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nonlinear force-free coronal magnetic field modelling?
(Research Note)

T. Wiegelmant and B. Inhestér

Max-Planck-Institut  @ir  Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany, e-mail:
wiegelmann@mps.mpg.de

ABSTRACT

Context. The measured solar photospheric magnetic field vector is extrapolated into the solar corona under the assumption of a force-free
plasma. In the generic case this problem is nonlinear.

Aims. We aim to improve an algorithm for computing the nonlinear force-free coronal magnetic field. We are in particular interested to
incorporate measurement errors and to handle lacking data in the boundary conditions.

Methods. We solve the nonlinear force-free field equations by minimizing a functional. Within this work we extend the functional by an
additional term, which allows us to incorporate measurement errors and treat regions with lacking observational data. We test the new cod
with the help of a well known semi-analytic test case. We compare coronal magnetic field extrapolations from ideal boundary conditions and
boundary conditions where the transversal magnetic field information is lacking or has a poor signal-to-noise ratio in weak field regions.
Results. For ideal boundary conditions the new code gives the same result as the old code. The advantage of the new approach, which include
an error matrix, is visible only for non-ideal boundary conditions. The force-free and solenoidal conditions are fulfilled significantly better and
the solutions agrees somewhat better with the exact solution. The new approach also relaxes the boundary and allows a deviation from tt
boundary data in poor signal-to-noise ratio areas.

Conclusions. The incorporation of measurement errors in the updated extrapolation code significantly improves the quality of nonlinear
force-free field extrapolation from imperfect boundary conditions.
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1. Introduction and evaluation of codes.) The comparison dfetent nonlin-

force-free extrapolation codes revealed that the algorithms

Because routine measurements of the coronal magnetic fi i‘ﬁw reliably reconstruct model fields from consistent boundary
are not available, we have to rely on measurements of the p Qta.

tospheric magnetic field vector to estimate the coronal mag-

netic field distribution. The extrapolation of this surface field However, in a recent joined study by (DeRosa et al., 2009)
into the corona constitutes a boundary value problem, Whlwll'Ch deals with an observed data-set (vector magnetogram
can be solved numerically if some simplifying model assumg en with HinodéSOT embedded in a line-of-sight magne-
tions for the coronal field are made. Because of the low plas gram from SOHEMDI) the force-free codes did not find

B in the solar corona non-magnetic forces are often neglecféﬁqﬁ'Stemds?luuons A major problem was that onl;l;for a gart
to lowest order. We have to solve the corresponding nonlin the model region vector magnetograms were observed (in
force-free boundary value problem t e Hinode Field-Of-View, FOV) and the transverse magnetic

field componenByans Was unknown in the remaining photo-
(VxB)xB=0 (1) spheric area. In the study, the lacking field components were
V.B=0 @) replaced by zeros, which was a simple way to treat the lacking
data. In view of the inconsistency of the results DeRosa et al.
B = Bons on photosphere () (2009) concluded that a successful nonlinear force-free recon-

whereB is the magnetic field. Several methods have been ééructlon requires
veloped to solve these equations, (see, e.g., Schrijver et al.,

2006; Metcalf et al., 2008, for an overview and a comparisoh ‘A large computational domain with a high resolution,
which accommodates most of the connectivity within the
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2. Taking account of measurement uncertainties, in particularthese cases the first integral in (4) alone could often not be
for the transverse field component. iterated to values of the order of the numerical routigoror.

3. 'Preprocessing’ of the observed vector field that approxXivith the new formulation (4) we allow deviations between the
mates the physics of the photosphere-to-chromosphererimdel fieldB and the observeB,,s and so the model field can
terface as it transforms the observed, forced, photosphds&iterated closer to a force-free field even if the observations
field to a more realistic approximation of the near force-fresre inconsistent. This balance is controlled by the Lagrangian
field in the upper chromosphere, multiplier v.

Photospheric magnetic field measurements in extended areas

of the photosphere (1) will become available soon from the r&-1. Encoding of old code
cently launched SD/GIMI Instrument. The problem of Prepro-r, previous version of our optimisation code worked as fol-
cessing (3) has been addressed in several works (Wiegelm

nn ; .
et al., 2006; Fuhrmann et al., 2007; Wiegelmann et al., Zocflg\;Ns (see also Wiegelmann, 2004, for details):

Tadesse et al., 2009). Here we will address problem (2): how set initialB to the potential field computed from the normal
uncertainties in the boundary data can be taken into account incomponent oB,ps at the photospheric boundary.

the nonlinear force-free magnetiC f|e|d extrapolation. _ Rep'ace the transverse f|e|d Component Of the |nB|ajy
the observed field components By,s at the photospheric
2. Method boundary.

_ ~_— Minimise L (Eq. 4) iteratively, keeping unchanged at the
To solve the force-free equations, we extended the optimization photospheric boundary. Only the first two terms are influ-

approach introduced by Wheatland et al. (2000): enced and the surface integral vanishes by construction at
2 each iteration step.
L= fwfw +wy|V - B|2d3V
\%
2.2. Encoding of new code
Ty f (B = Bobg) - W - (B — Bopd?S. @) g
S

— SetinitialB to the potential field computed from the normal
The first integral contains the conditions (1) and (2) as component 0Boysat the photospheric boundary as above.
quadratic forms and obviously favs, wy > O that the force- — MinimiseL (Eq. 4) iteratively without constraining at the
free conditions (1, 2) are fulfilled when the functional reaches photospheric boundary. The transverse magnetic Bgigk

its minimum atL = 0. This was the approach used in before is gradually driven towards the observations while the field
(see Wheatland et al., 2000; Wiegelmann, 2004, for details) relaxes to a force-free field. If the observed field is incon-
where the boundary conditions entered directly as iterative im- sistent, the dferenceB — Boys remains finite depending on
provements oB to minimizeL were constrained tB = Bgps the control parameter Wherewyans = 0 the observed field
at the photospheric boundary. is automatically ignored.

Here, we propose to extend the functional by adding Different from the old code the magnetic field is also re-
the surface integral over the photosphere (4) and iterating laxed in the bottom boundary. Consequently the boundary
B to minimize L, which is otherwise unconstrained. In this ~values ofByans in regions with poor signal to noise ratio
integral, W(x,y) is a diagonal error matrix, the elements (Wrans = 0) are automatically relaxed towards force-free
Wios, Wirans Wirans Of Which are chosen inversely proportional to ~ consistent values.
the local measurement error of the respective photospheric fietd The stateL = 0 corresponds to a perfect force-free
component ax, y. In principleW should be specified by the in-  and divergence-free state and exact agreement of the
strument, and it is likely that this error distribution will be pro-  boundary valuesyans With observations in regions with
vided along with the data for SDBMI vector magnetograms. ~ Wrans > 0. For inconsistent boundary data the force-free
Because the line-of-sight photospheric magnetic field is mea- and solenoidal conditions can still be fulfiled, but the third
sured with much higher accuracy than the transverseBiglg, surface term will remain finite. This results in some devia-
we typically set the componemiqs to unity, while the trans- tion of the bottom boundary data from the observations in
verse components af,qns are typically small but positive. In  regions, wherévansis small.
regions wherdsnshas not been measured or where the signal-
to-noise ratio is very poor, we S@tans = 0. For both codes the iteration stops whelbecomes stationary.

The boundary value problem (1) and (2) is nonlinear, ah¥imerically stationarity is assumed whyL < 10* for 100
there is no guarantee that a solution exists for all sets of boug@nsecutive iteration steps.
ary values in the sense that we can obthin= 0 exactly.
Boulmezaoud & Amari (2000) have shown that the full vectoot
field as boundary condition overdetermines the problem, and
Wiegelmann et al. (2010) investigated the influence of ph@ve tested the new code with the well known semi-analytic
tospheric measurement errors. Observed and noisy boundagyilibrium from Low & Lou (1990). These are force-free axis-
fields Bops are very probably inconsistent and belong to the sggmmetric equilibria in spherical geometry, but the symmetry
of boundary values for which a strict solution does not exidtas broken for our tests by cutting a rectangular obliquely ori-

Code testing
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Fig. 1. Magnetic fieldline plots for the reference equilibrium (panel a), the initial potential field (b) and the other panels show nonlinear force-
free reconstructions with the old and new code fdfedent cases, see text.

entated box out of the spherical solution. By means of a linffigures of meritin Table 1 Cols. 4-8. These are the vector cor-
ear shiftl and a rotation angl®, we positioned the centrerelation (VC), Chauchy Schwarz (CS), normalized vector error
of the equilibrium solution and tilted its axis orientation relaNE), mean vector error (ME) and the ratio of the computed
tive to the cartesian geometry of the computational domain (seagnetic energy and the energy of the Low and Lou reference
Low & Lou, 1990, for details). These equilibria have becomféeld (Energy). For a perfect reconstruction NE and ME are zero
a standard for testing nonlinear force-free extrapolation codasd all other quantities are unity (see Schrijver et al., 2006, for
(see, e.g., Wheatland et al., 2000; Wiegelmann & Neukirch,detailed explanation of these figures and the corresponding
2003; Schrijver et al., 2006; Amari et al., 2006; Inhester &athematical equations).

Wiegelmann, 2006; Valori et al., 2007; Tadesse et al., 2009, We also evaluated how well the force-free condition

for earlier studies with this equilibrium). We here chdse0.3

2

and® = 0.15rx for our tests and computed the equilibrium in a Ly = fwf w d3v, (5)
box withnx = ny = 80, nz= 72. v B

Table 1 shows the results of these tests, where Col. 1 namesdivergence-free condition
the used code. The second and third column list the values of
the new parameters for the code in 4, the Lagrangian multi- L, = fwd IV -B2d®V, (6)
plier v and the matrix elemenmtyans While wios was set to unity %
throughout'. _ and the boundary data term

These parameters were not present in the old code.

We treated_the qumbrlum field on the bottom boundary as L = f(B — Bopg) - W - (B — Bop)d?S @)
the observed fiel®,,sinput for both our old and new extrapo- s

Ic?tlropezggeirAgteig;hs ezgip(:ﬁzo%vgeei}gugraetcijot:?gu?t“a//i Fe satisfied. The respective numbers are listed in Table 1 in
thue exact feerence s?/olutior? in tr?e centet &?be by a nuSnL:ber ols. 9 and 10. The last column displays the number of tera-
y tion steps needed to obtain the reconstruction. In practical com-

! We investigated several forms s as indicated in the third Putationsls, L, andLs never vanish exactly, but the code stops
column of the table. 0 means that we chose..,s = 1 in the valid when}; L; becomes more or less stationary. The final values
Byansarea and 0 elsewhere. of L;, L, may be high if the imposed boundary conditions are
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Fig. 2. Evolution of the entire functiondl (solid line, see Eq. 4) and its three terms (see Eq. 5-7)
Table 1. Evaluation of the reconstruction quality.
Model v Wirans VvVC CS NE ME Energy L, L, L3 It. Steps
Original 1 1 0 0 1 2 002
Potential B8 084 057 064 067 0 Q29
Tests with ideal data
Old Code 100 092 018 043 099 001 001 1695
New Code QL 1 099 090 029 054 094 008 002 000 342
New Code @1 1 100 092 018 043 099 001 001 o001 1478
New Code (001 1 100 091 018 042 097 001 001 015 3698
New Code (0001 1 095 089 042 057 079 002 002 197 7467
New Code @M1 maEIBT) 099 089 024 049 097 001 001 o001 3826
New Code @M1 %{Bﬂ) 097 089 039 058 088 001 002 009 2026
B lacking forBr < 0.05- max®Br), 73% area, 14% flux
Old Code M8 085 038 061 091 042 030 446
New Code @M1 10 099 089 032 056 094 010 004 o001 622
New Code (001 10 099 088 026 051 097 004 002 002 5513
By lacking forBr < 0.1- max(Br), 85% area, 24% flux
Old Code M6 082 047 064 085 139 097 244
New Code @M1 10 098 087 040 060 090 028 008 003 486
New Code (01 10 098 089 033 054 093 011 003 018 3802
Bt lacking forB, < 0.05- min(B,), 95% area, 49% flux
Old Code 0 082 056 065 067 234 207 337
New Code @01 10 092 084 050 063 Q78 417 027 057 220
New Code (01 10 092 086 049 062 Q77 093 007 581 1058
Uniform noise inBy with 0.05- max(Br)
Old Code M6 084 047 064 087 73 35 166
New Code @1 maEIBT) 097 088 041 060 086 037 014 059 631
New Code (01 Br 097 087 039 058 088 010 005 120 4904

max®Br)
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inconsistent. In this case a force-free solution that matches theWe mimiced this &ect by removing the information re-
boundary fields does not exist. However, even for consisteyarding the transverse field in certain areas, e.g. WBgggd <
boundary conditiong; andL, remain finite for numerical rea- 0.05 max(Byand) and |Byand < 0.1 max(Byand), respectively.
sons. As a typical error we expect~ N3(10°°/Ax)?, where For our test field, this fiects 73% and 85% of the bottom
Ax = 1/N is the grid spacing antl the number of grid points boundary, respectively. Finally as an extreme test we assigned
along each axis. FOX = 64 this yieldsL ~ 0.1. The typical ByansOnly in a very restricted area close to a local field con-
discretisation error can be estimated from the entries for tbentration. This simulates measurements with a vector magne-
analytical solution in the first row and for the potential field inograph of a very small FOV. For our test fiel}ans is then
the second row. They are of the same order of magnitude asahailable for only 5% of the bottom boundary. In the new code,
estimated error above except torof the potential field, which the boundary area with lacking data is markedagy,s = 0, in
deminishes to roundberrors because it was obtained from ¢he old code the lacking transverse field components are filled
numerical gradient of a potential. An iterative solution of theith zeros, which implies a vertical magnetic field (see DeRosa
potential field gave residual values for both,andL; slightly et al., 2009, for details.)
below the estimated numerical error 010 The fieldline plots from these latter two reconstructions are
shown in Fig. 1 e)-h). The comparison with the exact solution
and numerical residuals of thgB force and the divergence are
3.1. Tests with ideally measured boundary conditions  displayed in rows 10-18 of Table 1. We find that the new code
is closer to a force- and divergence-free field in all cased.and
The first two rows in Table 1 show for reference the figuregdL, are significantly smaller, in particular for low values of
of merit for the original reference solution and the initial poge Lagrangian multiplier. The result of the new code agrees
tential field, respectively. Rows 3-9 display test results Withyso somewhat better with the original solution than the output
ideal boundary conditionB,ps from the exact solution. For the of the old code, but the fierence is not as significant as the
new code we varied the Lagrangian multiplieaind the matrix gjgrerence in force-free and solenoidal conditions.
elementSiians FOr Wrrans = 1 all pixels in the magnetogram  The reason for these results is that the old and new code
are treated equally, which is reasonable for perfectly measured .t girerently to inconsistent boundary conditions caused by
Qata. F!gure 1 ¢) and d) show the respective reconstructed flﬁgisy data and by assuming a vertical field in regions where
lines with the old and new cod@ans = 1,v = 0.01), respec- yansyersal field measurements are lacking. As seen in Fig. 2
tively. Within a reasonable range of parameters the new cqdg,e| ¢) the functiondl iterated in the old code soon reaches a
gives the same result as the old one. If the Lagrangian mullixtionary state at a finite value off the boundary data are in-
plier v is chosen too small aransis nonzero mainly only for ¢, nsistent. This is dierent with the new code, shown in panels
strong field regions, the reconstructed solution is gradually qﬁ and e). HereL; and L, remain very small during the en-
coupled fromBoys and the resulting field deviates from the eXgire evolution and the inconsistency in the boundary data is ab-
act solution towards a potential field. o 0 the code should g5rpeq in thes term. L3 can also become relatively low how-
stop immediately and return the initial potential field for Whic'éver, because regions Withans = 0 (Where the transverse field
L1 =Lz = 0. Forv — co the bottom boundary field is forced top 45 4 poor signal-to-noise ratio or is even unknown) do scarcely
agree withBops at every iteration step and the iteration shoulgy ot at all contribute to the functional. For a reasonably small
perform as for the old code. Lagrangian multiplien as shown in panel e) the functionals
A main difference between old and new code is the evollis andL, stay at a very low level (discretisation error). The
tion of the functionalL during the iteration as shown in Fig.new code also relaxes the bottom boundary values and changes
2 panel a) and b). For the new code the force-partand the field there in order to find force-free consistent boundary
divergence-patt, remain small during the entire iteration. Theconditions. If information orByans are lacking in a significant
final state is almost identical for both implementations, hovpart of the magnetogram (up to 95% of the pixels in our ex-
ever. ample), there is no unique solution for consistently specifying
Birans @nd one cannot expect the final equilibrium to agree with
the model solution. Yet we have the most probable magnetic
3.2. Tests with boundary conditions with lacking data field model, because it is close to force- and divergence-free
and agrees with the sparse observed boundary data.
The main reason for the new implementation of our code is
that we need to deal with boundary data dfelient noise lev-
els and qualities or even miss some data points complet

This occurs e.g. due to the limited field of view of some vegjnaly we investigate how noise influences the quality of the
tor magnetographs like Hinode-SOT. The line-of-sight magaconstructed magnetic field in the last three rows of Table 1.
netic field is usually available for the entire solar disk, €.@ye added a uniform noise of 5% of the maxim transversal mag-
from SOHQMDI, but the transverse componerBgansare of-  petjc field ontoByans2 For the old code the inconsistency in the

ten not available in parts of an active region. SBI®MI will ob-  poyndary data leads to significant deviations from the force-
serve full-disk vector-magnetograms, IB4t,nswill suffer from

a poor signal-to-noise ratio in weak field regions. This makeg This would correspond to a noise level of about GOr real
BiransmMeasurements less reliable in these regions. measurements.

e}‘}p Influence of noise
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free L, and solenoidal conditioh,. Computations with the Low, B. C. & Lou, Y. Q. 1990, ApJ, 352, 343

new code lead to significantly better agreement of the forbéetcalf, T. R., Derosa, M. L., Schrijver, C. J., et al. 2008,

and solenoidal condition, e.g., by almost two orders of magni-Sol. Phys., 247, 269

tude for a small Lagrangian multiplier= 0.001. The &ect of Schrijver, C. J., Derosa, M. L., Metcalf, T. R., et al. 2006, Sol.

noise in the transversal field is similar to lacking data, which Phys., 235, 161

is natural, as regions with a very poor signal-to-noise ratio fadesse, T., Wiegelmann, T., & Inhester, B. 2009, A&A, 508,

Byans Can be as well considered as regions where we do no#21

know Byans The new code still finds a force-free solution fokalori, G., Kliem, B., & Fuhrmann, M. 2007, Sol. Phys., 245,

these cases, which are, however, more potential field like thar263

the solution with full information. But even for this relativelyWheatland, M. S., Sturrock, P. A., & Roumeliotis, G. 2000,

high noise level the reconstructed solution still has similarities ApJ, 540, 1150

to the original Low and Lou reference field (error o£34% Wiegelmann, T. 2004, Sol. Phys., 219, 87

in the vector correlation and an under-estimation of the enefgiiegelmann, T., Inhester, B., & Sakurai, T. 2006, Sol. Phys.,

of 12— 14%.) and is a significantly better approximation than a 233, 215

potential field, which as an error of 12% and 33% for the vect@¥iegelmann, T. & Neukirch, T. 2003, Nonlinear Processes in

correlation and energy estimate, respectively. Geophysics, 10, 313

Wiegelmann, T., Thalmann, J. K., Schrijver, C. J., Derosa,
M. L., & Metcalf, T. R. 2008, Sol. Phys., 247, 249

Wiegelmann, T., Yelles Chaouche, L., Solanki, S. K., & Lagg,

Different from previous implementations our new code allowsA- 2010, A&A, 511, A4+
us to deal with lacking data and regions with poor signal-to-
noise ratio in the extrapolation in a systematic manner because
it produces a field which is closer to to a force- and divergence-
free field and tries to match the boundary only where it has
been reliably measured. For ideal and consistent data the ex-
trapolation result is identical with previous implementations of
our code. This old result could also artificially be enforced by
the choicey — oo andWiyans= 1.

For finite v, the new code also relaxes the boundary and
allows us to fulfill the solenoidal and force-free condition sig-
nificantly better because it allows deviations between the ex-
trapolated boundary field and inconsistent boundary data. This
deviation can be controlled by setting the weight factefg.s
inversely proportional to the measurement errowgy,s = 0,
where the field information is lacking.

If no transverse magnetic field has been observed on a sig-
nificant part of the vector magnetogram, the magnetic energy
of the final relaxed state is underestimated. In an extreme case
when noByans at all is available in the entire region, the code
would produce the initial potential field.

4. Conclusions
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