested on Low and Lou (1990) so-
lutions, and has been applied to solar active regions by, e.g., Régnier, Amari, and
Kersalé (2002), Bleybel et al. (2002), Régnier and Amari (2004), and Régnier and
Canfield (in preparation).

3.2.4.2. Grad-Rubin-like, as Implemented by Wheatland. Wheatland (2004)
presented a new approach to calculating force-free fields which is similar to that
of Sakurai (1981). In Sakurai’s approach, the current distribution is modeled in
terms of cylindrical current elements between nodal points on a small number of
field lines originating from a chosen polarity of field, and then the Lorentz force is
calculated at each nodal point due to all current elements using an exact integral
solution to Ampere’s law. The free parameters in the problem were taken to be the
positions of the nodal points. Requiring the Lorentz force to vanish at all nodal
points gave a set of simultaneous nonlinear equations for the nodal point positions,
which were solved. Wheatland (2004) models the current in the same way, but
calculates the field due to the currents directly at all gridpoints at each iteration
rather than only at the nodal points. Adding this field to the initial potential field
gives an updated field. The field lines of this field are traced and form the basis
for the current distribution for the next iteration. The method is straightforward to
parallelize, with the field contributions from different current-carrying field lines
being divided up among the processes. Versions of the code for distributed mem-
ory computers (using the Message Passing Interface, MPI) and for shared memory
computers (using OpenMP) have been written.

The code used by Wheatland (2004) contained an error in the representation of
the current; the current density was too large in regions of weak field. Correction
of this error, as was done in the code used in this study, leads to greatly improved
results. It is possible to calculate fields with much larger boundary values of «
than shown in that study, and the calculated fields are considerably closer to being
force-free.

The boundary conditions on current in the Wheatland (2004) method are the
values «; of the force-free parameter over one polarity of the field. The method is
straightforward to apply to cases with highly localized currents, i.e., when only a
small number of boundary points have non-zero «;. However, for our two Low and
Lou (1990) test cases, the currents are widely distributed on the lower boundary.
This causes two problems. First, the set of &~ %N 2 grid points in the lower boundary
with a chosen polarity is too large for a practical calculation. Second, if currents are
widely distributed, many gridpoints with non-zero «; will have field lines which
close outside the boundary region, and the method is not expected to work for
these field lines. A practical approach to these problems is first to set ¢; to zero at
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all but a relatively small fraction of boundary points. Only points (x;, y;, 0) with
both

B (x;, yi, 0) > fg x max[B(x;, y;, 0)] (26)
and
J.(xi, yi, 0) > f5 x max[J(x;, y;, 0)] (27)

are chosen to have non-zero o; = oJ,/B;, where fg and fj are constants (set to
0.005 in Case I and 0.001 in Case II). Second, field lines which leave the box have
«; set to zero on them, even if they satisfy the above conditions. These conditions
mean that the fields calculated with the method have different boundary conditions
from the exact Low and Lou (1990) solutions. The values of fg and fj are set so
that the total number of points for which «; # 0 is kept relatively small, set at 5%
for cases I and II in this study.

3.3. ORDER OF THE METHODS

It is interesting to consider the orders of the methods (cf, Table I). The optimization
method scales with the number (N) of resolution elements for each side of the
model volume as N° (Wheatland, Sturrock, and Roumeliotis, 2000); that same
scaling holds for the magnetofrictional method. The Grad—Rubin-like methods
scale as N (see, e.g., Wheatland, 2004). The boundary element method of Yan
and Sakurai (2000) involves the evaluation of a volume integral for each point, and
hence is at least of order N°®; if the required number of iterations also scales with
N, the order is higher.

4. Figures of Merit

In order to quantify the degree of agreement between vector fields B (for the input
model field) and b (the NLFF model solutions) that are specified on identical sets
of grid points, we use five metrics that compare either local characteristics (e.g.,
vector magnitudes and directions at each point) or the global energy content in
addition to the force and divergence integrals.

The vector correlation (C,e.) metric is analogous to the standard correlation
coefficient for scalar functions:

1/2
Cvee= Y Bi-b; / (D&FZ |bl~|2> : (28)

where B; and b; are the vectors at each point i. If the vector fields are identical,
then Cyec = 1;if B; L b;, then Cyec = 0.
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The second metric, Ccg is based on the Cauchy-Schwarz inequality (|a - b| <
la||b| for any two vectors a and b):

1
CCS__Z|B||b|__Z cos 6;, (29)

where M is the total number of vectors in the volume, and 6; the angle between
input and model magnetic fields at point i. This metric is mostly a measure of the
angular differences of the vector fields: Ccs = 1 when B and b are parallel and
Ccs = —1 if they are anti-parallel; Ccs = 0 if B; L b; at each point.

Next, we introduce two measures for the vector errors, one normalized to the
average vector norm, one averaging over relative differences. The normalized vector
error E, is defined as

En=Z|b,~—B,~|/Z|B,~|. (30)

The mean vector error E,, is defined as

1 lb; — B;]
E,=— _— 1
MZ |B;| Gl

i

Unlike the first two metrics, perfect agreement of the two vector fields results in
E, = E, = 0. For an easier comparison with the other metrics, we list Er’m,n =
1 — En, in Tables I and II so that all measures in these tables reach unity for a
perfect match.

As we are also interested in determining how well the models estimate the
energy contained in the field, we use the total magnetic energy in the model field
normalized to the total magnetic energy in the input field as a global measure of
the quality of the fit:

_ Z,’ Ib i |2
Zi |Bi |2.
For comparison, Tables I and II also list €p, defined as the total magnetic energy
normalized to the total magnetic energy in the corresponding potential-field solu-
tion.

The degree of convergence towards a force-free and divergence-free model solu-
tion can be quantified by the integral measures of the Lorentz force and divergence
terms in the minimization functional in Equation (6), computed over the entire
model volume V, normalized to a unit volume (pixel) to allow comparison at dif-
ferent resolutions:

(32)

sz—/ 2|(V x B) x B> dV

Ld=_f v B2 dV (33)

L=L¢+ Ly
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TABLE III

Experimenting with weights and boundaries with the Wiegelmann code for the Wheatland
optimization method.

we wg Ny Start L L¢ Lq oy x 102
Varying buffer depths
1 1 0 Potential 0.19 0.12 0.069 7.0
1 1 8 Potential 0.18 0.11 0.066 5.7
1 1 16 Potential 0.18 0.11 0.065 5.5
1 1 32 Potential 0.18 0.11 0.065 55
Varying initial conditions
1 1 8 LFF oy = +3 0.20 0.12 0.08 7.0
1 1 8 LFF o = -3 0.21 0.13 0.08 7.3
1 1 8 Vertical 0.91 0.62 0.30 16.0
1 1 8 Random 33.0 24.0 9.3 33.0
Varying weights
0 1 8  Potential 550  55.0 33x107% 570
1 0 8 Potential 7.5 0.019 75 3.7
0.1 1 8 Potential 7.4 7.0 0.4 24.0
1 0.1 8 Potential 0.44 0.039 04 6.0

Note. The first four columns specify boundary parameters and initial conditions: wf and wgq
are the weighting function of the force-free and divergence-free conditions, respectively; Ny
is the number of grid points in the buffer boundary layer; the fourth column specifies the initial
field in the volume (including the lateral and top boundaries of the computational box). The
final four columns show the measures L, L¢, Lq, and o; defined in Equations (33) and (34).

where L¢ and Ly measure how well the force-free and divergence-free conditions
are fulfilled, respectively. Another possible measure of how well the force-free
condition is met is the current-weighted average of the sine of the angle between
the magnetic field and the electrical current density (see Wheatland, Sturrock, and
Roumeliotis, 2000, for details.)

o) = (Z 'J;—B')/Z Ji. (34)

1
These measures are used in Table III and discussed in Section 5.3.
5. Analytical Test Cases

5.1. CASE I: ALL BOUNDARY CONDITIONS PROVIDED

Figure 1 compares the input model and results for Case I for which the vector field
on all six side boundaries was provided to the modelers. A visual inspection of
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the field-line patterns seen from above resulted in the following order: best were
the Wiegelmann and McTiernan solutions, then, in order, the Valori, LFF field,
Wheatland, potential, Régnier, and Liu solutions. Figure 1 shows these in order for
the NLFF field cases, followed by the LFF and potential cases for comparison in
the bottom row.

A visual inspection is, of course, strongly influenced by the appearance of field
lines in the (large) weak-field region. Nevertheless, the ordering of the results by the
quality of visual agreement corresponds remarkably well with the numerical order-
ing of the figures of merit for the vector comparisons defined in Equations (28)—(31)
shown in Table I. Both of the vector-error metrics £}, | are based on a mean of the
difference between the field vectors relative to the input field vectors. These mea-
sures thus include information on both the agreement in direction and magnitude.
The other two vector correlations, Cy.. and Ccs, are relatively more strongly influ-
enced by the directional differences between the vectors. We continue the discussion
of the figures of merit in Section 5.2, except to point out that the ordering of the
results is very nearly the same if the figures of merit are computed for a 323-pixel
volume over the center of the surface field (Table II, Figure 2). Note that all figures
of merit are better for this core volume, mainly because this volume is further away
from the boundaries and because the lower boundary is included more completely
in the strong-field, strong-current interior in the methods of Wheatland and Régnier.

The best-fit model results by Wiegelmann and McTiernan closely correspond
to the input model, both in the appearance of the field line configurations and
in matching the vector fields: the figures of merit show that the average angular
differences between the input and modeled fields differ by less than a few degrees
and the relative vector norms differ by only 2% for the Wiegelmann case to 13%
for the McTiernan solution. We thus confirm that there are successful methods
to recover a NLFF field (or at least our test fields) in cases where all boundary
conditions are entirely specified.

The magnetofrictional “stress and relax” model by Valori ranks third, performing
only somewhat worse than the Wiegelmann and McTiernan models for the inner
half of the volume in Case I, despite the fact that only the lower boundary vector
field was used as boundary information. The Valori and Wheatland models perform
comparably with different rankings for the different metrics for the full volume.

The fourth-ranking solution is the Grad-Rubin-like code implemented by
Wheatland. In this model, only part of the vector field on the lower boundary is used
to specify an « map for one polarity. Specifically, the @ map covers fewer than 5%
of the pixels in the Low—Lou solution, which includes 97% of the total unsigned
current density in the lower boundary. The Wheatland solution still recovers some
of the overall geometry of the field (as does even the potential field), but it yields
an energy estimate that measures only approximately half of the energy increment
relative to the potential case, i.e., (€wheatland — €2=0)/(€Low—Lou — €x=0) = 0.59. The
reason is that so many current-carrying field lines in the Low—Lou field leave the
box, for which « is set to zero in the Wheatland code.
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The Régnier model is next down the list. Note that its boundary condition on the
five side and top boundaries allows no field lines to escape (equivalent to having
perfectly conducting side boundaries) and that all field lines that touch the side
and top boundaries carry no current. These boundaries lie 32 pixels outside the
volume of the 64 cube shown in Figure 1, however, so the field lines apparently
leaving the volume shown in the figure in fact swirl around to return elsewhere on
the boundaries of the volume shown.

In Case I, the problem encountered by the Régnier algorithm appears to be
that too much of the « field, and even of the flux involved, lies outside the modeled
volume, combined with the fact that the model’s application imposes a lower limit to
||, below which it sets « = 0 in order to deal with what would be noisy data for real
observations (although that involves only a small fraction of the area for our Cases [
and II). These field lines, now potential, cannot leave the box, so must swirl around
the volume to connect to other potential field lines. Note that the Wiegelmann and
McTiernan solutions do not suffer from this problem, because their method allows
full implementation of the vector boundary field or, in McTiernan’s case, at least
of the potential approximation of that field, which allows the field outside the box
to communicate most of its presence to the field to be modeled.

The worst match is found for the Liu model. One important cause for this is
that the model was allowed to make only a single step in its iteration cycle. On
completing that first step, the code had already used over 80 hours of CPU time,
which was deemed far too long for a useful code for practical applications when
considering that many steps would have to be taken to reach any convergence. This
leaves the question whether the algorithm would in principle have converged for the
test cases unanswered, but initial low-resolution tests by Yan and Sakurai (2000)
suggest that convergence is possible in principle; moreover, Yan and Li (2005) have
developed a new code recently to considerably reduce the computation time.

5.2. CASE II: LOWER BOUNDARY OVER AN EXTENDED AREA

For Case II only the lower boundary is specified, but with an apron around the base
that is as wide as the central volume of interest, i.e., the lower vector field boundary
is provided for a 192 x 192 pixel area for which only the central 64 x 64 region is
to be modeled. For this case, we chose a length scale for the Low—Lou solution that
places most of the flux within the central region, with all but a very small fraction
of field and currents contained in the apron area around the 64 x 64 model region.

The results are shown in Figures 3 and 4 (with panels in the same order as in
Tables I and II and Figures 1 and 2). A visual inspection of the field line patterns
seen from above, as we did for Case I, resulted in the same order of goodness of
fit as for Case I for the NLFF field models. This is not surprising because for all
but the Wiegelmann and McTiernan models, the boundary condition information
was in fact applied in the same manner by the codes. For the Wiegelmann and
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McTiernan models, the five side and top boundaries were specified as computed
from the potential field solution based on the extended area for which the lower
boundary was specified

It is interesting to note that all models match the inner part of the field config-
uration significantly better than the more distant field (compare Figures 1 and 3
to Figures 2 and 4, and Table I to II). In the inner volume, the vector magnetic
field and the scalar |«| field are both relatively large, while « is more comprehen-
sively used by the Grad—Rubin-like methods as implemented by Régnier and by
Wheatland.

The figures of merit for Case II for the Wiegelmann and McTiernan solutions,
as listed in the lower parts of Tables I and II, show an essentially perfect vector
correlation C,e., a normalized vector error suggesting an average relative deviation
of 10—15%, and an energy estimate that is close to the actual value (in fact ex-
ceeding the Low—Lou value by 2%). The values of Ccs and E; , in contrast, deviate
quite strongly from the optimal value of unity. This is caused by relatively strong
deviations high in the simulated volume, where the field is weak, and where the
field geometry is not probed by the field lines in Figure 3 which all stay rather low
in the box owing to the strong field gradient with height.

5.3. EFFECTS OF A TAPERED BOUNDARY AND INITIAL CONDITIONS

Having established that the Wiegelmann and McTiernan codes perform best, we
now focus on the faster of these two, the Wiegelmann code, to investigate in some
more detail the dependence of the results on the application of the boundary con-
ditions for Case I and on the choice of initial conditions.

As afirst test of the effects of the side and top boundary conditions, we investigate
how the depth N, of a buffer boundary influences the quality of the reconstruction
as measured by L ; 4 in Equation (33). Rows 1 -4 in Table III show that the value of
Ny has only a small influence on the result, primarily because the magnetic flux for
this test case is concentrated well into the interior of the box. Wiegelmann (2004),
in contrast, found that larger boundary layers provide better results for a case with
more magnetic flux close to the boundaries of the model volume.

Rows 5 -8 in Table III show the effects of different initial conditions, including
the lateral and top boundary conditions. As initial conditions we used (1) a potential
field computed with the Green’s function method (Aly, 1989), (2) linear force-free
fields with either positive or negative « as computed with the method of Seehafer
(1978), (3) a strictly vertical field based on B, at the bottom boundary, and (4)
random numbers for all three field components of the field throughout the box.

We find that an initial potential field provided the best result, being slightly better
than the case starting with a linear force-free field (for which a positive value of o
was slightly better than a negative one). The rather un-physical initial vertical field
gave significantly worse results, and random numbers as initial state gave by far the
worst result. Clearly, starting from a state near that of the true field is beneficial for a
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rapid convergence, and in some cases necessary to allow the algorithm to converge
at all.

Rows 2 and 9 — 12 of Table III show the effects of different weights for the force
(wr) and divergence (wq) terms. If we minimize only for a divergence-free condition
and ignore the force-free condition (line 9 of the table), we find — as expected — a
very low value of the divergence measure Lg4, but high values for the force measure
Ly and the angle between forces and currents as characterized by o;. Ignoring the
divergence-free condition completely results naturally in the opposite result. The
sum value L of the force and divergence measures is for both cases much higher
than for the case with wy = wy = 1. This is also true if we weight the force and
divergence measures by relative weights that differ by an order of magnitude. We
conclude, therefore, that the optimal choice is to use equal weights wy = wy for
force and divergence terms in the minimization functional in Equation (11).

6. Electrical Currents and Field Energy

Figures 5 and 6 compare the input model vector field and electrical currents, respec-
tively, with the Wiegelmann model for Case II (showing only the inner 322-pixel
area). Panels b show that the vector magnetic field is matched very well at the base
(as the lower-boundary condition should if implemented optimally), although there
are relatively strong differences over the central region in the horizontal current. The
good agreement of the analytical and model vector magnetic fields reflects that the
boundary magnetic field was — as expected — properly held fixed in the numerical
code. The vertical electrical current density at the lower boundary follows directly
from the derivatives of B, ,(z = 0) and are approximated well by the second-order
differencing scheme used. Computation of the horizontal electrical current density,
in contrast, requires information from the model field immediately above the lower
boundary; the one-sided second-order differencing scheme then reflects any devia-
tions in the modeled field even on the lower boundary. These differences reach up
to just over 10% of J x n in the Wiegelmann solution shown.

The higher field (up to 25% of the volume height in panel d) is matched relatively
well, while the electrical currents show a pattern suggestive of a slight distortion
of the overall volume (magnetic and current) field. The currents related to these
distortions in fact raise the estimate of the total energy content of the central volume
over the model’s energy content by a few percent, or by almost 30% relative to the
energy in the potential field model, both for the inner 323-pixel volume and for
the entire 64°-pixel volume. This similarity in behavior is not unexpected, because
most of the field energy is concentrated near the sources. For Case I this difference
was less than 8%. As the field in Case I was less compact than in Case II, we
suggest that the larger deviation in energy estimate for Case II is not so much the
consequence of the difference in boundary conditions, but rather that there is more
structure in the field than the models can handle well.
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Figure 5. (a) The horizontal (vectors) and vertical (background image) components of the magnetic
field in Case II for the central 322-pixel area; (b—d) Differences between the Wiegelmann solution
and the input model for layers in a volume with height (z) normalized to range from O to 1, shown at
z =0, 0.125, 0.25, respectively, multiplied by 25 relative to the scaling for panel (a).

7. Discussion and Conclusions

In this study, we compare the relative merits of six existing methods for the com-
putation of nonlinear force-free magnetic fields given the vector field on at least
one boundary surface. The success of the methods is assessed by qualitatively com-
paring field line patterns and by quantitatively comparing five figures of merit for
either vector differences or energy content. The figures of merit for vector errors
(Equations (28)—(31)) result in essentially the same ordering of the models as
does the visual inspection of the field line patterns. Metrics based on normalized
differences between input and model field have the strongest differentiating power.

We find that the optimization method implemented in algorithms by Wiegelmann
and by McTiernan are the most successful in modeling the field, particularly in the
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Figure 6. (a) The horizontal (vectors) and vertical (background image) components of the electrical
current in Case II for the central 32 x 32-pixel area; (b—d) Differences between the Wiegelmann
solution and the input model for layers in a volume with height (z) normalized to range from O to 1,
shown at z = 0, 0.125, 0.25, respectively, multiplied by ten relative to the scaling for panel (a).

strong-field, strong-current regions in the central areas of the model volume. The
NLFF vector fields in the outer domains of the volume depend sensitively on the
details of the specified boundary conditions. Not surprisingly, the best agreement is
found if the field outside of the model volume is incorporated as part of the model
boundary, preferably in the form of vector-field or potential-field boundaries on
the side and top surfaces, or at least as a potential field in a large area around the
volume of interest.

The implementation of the boundary conditions turns out to be the most impor-
tant limitation to successful field modeling for the models in our comparison. In
this respect, we refer to the work of Amari, Boulmezaoud, and Aly (2005) who
developed two Grad — Rubin-like methods and applied these to the same test fields
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that we use here. They specify the vector field on all six boundaries for the two
fields that we model in Cases I and II. We can thus directly compare the results
only for Case I, but these show metrics that are even somewhat better than those for
the Wiegelmann solution. We thus conclude that it is not the Grad — Rubin-based
method, but rather the way in which the boundary conditions are implemented, that
causes the Régnier model to perform relatively poorly.

For input field B and modeled field b, the best algorithm yields an average
relative vector error Ex = (|B —b|)/{|B|) of only 0.02 for Case I when all sides are
specified and 0.14 for Case II where only the lower boundary is specified. Because
these algorithms match the model vector field well, they also reproduce the total
energy in the field, to within 4% for the best solutions for Case II for which only
the lower boundary was provided. The successful determination of the total energy
contained in a volume relative to the potential field is important when attempting
to estimate the free energy in real solar cases.

Itis also important to know where such free energy resides, or where the strongest
electrical currents run. The best models map these currents quite well, and measure
the energy in the magnetic field configuration to within a few percent.

The algorithms iterate at speeds that differ by a factor of one million per iter-
ation step. The fastest-converging, best-performing model for these analytical test
cases is the Wheatland, Sturrock, and Roumeliotis (2000) optimization algorithm as
implemented by Wiegelmann, taking 15 CPU minutes (see Table I for the resource
details). The Wiegelmann and McTiernan models are comparable in their success
in recovering the NLFF vector magnetic field, but the Wiegelmann code converges
some 50x faster having been optimized in C rather than IDL.

Even the fastest of these algorithms presents us with significant problems when
the resolution is increased, however, as one would hope to do once routine high-
resolution vector-magnetic field measurements become available from SOLIS and
Solar-B. A computation of a relatively small volume of 5123 pixels (significantly
under-utilizing the observational capabilities of the 2048 x 4096 Solar-B/FPP detec-
tor or the 4096 x 4096 SDO/HMI detector), for example, would take approximately
8000 hours of CPU time. For routine analysis of multiple daily measurements that
could only be done on a system of at least 1000 parallel processors. The task ahead
must consequently focus both on the best possible use of observable boundary
conditions as well as on the development of significantly faster methods. We plan
to face these tasks by testing the methods on real solar vector magnetograms and
comparing the results with observed coronal configurations, as well as by focusing
on code parallelization and optimization.
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