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How to deal with measurement errors and lacking data in
nonlinear force-free coronal magnetic field modelling?
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ABSTRACT

Context. The measured solar photospheric magnetic field vector is extrapolated into the solar corona under the assumption of a force-free
plasma. In the generic case this problem is nonlinear.
Aims. We aim to improve an algorithm for computing the nonlinear force-free coronal magnetic field. We are in particular interested to
incorporate measurement errors and to handle lacking data in the boundary conditions.
Methods. We solve the nonlinear force-free field equations by minimizing a functional. Within this work we extend the functional by an
additional term, which allows us to incorporate measurement errors and treat regions with lacking observational data. We test the new code
with the help of a well known semi-analytic test case. We compare coronal magnetic field extrapolations from ideal boundary conditions and
boundary conditions where the transversal magnetic field information is lacking or has a poor signal-to-noise ratio in weak field regions.
Results. For ideal boundary conditions the new code gives the same result as the old code. The advantage of the new approach, which includes
an error matrix, is visible only for non-ideal boundary conditions. The force-free and solenoidal conditions are fulfilled significantly better and
the solutions agrees somewhat better with the exact solution. The new approach also relaxes the boundary and allows a deviation from the
boundary data in poor signal-to-noise ratio areas.
Conclusions. The incorporation of measurement errors in the updated extrapolation code significantly improves the quality of nonlinear
force-free field extrapolation from imperfect boundary conditions.
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1. Introduction

Because routine measurements of the coronal magnetic field
are not available, we have to rely on measurements of the pho-
tospheric magnetic field vector to estimate the coronal mag-
netic field distribution. The extrapolation of this surface field
into the corona constitutes a boundary value problem, which
can be solved numerically if some simplifying model assump-
tions for the coronal field are made. Because of the low plasma
β in the solar corona non-magnetic forces are often neglected
to lowest order. We have to solve the corresponding nonlinear
force-free boundary value problem

(∇ × B) × B = 0 (1)

∇ · B = 0 (2)

B = Bobs on photosphere, (3)

whereB is the magnetic field. Several methods have been de-
veloped to solve these equations, (see, e.g., Schrijver et al.,
2006; Metcalf et al., 2008, for an overview and a comparison
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and evaluation of codes.) The comparison of different nonlin-
ear force-free extrapolation codes revealed that the algorithms
can reliably reconstruct model fields from consistent boundary
data.

However, in a recent joined study by (DeRosa et al., 2009)
which deals with an observed data-set (vector magnetogram
taken with Hinode/SOT embedded in a line-of-sight magne-
togram from SOHO/MDI) the force-free codes did not find
consistent solutions. A major problem was that only for a part
of the model region vector magnetograms were observed (in
the Hinode Field-Of-View, FOV) and the transverse magnetic
field componentBtrans was unknown in the remaining photo-
spheric area. In the study, the lacking field components were
replaced by zeros, which was a simple way to treat the lacking
data. In view of the inconsistency of the results DeRosa et al.
(2009) concluded that a successful nonlinear force-free recon-
struction requires

1. A large computational domain with a high resolution,
which accommodates most of the connectivity within the
coronal region under study.
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2. Taking account of measurement uncertainties, in particular
for the transverse field component.

3. ’Preprocessing’ of the observed vector field that approxi-
mates the physics of the photosphere-to-chromosphere in-
terface as it transforms the observed, forced, photospheric
field to a more realistic approximation of the near force-free
field in the upper chromosphere,

Photospheric magnetic field measurements in extended areas
of the photosphere (1) will become available soon from the re-
cently launched SDO/HMI instrument. The problem of prepro-
cessing (3) has been addressed in several works (Wiegelmann
et al., 2006; Fuhrmann et al., 2007; Wiegelmann et al., 2008;
Tadesse et al., 2009). Here we will address problem (2): how
uncertainties in the boundary data can be taken into account in
the nonlinear force-free magnetic field extrapolation.

2. Method

To solve the force-free equations, we extended the optimization
approach introduced by Wheatland et al. (2000):

L =
∫

V
wf
|(∇ × B) × B|2

B2
+ wd |∇ · B|2 d3V

+ν

∫
S
(B − Bobs) ·W · (B − Bobs)d

2S. (4)

The first integral contains the conditions (1) and (2) as
quadratic forms and obviously forwf ,wd > 0 that the force-
free conditions (1, 2) are fulfilled when the functional reaches
its minimum atL = 0. This was the approach used in before
(see Wheatland et al., 2000; Wiegelmann, 2004, for details)
where the boundary conditions entered directly as iterative im-
provements ofB to minimizeL were constrained toB = Bobs

at the photospheric boundary.
Here, we propose to extend the functional by adding

the surface integral over the photosphere (4) and iterating
B to minimize L, which is otherwise unconstrained. In this
integral, W(x, y) is a diagonal error matrix, the elements
wlos,wtrans,wtrans of which are chosen inversely proportional to
the local measurement error of the respective photospheric field
component atx, y. In principleW should be specified by the in-
strument, and it is likely that this error distribution will be pro-
vided along with the data for SDO/HMI vector magnetograms.
Because the line-of-sight photospheric magnetic field is mea-
sured with much higher accuracy than the transverse fieldBtrans,
we typically set the componentwlos to unity, while the trans-
verse components ofwtrans are typically small but positive. In
regions whereBtranshas not been measured or where the signal-
to-noise ratio is very poor, we setwtrans= 0.

The boundary value problem (1) and (2) is nonlinear, and
there is no guarantee that a solution exists for all sets of bound-
ary values in the sense that we can obtainL = 0 exactly.
Boulmezaoud & Amari (2000) have shown that the full vector
field as boundary condition overdetermines the problem, and
Wiegelmann et al. (2010) investigated the influence of pho-
tospheric measurement errors. Observed and noisy boundary
fieldsBobs are very probably inconsistent and belong to the set
of boundary values for which a strict solution does not exist.

In these cases the first integral in (4) alone could often not be
iterated to values of the order of the numerical roundoff-error.
With the new formulation (4) we allow deviations between the
model fieldB and the observedBobs and so the model field can
be iterated closer to a force-free field even if the observations
are inconsistent. This balance is controlled by the Lagrangian
multiplier ν.

2.1. Encoding of old code

The previous version of our optimisation code worked as fol-
lows (see also Wiegelmann, 2004, for details):

– Set initialB to the potential field computed from the normal
component ofBobs at the photospheric boundary.

– Replace the transverse field component of the initialB by
the observed field components ofBobs at the photospheric
boundary.

– Minimise L (Eq. 4) iteratively, keepingB unchanged at the
photospheric boundary. Only the first two terms are influ-
enced and the surface integral vanishes by construction at
each iteration step.

2.2. Encoding of new code

– Set initialB to the potential field computed from the normal
component ofBobs at the photospheric boundary as above.

– MinimiseL (Eq. 4) iteratively without constrainingB at the
photospheric boundary. The transverse magnetic fieldBtrans

is gradually driven towards the observations while the field
relaxes to a force-free field. If the observed field is incon-
sistent, the differenceB −Bobs remains finite depending on
the control parameterν. Wherewtrans= 0 the observed field
is automatically ignored.

– Different from the old code the magnetic field is also re-
laxed in the bottom boundary. Consequently the boundary
values ofBtrans in regions with poor signal to noise ratio
(wtrans = 0) are automatically relaxed towards force-free
consistent values.

– The stateL = 0 corresponds to a perfect force-free
and divergence-free state and exact agreement of the
boundary valuesBtrans with observations in regions with
wtrans > 0. For inconsistent boundary data the force-free
and solenoidal conditions can still be fulfiled, but the third
surface term will remain finite. This results in some devia-
tion of the bottom boundary data from the observations in
regions, wherewtrans is small.

For both codes the iteration stops whenL becomes stationary.
Numerically stationarity is assumed whendL

dt /L < 10−4 for 100
consecutive iteration steps.

3. Code testing

We tested the new code with the well known semi-analytic
equilibrium from Low & Lou (1990). These are force-free axis-
symmetric equilibria in spherical geometry, but the symmetry
has broken for our tests by cutting a rectangular obliquely ori-
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Fig. 1. Magnetic fieldline plots for the reference equilibrium (panel a), the initial potential field (b) and the other panels show nonlinear force-
free reconstructions with the old and new code for different cases, see text.

entated box out of the spherical solution. By means of a lin-
ear shift l and a rotation angleΦ, we positioned the centre
of the equilibrium solution and tilted its axis orientation rela-
tive to the cartesian geometry of the computational domain (see
Low & Lou, 1990, for details). These equilibria have become
a standard for testing nonlinear force-free extrapolation codes,
(see, e.g., Wheatland et al., 2000; Wiegelmann & Neukirch,
2003; Schrijver et al., 2006; Amari et al., 2006; Inhester &
Wiegelmann, 2006; Valori et al., 2007; Tadesse et al., 2009,
for earlier studies with this equilibrium). We here chosel = 0.3
andΦ = 0.15π for our tests and computed the equilibrium in a
box withnx= ny= 80, nz= 72.

Table 1 shows the results of these tests, where Col. 1 names
the used code. The second and third column list the values of
the new parameters for the code in 4, the Lagrangian multi-
plier ν and the matrix elementwtranswhile wlos was set to unity
throughout1.

These parameters were not present in the old code.
We treated the equilibrium field on the bottom boundary as

the observed fieldBobs input for both our old and new extrapo-
lation code. After the extrapolation, we evaluated the quality of
our reconstruction by comparing the extrapolation result with
the exact reference solution in the center 643 cube by a number

1 We investigated several forms ofwtrans as indicated in the third
column of the table. 1,0 means that we chosewtrans = 1 in the valid
Btrans area and 0 elsewhere.

of figures of merit in Table 1 Cols. 4-8. These are the vector cor-
relation (VC), Chauchy Schwarz (CS), normalized vector error
(NE), mean vector error (ME) and the ratio of the computed
magnetic energy and the energy of the Low and Lou reference
field (Energy). For a perfect reconstruction NE and ME are zero
and all other quantities are unity (see Schrijver et al., 2006, for
a detailed explanation of these figures and the corresponding
mathematical equations).

We also evaluated how well the force-free condition

L1 =

∫
V

wf
|(∇ × B) × B|2

B2
d3V, (5)

the divergence-free condition

L2 =

∫
V

wd |∇ · B|2 d3V, (6)

and the boundary data term

L3 =

∫
S
(B − Bobs) ·W · (B − Bobs)d

2S (7)

are satisfied. The respective numbers are listed in Table 1 in
Cols. 9 and 10. The last column displays the number of itera-
tion steps needed to obtain the reconstruction. In practical com-
putationsL1, L2 andL3 never vanish exactly, but the code stops
when

∑
i Li becomes more or less stationary. The final values

of L1, L2 may be high if the imposed boundary conditions are
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Fig. 2.Evolution of the entire functionalL (solid line, see Eq. 4) and its three terms (see Eq. 5-7)

Table 1.Evaluation of the reconstruction quality.

Model ν wtrans VC CS NE ME Energy L1 L2 L3 It. Steps
Original 1 1 0 0 1 0.02 0.02
Potential 0.88 0.84 0.57 0.64 0.67 0 0.29

Tests with ideal data
Old Code 1.00 0.92 0.18 0.43 0.99 0.01 0.01 1695
New Code 0.1 1 0.99 0.90 0.29 0.54 0.94 0.08 0.02 0.00 342
New Code 0.01 1 1.00 0.92 0.18 0.43 0.99 0.01 0.01 0.01 1478
New Code 0.001 1 1.00 0.91 0.18 0.42 0.97 0.01 0.01 0.15 3698
New Code 0.0001 1 0.95 0.89 0.42 0.57 0.79 0.02 0.02 19.7 7467
New Code 0.01 BT

max(BT ) 0.99 0.89 0.24 0.49 0.97 0.01 0.01 0.01 3826

New Code 0.01
(

BT
max(BT )

)2
0.97 0.89 0.39 0.58 0.88 0.01 0.02 0.09 2026

BT lacking forBT < 0.05 ·max(BT), 73% area, 14% flux
Old Code 0.98 0.85 0.38 0.61 0.91 0.42 0.30 446
New Code 0.01 1,0 0.99 0.89 0.32 0.56 0.94 0.10 0.04 0.01 622
New Code 0.001 1,0 0.99 0.88 0.26 0.51 0.97 0.04 0.02 0.02 5513

BT lacking forBT < 0.1 ·max(BT), 85% area, 24% flux
Old Code 0.96 0.82 0.47 0.64 0.85 1.39 0.97 244
New Code 0.01 1,0 0.98 0.87 0.40 0.60 0.90 0.28 0.08 0.03 486
New Code 0.001 1,0 0.98 0.89 0.33 0.54 0.93 0.11 0.03 0.18 3802

BT lacking forBz < 0.05 ·min(Bz), 95% area, 49% flux
Old Code 0.90 0.82 0.56 0.65 0.67 23.4 20.7 337
New Code 0.01 1,0 0.92 0.84 0.50 0.63 0.78 4.17 0.27 0.57 220
New Code 0.001 1,0 0.92 0.86 0.49 0.62 0.77 0.93 0.07 5.81 1058

Uniform noise inBT with 0.05 ·max(BT)
Old Code 0.96 0.84 0.47 0.64 0.87 7.3 3.5 166
New Code 0.01 BT

max(BT ) 0.97 0.88 0.41 0.60 0.86 0.37 0.14 0.59 631
New Code 0.001 BT

max(BT ) 0.97 0.87 0.39 0.58 0.88 0.10 0.05 1.20 4904
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inconsistent. In this case a force-free solution that matches the
boundary fields does not exist. However, even for consistent
boundary conditionsL1 andL2 remain finite for numerical rea-
sons. As a typical error we expectL ' N3(10−5/∆x)2, where
∆x = 1/N is the grid spacing andN the number of grid points
along each axis. ForN = 64 this yieldsL ' 0.1. The typical
discretisation error can be estimated from the entries for the
analytical solution in the first row and for the potential field in
the second row. They are of the same order of magnitude as the
estimated error above except forL1 of the potential field, which
deminishes to roundoff errors because it was obtained from a
numerical gradient of a potential. An iterative solution of the
potential field gave residual values for both,L1 andL2 slightly
below the estimated numerical error of 0.1.

3.1. Tests with ideally measured boundary conditions

The first two rows in Table 1 show for reference the figures
of merit for the original reference solution and the initial po-
tential field, respectively. Rows 3-9 display test results with
ideal boundary conditionsBobs from the exact solution. For the
new code we varied the Lagrangian multiplierν and the matrix
elementswtrans. For wtrans = 1 all pixels in the magnetogram
are treated equally, which is reasonable for perfectly measured
data. Figure 1 c) and d) show the respective reconstructed field
lines with the old and new code (wtrans = 1, ν = 0.01), respec-
tively. Within a reasonable range of parameters the new code
gives the same result as the old one. If the Lagrangian multi-
plier ν is chosen too small orwtrans is nonzero mainly only for
strong field regions, the reconstructed solution is gradually de-
coupled fromBobs and the resulting field deviates from the ex-
act solution towards a potential field. Forν = 0 the code should
stop immediately and return the initial potential field for which
L1 = L2 = 0. Forν→ ∞ the bottom boundary field is forced to
agree withBobs at every iteration step and the iteration should
perform as for the old code.

A main difference between old and new code is the evolu-
tion of the functionalL during the iteration as shown in Fig.
2 panel a) and b). For the new code the force-partL1 and
divergence-partL2 remain small during the entire iteration. The
final state is almost identical for both implementations, how-
ever.

3.2. Tests with boundary conditions with lacking data

The main reason for the new implementation of our code is
that we need to deal with boundary data of different noise lev-
els and qualities or even miss some data points completely.
This occurs e.g. due to the limited field of view of some vec-
tor magnetographs like Hinode-SOT. The line-of-sight mag-
netic field is usually available for the entire solar disk, e.g.
from SOHO/MDI, but the transverse componentsBtrans are of-
ten not available in parts of an active region. SDO/HMI will ob-
serve full-disk vector-magnetograms, butBtranswill suffer from
a poor signal-to-noise ratio in weak field regions. This makes
Btransmeasurements less reliable in these regions.

We mimiced this effect by removing the information re-
garding the transverse field in certain areas, e.g. where|Btrans| <
0.05 max(|Btrans|) and |Btrans| < 0.1 max(|Btrans|), respectively.
For our test field, this affects 73% and 85% of the bottom
boundary, respectively. Finally as an extreme test we assigned
Btrans only in a very restricted area close to a local field con-
centration. This simulates measurements with a vector magne-
tograph of a very small FOV. For our test fieldBtrans is then
available for only 5% of the bottom boundary. In the new code,
the boundary area with lacking data is marked bywtrans= 0, in
the old code the lacking transverse field components are filled
with zeros, which implies a vertical magnetic field (see DeRosa
et al., 2009, for details.)

The fieldline plots from these latter two reconstructions are
shown in Fig. 1 e)-h). The comparison with the exact solution
and numerical residuals of thej×B force and the divergence are
displayed in rows 10-18 of Table 1. We find that the new code
is closer to a force- and divergence-free field in all cases andL1

andL2 are significantly smaller, in particular for low values of
the Lagrangian multiplierν. The result of the new code agrees
also somewhat better with the original solution than the output
of the old code, but the difference is not as significant as the
difference in force-free and solenoidal conditions.

The reason for these results is that the old and new code
react differently to inconsistent boundary conditions caused by
noisy data and by assuming a vertical field in regions where
transversal field measurements are lacking. As seen in Fig. 2
panel c) the functionalL iterated in the old code soon reaches a
stationary state at a finite value ofL if the boundary data are in-
consistent. This is different with the new code, shown in panels
d) and e). HereL1 and L2 remain very small during the en-
tire evolution and the inconsistency in the boundary data is ab-
sorbed in theL3 term.L3 can also become relatively low how-
ever, because regions withwtrans= 0 (where the transverse field
has a poor signal-to-noise ratio or is even unknown) do scarcely
or not at all contribute to the functional. For a reasonably small
Lagrangian multiplierν as shown in panel e) the functionals
L1 and L2 stay at a very low level (discretisation error). The
new code also relaxes the bottom boundary values and changes
the field there in order to find force-free consistent boundary
conditions. If information onBtrans are lacking in a significant
part of the magnetogram (up to 95% of the pixels in our ex-
ample), there is no unique solution for consistently specifying
Btrans, and one cannot expect the final equilibrium to agree with
the model solution. Yet we have the most probable magnetic
field model, because it is close to force- and divergence-free
and agrees with the sparse observed boundary data.

3.3. Influence of noise

Finally we investigate how noise influences the quality of the
reconstructed magnetic field in the last three rows of Table 1.
We added a uniform noise of 5% of the maxim transversal mag-
netic field ontoBtrans

2 For the old code the inconsistency in the
boundary data leads to significant deviations from the force-

2 This would correspond to a noise level of about 100G for real
measurements.
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free L1 and solenoidal conditionL2. Computations with the
new code lead to significantly better agreement of the force
and solenoidal condition, e.g., by almost two orders of magni-
tude for a small Lagrangian multiplierν = 0.001. The effect of
noise in the transversal field is similar to lacking data, which
is natural, as regions with a very poor signal-to-noise ratio in
Btrans can be as well considered as regions where we do not
know Btrans. The new code still finds a force-free solution for
these cases, which are, however, more potential field like than
the solution with full information. But even for this relatively
high noise level the reconstructed solution still has similarities
to the original Low and Lou reference field (error of 3− 4%
in the vector correlation and an under-estimation of the energy
of 12−14%.) and is a significantly better approximation than a
potential field, which as an error of 12% and 33% for the vector
correlation and energy estimate, respectively.

4. Conclusions

Different from previous implementations our new code allows
us to deal with lacking data and regions with poor signal-to-
noise ratio in the extrapolation in a systematic manner because
it produces a field which is closer to to a force- and divergence-
free field and tries to match the boundary only where it has
been reliably measured. For ideal and consistent data the ex-
trapolation result is identical with previous implementations of
our code. This old result could also artificially be enforced by
the choiceν→ ∞ andwtrans= 1.

For finite ν, the new code also relaxes the boundary and
allows us to fulfill the solenoidal and force-free condition sig-
nificantly better because it allows deviations between the ex-
trapolated boundary field and inconsistent boundary data. This
deviation can be controlled by setting the weight factorswtrans

inversely proportional to the measurement error orwtrans = 0,
where the field information is lacking.

If no transverse magnetic field has been observed on a sig-
nificant part of the vector magnetogram, the magnetic energy
of the final relaxed state is underestimated. In an extreme case
when noBtrans at all is available in the entire region, the code
would produce the initial potential field.
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