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Abstract. Knowledge of the structure of the coronal mag-
netic field is important for our understanding of many solar
activity phenomena, e.g. flares and CMEs. However, the
direct measurement of coronal magnetic fields is not possi-
ble with present methods, and therefore the coronal field has
to be extrapolated from photospheric measurements. Due to
the low plasma beta the coronal magnetic field can usually
be assumed to be approximately force free, with electric cur-
rents flowing along the magnetic field lines. There are both
observational and theoretical reasons which suggest that at
least prior to an eruption the coronal magnetic field is in a
nonlinear force free state. Unfortunately the computation of
nonlinear force free fields is way more difficult than poten-
tial or linear force free fields and analytic solutions are not
generally available. We discuss several methods which have
been proposed to compute nonlinear force free fields and fo-
cus particularly on an optimization method which has been
suggested recently. We compare the numerical performance
of a newly developed numerical code based on the optimiza-
tion method with the performance of another code based on
an MHD relaxation method if both codes are applied to the
reconstruction of a semi-analytic nonlinear force-free solu-
tion. The optimization method has also been tested for cases
where we add random noise to the perfect boundary con-
ditions of the analytic solution, in this way mimicking the
more realistic case where the boundary conditions are given
by vector magnetogram data. We find that the convergence
properties of the optimization method are affected by adding
noise to the boundary data and we discuss possibilities to
overcome this difficulty.

1 Introduction

The magnetic field is the most important quantity for under-
standing the plasma structure of the solar corona and the ac-
tivity phenomena it shows. Unfortunately a systematic direct
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measurement of the coronal magnetic field is not feasible
with the observational methods presently available. There-
fore the extrapolation of the magnetic field into the corona
from measurements of the magnetic field at the photospheric
level is extremely important.

It is generally assumed that the magnetic pressure in
the corona is much higher than the plasma pressure (small
plasmaβ) and that therefore the magnetic field is nearly
force-free (for a critical view of this assumption see Gary,
2001). The extrapolation methods based on this assump-
tion include potential field extrapolation (e.g. Schmidt, 1964;
Semel, 1967), linear force-free field extrapolation (e.g. Chiu
and Hilton, 1977; Seehafer, 1978, 1982; Semel, 1988) and
nonlinear force-free field extrapolation (e.g. Amari et al.,
1997). Methods for non-force-free field extrapolation have
also been developed (Petrie and Neukirch, 2000) but are not
used routinely.

Whereas potential and linear force-free fields can be used
as a first step to model the general structure of magnetic
fields in the solar corona, the use of non-linear force free
fields is essential to understand eruptive phenomena as there
are both observational and theoretical reasons which suggest
that the pre-eruptive magnetic fields are non-linear force-free
fields (see below). The calculation of nonlinear force free
fields is complicated by the intrinsic nonlinearity of the un-
derlying mathematical problem. Another problem which be-
comes especially important when nonlinear force free field
are used for magnetic field extrapolation is the correct for-
mulation of the problem with respect to boundary values.
The available magnetograph observation provide either the
line-of-sight magnetic field (Blos), which is sufficient for po-
tential and linear force free fields, or all three components of
the photospheric magnetic field. Only the latter information
is sufficient to determine non-linear force free fields com-
pletely. There are, however, tremendous difficulties to be
overcome both in extracting the necessary information about
the magnetic field components on the boundary from the data
in an unambiguous way and in the use of this information in
the computation of the corresponding magnetic field. Even
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though a lot of research has been devoted to these problems
in the past so far none of the proposed methods has been
found to be outstanding in combining simplicity, usability
and robustness.

The purpose of the present contribution is to assess some
of the methods presently available for calculating non-linear
force-free fields, with a view to implementing them into a
general extrapolation code which also takes stereoscopic in-
formation into account in the extrapolation process. A first
version of such a method based on linear force free extrapola-
tion has recently been proposed (Wiegelmann and Neukirch,
2002). As stated in Wiegelmann and Neukirch (2002) and
bearing in mind the remarks above, it is would be very de-
sirable to generalize the extrapolation method to nonlinear
force free fields.

As a first step in this direction we investigate the robust-
ness of the optimization method recently proposed by Wheat-
land et al. (2000), and compare its performance with another
method based on MHD relaxation. The paper is organized as
follows. In Sect. 2 we discuss the basic equations and back-
ground theory. Section 3 describes various methods which
have been proposed for nonlinear force free field extrapola-
tion. Out of these we focus on the optimisation method and,
for the case of analytically given boundary data, on the MHD
relaxation method. These methods are tested using an analyt-
ical solution in Sect. 4. The optimisation method is also sub-
jected to tests with more general boundary conditions where
we add noise to the given analytical boundary data. The pa-
per closes with the conclusions in Sect. 5.

2 Basic equations: Force-Free equilibria

For force free fields the equations to solve are

j × B = 0, (1)

∇ × B = µ0j , (2)

∇ · B = 0. (3)

Equation (1) implies that for force free fields the current den-
sity and the magnetic field are parallel, i.e.

µ0j = αB. (4)

Hereα is a function of space. This function has to satisfy the
equation

B · ∇α = 0 (5)

which is obtained by taking the divergence of Eq. (4) and
making use of Eqs. (2) and (3). Substituting Eq. (4) into
Eq. (2) we get a second equation which determinesB :

∇ × B = αB (6)

Equation (5) implies thatα is constant along magnetic
field lines, but that it can vary across the magnetic field. Ob-
viously, Eq. (5) is solved byα = 0 implying thatj = 0 by
Eq. (4). In this case we obtain potential fields. Another ob-
vious possibility isα constant, but nonzero. This is the case

of linear (or constant-α) force free fields. Standard methods
for calculating potential and linear force free field are avail-
able (see e.g. Gary, 1989) and they can at least give a rough
impression of the coronal magnetic field structure.

There are, however, both observational and theoretical ar-
guments that at least the magnetic field prior to eruptive pro-
cesses in the corona is not a linear force free (or potential)
field. If the normal component or the line-of-sight compo-
nent of the magnetic field on the boundary is given the cor-
responding potential field is uniquely determined and is ac-
tually the magnetic field with the lowest magnetic energy for
this boundary condition. Since magnetic energy is needed
to drive an eruptive process pre-eruptive coronal magnetic
fields cannot be expected to be in a potential state. This is
also corroborated by observations (e.g. Hagyard, 1990; Hag-
yard et al., 1990; Falconer et al., 2002). Similar observa-
tions also indicate that it will usually be difficult to match the
boundary magnetic field with a linear force-free field. Also,
from a more general point of view it seems highly unlikely
that the complex pre-eruption coronal magnetic field which
is slowly but constantly stressed by changing boundary con-
ditions will have the current density distribution of a linear
force-free field, i.e. a constantα. A (strongly) localized cur-
rent density in the erupting configuration seems to be a lot
more natural. Another argument which is sometimes put for-
ward to rule out linear force-free magnetic fields for models
of pre-eruptive states is that linear force free fields minimize
the magnetic energy under the assumption of global helic-
ity conservation (e.g. Taylor, 1974), and therefore if helicity
conservation could be assumed to hold for a coronal erup-
tion, a linear force-free field would not be able to provide the
energy for the eruption. Even though it has been proposed to
apply variants of Taylor’s hypothesis to the state of the coro-
nal magnetic field on larger scales (e.g. Heyvaerts and Priest,
1984), it generally does not seem to apply for models of erup-
tive processes (e.g. Amari and Luciani, 2000). Furthermore,
there is the possibility of helicity transport into and out of the
region of interest and for these reasons, we do not want to put
too much emphasis on this argument.

However, we believe that the other arguments are strong
enough to assume that generally one has to take into account
that for the force free magnetic fields of pre-eruptive states
the value ofα changes from field line to field line. This au-
tomatically leads us to consider nonlinear force free fields.

3 Extrapolation methods

The problem we discuss in this section is to compute non-
linear force free magnetic fields in Cartesian coordinates
if given all three components of the magnetic field on the
boundary, i.e. the photosphere. Various methods have been
proposed (see e.g. Amari et al., 1997; Démoulin et al., 1997;
McClymont et al., 1997; Semel, 1998; Amari et al., 2000;
Yan and Sakurai, 2000) of which we will discuss three. For
the first method we assume that the magnetic field is given
on the lower boundary (photosphere), whereas for the sec-
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ond and third method we assume thatB is prescribed on the
surfaces of a volumeV .

3.1 Direct extrapolation

Direct extrapolation (Wu et al., 1990) is a conceptually sim-
ple method, in which the Eqs. (6) and (5) are reformulated
in such way that they can be used to extrapolate the photo-
spheric boundary conditions given by a vector magnetogram
into the solar corona.

If we suppose that the boundary condition on the lower
boundary is given byB0(x, y, 0) then we can calculate the
z-component of the current density atz = 0 by using Eq. (2)

µ0jz0 =
∂By0

∂x
−

∂Bx0

∂y
. (7)

Knowing thez-component of the photospheric magnetic field
(Bz0), we can use Eqs. (7) and (4) to determineα(x, y, 0) =

α0 :

α0 =
jz0

Bz0
(8)

We remark that special care has to be taken at photospheric
polarity inversion lines, i.e. lines along whichBz0 = 0 (see
e.g. Cuperman et al., 1991). Equation (8) allows us to cal-
culate thex andy-component of the current density using
Eq. (4)

jx0 = α0 Bx0, (9)

jy0 = α0 By0. (10)

We now use Eq. (3) and thex andy-component of Eq. (2)
to obtain expressions for thez-derivatives of all three mag-
netic field components in the form

∂Bx0

∂z
= jy0 +

∂Bz0

∂x
, (11)

∂By0

∂z
=

∂Bz0

∂y
− jx0, (12)

∂Bz0

∂z
= −

∂Bx0

∂x
−

∂By0

∂y
. (13)

The idea is to integrate this set of equations (numerically) in
the direction of increasingz, basically repeating the previous
steps at each height.

Unfortunately it can be shown that the formulation of the
force free equations in this way is unstable because it is an
ill-posed problem (e.g. Cuperman et al., 1990; Amari et al.,
1997). In particular one finds that exponential growth of the
magnetic field with increasing height is a typical behaviour.
The reason for this is that the method transports information
only from the photosphere upwards. Other boundary condi-
tions, e.g. at an upper boundary, either at a finite height or
at infinity cannot be taken into account. Attempts have been
made to regularize the method (e.g. Cuperman et al., 1991;
Démoulin et al., 1992), but cannot be considered as fully suc-
cessful.

3.2 MHD-relaxation

Another possibility to calculate nonlinear force free fields
is by the method of MHD relaxation (e.g. Chodura and
Schl̈uter, 1981). The idea is to start with a suitable magnetic
field which is not in equilibrium and to relax it into a force
free state. This is done by using the MHD equations in the
following form:

νv = (∇ × B) × B (14)

E + v × B = 0 (15)
∂B
∂t

= −∇ × E (16)

∇ · B = 0 (17)

The equation of motion (Eq. 14) has been modified in such
a way that it ensures that the (artificial) velocity field is re-
duced. Equation (15) ensures that the magnetic connectivity
remains unchanged during the relaxation. The relaxation co-
efficient can be chosen in such way that it accelerates the
approach to the equilibrium state. We use

ν =
1

µ
|B|

2 (18)

with µ = constant. Choosing the relaxation coefficientν pro-
portional toB2 speeds up the relaxation process in regions
of weak magnetic field (see Roumeliotis, 1996). Combin-
ing Eqs. (14), (15), (16) and (18) we get an equation for the
evolution of the magnetic field during the relaxation process:

∂B
∂t

= µ ∇ ×

(
[(∇ × B) × B] × B

B2

)
. (19)

This equation is then solved numerically starting with a given
initial condition for B. Equation (19) ensures that Eq. (17)
is satisfied during the relaxation if the initial magnetic field
satisfies it.

The difficulty with the relaxation method in the present
form is that it cannot be guaranteed that for the boundary
conditions we impose and for a given initial magnetic field
(i.e. given connectivity), a smooth force-free equilibrium ex-
ists to which the system can relax. If such a smooth equi-
librium does not exist the formation of current sheets is to be
expected which will lead to numerical difficulties. Therefore,
care has to be taken when choosing an initial magnetic field.
This clearly limits the applicability of the relaxation method,
and further work will be needed to overcome this obstacle.
We therefore only apply the relaxation method for compar-
ison with the optimization method to cases where we know
the boundary conditions to be compatible.

One can show, however, that the relaxation method con-
verges under less restrictive boundary conditions. By multi-
plying Eq. (16) byB, integrating over the complete compu-
tational volumeV and using Eq. (15), we find that

d

dt
WB =

∮
∂V

[(v · B)B − B2v] · ndS −

∫
V

(j × B) · vdV,(20)
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where

WB =
1

2

∫
V

B2dV . (21)

Under line-tying boundary conditions we havev = 0 on
the boundary, and only the volume integral survives. Using
Eq. (14) and the fact thatν > 0 one can show that in this case

d

dt
WB = −

∫
V

µ0

ν
(j × B)2dV < 0, (22)

and an equilibrium is achieved if and only if the magnetic
field is force free.

We emphasize that these boundary conditions are usually
not compatible with prescribing all three magnetic field com-
ponents on the boundaries, but only the normal component.
Therefore, in the following we discuss the relaxation method
only for test cases in which we know that the boundary con-
ditions are compatible. This is done for comparison with the
other method we discuss now, the optimization method.

3.3 Optimization

Recently Wheatland et al. (2000) have proposed an optimiza-
tion method which refines a proposal by Roumeliotis (1996).
In this method the functional

L =

∫
V

[
B−2

|(∇ × B) × B|
2
+ |∇ · B|

2
]

d3V (23)

is minimized. Obviously,L is bounded from below by 0.
This bound is attained if the magnetic field satisfies the force
free equations

(∇ × B) × B = 0 (24)

∇ · B = 0. (25)

The variation ofL with respect to an iteration parametert

leads to (see Wheatland et al. (2000) for details)

1

2

dL

dt
= −

∫
V

∂B
∂t

· F d3V −

∫
S

∂B
∂t

· G d2S (26)

where

F = ∇ × (� × B) − � × (∇ × B)

−∇(� · B) + �(∇ · B) + �2 B (27)

G = n̂ × (� × B) − n̂(� · B) (28)

� = B−2 [(∇ × B) × B − (∇ · B) B] (29)

The surface term in Eq. (26) vanishes for∂B/∂t = 0 1 on the
boundary andL decreases for

∂B

∂t
= µF (30)

1This condition makes it necessary that all three components of
the magnetic field have to be prescribed on the six boundaries of the
computational box. In Sect. 4.2.3 we discuss how the surface inte-
gral in Eq. (26) can be used to update the lateral and top boundary
conditions during the optimization process. Under this condition
only the bottom boundary is prescribed time independently with the
help of photospheric vector magnetograms.

This leads to an iteration procedure for the magnetic field
which is based on the equation

∂B
∂t

= µ ∇ ×

(
[(∇ × B) × B] × B

B2

)
+µ

{
− � × (∇ × B) − ∇(� · B)+�(∇ · B) + �2B

}
(31)

Hereµ is a constant which can be chosen to speed up the
convergence of the iteration process. Equation (19) and the
leading terms of Eq. (31) are identical, but Eq. (31) contains
additional terms.

For this method the vector fieldB is not necessarily sole-
noidal during the computation, but will be divergence-free if
the optimal state withL = 0 is reached. A disadvantage of
the method is that it cannot be guaranteed that this optimal
state is indeed reached for a given initial field and boundary
conditions. If this is not the case then the resultingB will
either be not force free or not solenoidal or both.

4 Tests

We encoded the MHD-relaxation method and the optimiza-
tion method in one program. The code is written inC and
uses 4th order finite differences on an equal spaced grid. The
time iteration is computed with the method of steepest gradi-
ent (see e.g. text books like Geiger and Kanzow, 1999). The
program is parallelized with OpenMP.

4.1 The semi-analytical test field

To test the reconstruction methods, we try to reconstruct a
semi-analytic nonlinear force free solution found by Low and
Lou (1990). Wheatland et al. (2000) have used similar tests.
The main difference between their paper and ours is in the
diagnostic quantities used and in the comparison with i) the
relaxation method and ii) the noisy boundary data (which we
think is more representative of a realistic situation). Low
and Lou (1990) solved the Grad-Shafranov equation for axis-
symmetric force free fields in spherical coordinatesr, θ , φ.
For axis-symmetry the magnetic field can be written in the
form

B =
1

r sinθ

(
1

r

∂A

∂θ
er −

∂A

∂r
eθ + Q eφ

)
(32)

where A is the flux function, andQ represents theφ-
component ofB, depending only onA. The flux function
A satisfies the Grad-Shafranov equation

∂2A

∂r2
+

1 − µ2

r2

∂2A

∂µ2
+ Q

d Q

d A
= 0 (33)

whereµ = cosθ . Among others, Low and Lou (1990) derive
solutions for

dQ

dA
= α = constant (34)
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by looking for separable solutions of the form

A(r, θ) =
P(µ)

rn
. (35)

The solutions are axis-symmetric in spherical coordinates
with a point source at the origin, but if used for testing force
free codes in Cartesian geometry the symmetry is no longer
obvious after a translation which places the point source out-
side the computational domain and a rotation of the symme-
try axis with respect to the Cartesian coordinate axis.

4.2 Test runs

For the test we have first calculatedBz(x, y, 0) on the pho-
tospheric boundaryz = 0 for the appropriate Low and Lou
solution. Using thisBz as a boundary condition we calculate
the potential field corresponding to this boundary conditions
inside our computational box. The potential field is com-
puted with help of a method developed by Seehafer (1978).
This method gives the components of the magnetic field in
terms of a Fourier series. The observed magnetogram (or
here the extracted magnetogram from the Low and Lou so-
lution) covers a rectangular region extending from 0 toLx

in x and 0 toLy in y is artificially extended onto a rectan-
gular region covering−Lx to Lx and−Ly to Ly by taking
an antisymmetric mirror image of the original magnetogram
in the extended region, i.e.Bz(−x, y) = −Bz(x, y) and
Bz(x, −y) = −Bz(x, y). We use a Fast Fourier Transfor-
mation (FFT) scheme (see Alissandrakis, 1981) to determine
the coefficients of the Fourier series. For more details regard-
ing this method see Seehafer (1978, 1982).

The potential field is used as starting field inside the com-
putational box but the Low and LouB field is imposed on
the boundaries. We then use either the MHD relaxation or
the optimization method to calculate the correct force free
equilibrium field. During the computations we calculate
the quantitiesL/[T 2m] (for both relaxation and the opti-
mization method), the absolute value of the Lorentz force
|J × B|/[nN m−3

] (averaged over the numerical grid), the
value of |∇ · B|/[mGaussm−1

] (averaged over the numeri-
cal grid), and the difference between the numerical magnetic

field and the known analytical solution|B(t)−Bana |
2

|Bana |2
(averaged

over the numerical grid) at each time step. In Sects. 4.2.1 and
4.2.2 all components of the magnetic field are fixed on all six
boundaries. In Sect. 4.2.3 only the bottom boundary condi-
tion is prescribed time-independent and the lateral and top
boundaries are updated during the iteration. The details are
described in Sect. 4.2.3.

4.2.1 Standard tests

In Fig. 1 we show three-dimensional plots of selected mag-
netic field lines for the Low and Lou solution, the potential
field calculated by taking the Low and LouBz on the lower
boundary, the field of the MHD relaxation method after 50,
500 and 5 000 relaxation time steps, and the same plots for
the optimization method. In these runs we used a grid size

of 40× 40× 20. The colour coding of the bottom boundary
indicates theBz distribution on that boundary.

It can bee seen that the potential field which is used as
starting field of the computations for both methods is clearly
different from the Low and Lou test field. The state of the
system after 50 steps still shows some resemblance to the
initial potential field for both methods but the field lines have
started to evolve away from the potential field. One can
also see small differences between the two methods. Af-
ter 5 000 steps no obvious differences between the magnetic
field reached with either method and the Low and Lou field
can be seen.

To quantify this statement we show in Fig. 2 a compari-
son of the evolution of the four diagnostic quantities for the
two methods during the computation. For both methods all
four diagnostic quantities decrease during the computation
but after 5 000 steps the optimization method shows signifi-
cant smaller values for the quantitiesL, ∇·B and the compar-
ison with the analytic solution. Therefore we can state that in
this case the optimization method seems to be slightly more
efficient than the MHD relaxation method. This is corrobo-
rated by a look a Table 1 in which we summarize the main
results of the various test runs we have made. The first row
shows the discretisation errors forL and the Lorentz force
if the known solution is discretised on a 40× 40 × 20-grid
and used to calculate the values of this quantities. The sec-
ond row contains the values ofL, the Lorentz force and the
relative error after the interior grid points have been replaced
by the potential field calculated from the photosphericBz of
the Low and Lou solution. The relatively large values of the
three diagnostic quantities show the deviation from the equi-
librium.

The next two rows show how the three diagnostic quan-
tities evolve during the MHD relaxation method for the
40 × 40 × 20-grid. One can see that after 5 000 steps the
value ofL has dropped by almost three orders of magnitude,
but is still one order of magnitude above the value calculated
with the discretised exact solution. The Lorentz force has
dropped to the level of the dicretisation error, and the relative
error has dropped more than two orders of magnitude.

We are giving the same quantities for the optimization
method in the following three rows. It can be seen that espe-
cially the values ofL are always way below the correspond-
ing values of the MHD relaxation method. This is not sur-
prising as the optimization method relies on the minimization
of the functionalL. The final value ofL is actually below the
discretisation error. It can also be seen that the relative error
after 5 000 iterations is more than one order of magnitude
smaller than the corresponding value of the MHD relaxation
method.

We have made a step towards checking numerical conver-
gence for the optimization method by repeating the calcula-
tion on a grid with doubled resolution (80× 80× 40). The
results are shown in the lower part of Table 1. The first thing
to notice is that the discretisation error is almost an order of
magnitude smaller than for the previous grid. For this grid
25 000 iteration steps have been carried out, and after that
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Fig. 1. Top row, left panel: A set of selected field lines of the Low and Lou solution. Top row, right panel: The same

field lines for the corresponding potential field calculated as described in the main text. The difference between the

two fields is obvious. Middle row: The field lines after 50 (left) and 5,000 (right) steps of the MHD relaxation method.

Bottom row: The field lines after 50 (left) and 5,000 (right) steps of the optimization method. The box drawn shows

the spatial extension of the numerical box. The colour coding at the bottom of the boxes shows the normal component

of the photospheric magnetic field in Gauss.
19

Fig. 1. Top row, left panel: A set of selected field lines of the Low and Lou solution. Top row, right panel: The same field lines for the
corresponding potential field calculated as described in the main text. The difference between the two fields is obvious. Middle row: The
field lines after 50 (left) and 5 000 (right) steps of the MHD relaxation method. Bottom row: The field lines after 50 (left) and 5 000 (right)
steps of the optimization method. The box drawn shows the spatial extension of the numerical box. The colour coding at the bottom of the
boxes shows the normal component of the photospheric magnetic field in Gauss.

the values ofL and the Lorentz force have reached the level
of the discretisation error. The relative error is more than two
orders of magnitude smaller than for the coarser grid.

4.2.2 Effect of adding noise

The previous calculations have been carried out under the
assumption that the magnetic field on the boundary of the
computational box is known exactly. Such an idealized situ-
ation will not be found when real data are used. Vector mag-

netograms will have finite resolution and suffer from obser-
vational uncertainties making the reconstruction potentially
more difficult. Especially the optimization method has been
proposed in view of coping with these difficulties (Wheat-
land et al., 2000).

To investigate how the optimization method works if the
boundary conditions are not given by the exact analytical
field, but to keep control over the amount of uncertainty,
we have carried out test runs with the optimization method
adding random noise with to the boundary conditions. We
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Table 1. Details of runs to reconstruct a Low and Lou (1990) solution. The values of the parameters used by Low and Lou arel = 0.3
and8 = π/4. The first column contains the used grid size and comments which code (relaxation or optimization) and boundary conditions
have been used. If not specified the boundary conditions have been extracted from the analytic solution. We specify if noise is added to
the boundary conditions. The remarkPot-boundarymeans that the lateral and top boundary conditions are not extracted from the analytic
solution, but prescribed as a global potential field. The second column contains the iteration step. The third column contains the value of the
functionalL, the fourth column the Lorentz force (averaged over the numerical grid) and the last column the relative error compared with
the analytic solution

nx × ny × nz Step L
[T 2m]

|j×B|

[nN m−3]
Relative Error

40× 40× 20 discret. error 3.2 2.0 Reference
Start 0 46573 264 0.42

Relaxation 50 3092 38.2 0.26
500 769 7.5 0.095

5 000 25.0 1.4 0.0016

Optimization 50 832 44.1 0.19
500 23.1 7.0 0.03

5 000 3.15 2.05 0.0001
1% noise 5 000 9.5 3.7 0.00017

10% noise 5 000 645.0 29.2 0.0055
20% noise 5 000 2584 58.6 0.028

Pot-boundary 500 468 9.1 0.39
Pot-boundary 5 000 458 6.3 0.37

80× 80× 40 discret. error 0.6 0.65 Reference
Start 0 109203 297 0.48

Optimization 50 1590 52 0.26
500 81 12 0.079

5 000 0.79 1.02 0.0013
25 000 0.6 0.65 0.000003

10% noise 25 000 1876 37.6 0.0078
Pot-boundary 1 000 563 12.8 0.42
Pot-boundary 10 000 529 5.3 0.36

add the noise by multiplying the exact boundary conditions
with a number 1+δ whereδ is a random number in the range
−nl ≤ δ ≤ nl andnl is the noise level.

To study the effect of the noise we have done runs with
different amplitudes of noise on the 40× 40× 20 grid. The
evolution ofL and the Lorentz force with the numbers of it-
eration for various noise levels are shown in Fig. 3. It can
clearly be seen that the method converges less and less well
with increasing noise. For noise levels of 10% and 20%, the
corresponding values after 5 000 steps for the 40× 40× 20
grid are given in Table 1. We have also carried out a run on
the 80× 80× 40 grid with a noise level of 10%. For this run
the values of the diagnostic quantities after 25 000 steps are
still higher than the values of the corresponding quantities on
the coarser grid after 5 000 steps. We have to conclude that
even a 10% uncertainty in the boundary conditions could af-
fect the convergence of the optimization method quite badly.
The main problem is that with noise and fixed boundary con-
ditions on all six boundaries the boundary condition are over-
imposed and will no longer be compatible. We discuss how
this problem can be solved in the next section.

4.2.3 The problem of the lateral and top boundary condi-
tions

Until now the runs have been carried out under the assump-
tion that the magnetic field boundary conditions are well
known on all six boundaries of the box. Unfortunately real
vectormagnetograms only provide information regarding the
photospheric magnetic field. The top and side boundary con-
ditions are unknown and have to be fixed somehow. Here
we want to investigate the influence of the choice of these
boundary conditions. An additional problem occurs by fix-
ing the vector magnetic field on all six boundaries (as done in
the previous sections) because one overimposes the bound-
ary conditions. For the test cases in the previous sections
the boundary conditions have been extracted from an ana-
lytic solution and consequently the boundaries are automati-
cally compatible (this implies that there are no problems with
over-imposed boundary conditions). Section 4.2.2 showed
that this compatibility might get lost if the boundaries con-
tain noise. To overcome this difficulty and to take into ac-
count that measured data are only available for the bottom
boundary we describe how the strict condition∂B

∂t
= 0 on
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Fig. 2. Evolution of the diagnostic quantities. Top panel: functional
L (defined in Eq. 23), second panel: Lorentz force|j ×B| (averaged
over the numerical grid), third panel:|∇ · B| (averaged over the

numerical grid) bottom panel: relative error|B(t)−Bana |2

|Bana |2
(averaged

over the numerical grid). The quantities are drawn for the MHD
relaxation method (dotted lines) and for the optimization method
(solid lines). The grid size used was 40× 40× 20.

all boundaries can be avoided within the optimization proce-
dure. First we have to impose the boundary conditions as a
well posed problem. A popular well posed boundary condi-
tion for non linear force free fields is to impose the normal
componentBn of the magnetic field and the normal compo-
nent of the current densityjn in regions for a positive (or
negative)Bn.

(see Aly, 1989, regarding the compatibility of photo-
spheric vector magnetograph data). These conditions have
been derived under the very strict constraint of a flux bal-
anced magnetogram where all magnetic flux is closed. This
implies that each magnetic field line starting at one point on
the photosphere also has to end on the photosphere (in a re-
gion of opposite magnetic flux, but with the same value ofα).
Such strictly isolated active regions seem to be a too restric-
tive constraint for real vector magnetograms. Real vector-

Fig. 3. Evolution ofL and|j × B| for the optimization code for var-
ious levels of boundary value noise. The lowest lines correspond to
an ideal vector magnetogram and the higher lines to vector magne-
tograms with 1%, 10% and 20% noise, respectively. The grid size
used here is 40× 40 × 20. The convergence of the method gets
smaller with increasing noise level.

magnetograms provide all three components of the magnetic
field for either sign ofBn and thus alsojn on the complete
bottom boundary. It seems reasonable to impose these ob-
served data on the bottom boundary. The price we have to
pay is that field lines starting on the photosphere might pass
the lateral and top boundary.2 Consequently we need to
update the lateral and top boundary during the iteration.

2If the flux is not balanced in the region, it implies that part of
the flux distribution is missing from the limited-size of the mag-
netogram or that the calibration of the magnetograph is bad. In
both cases, any magnetic extrapolation method will only derive an
approximate field. Unfortunately the size of observed vectormag-
netograms is limited and a real magnetogram will usually not be
exactly flux balanced. Field lines passing the boundary of the com-
putational box can be either open field lines or close on the photo-
sphere outside the observed magnetogram.
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As a first step towards consistent boundary conditions for
the optimization method, we choose a potential field on the
lateral and top boundaries. Firstly, a potential field can be
easily computed just from the measured normal component
of the photospheric magnetic field and secondly, it can be
assumed that the solar magnetic field is reasonably well ap-
proximated by a potential field outside active regions. Here
we compute the potential field on the boundary as a global
potential field computed from theBz distribution atz = 0
alone. Table 1 shows that the value ofL for the 40× 40× 20
grid drops to a slightly lower value than for the correspond-
ing run with 10% noise, while the remaining|j × B| forces
are a factor of three lower. The relative error compared with
the exact solution is quite high here, which is no wonder be-
cause the magnetic field is forced to stay potential close to the
side and top boundaries. One might notice that the error in
the forces is a factor of 3 larger than the discretisation error,
while L is more than two orders of magnitude larger than the
discretisation error. The reason is that an inconsistency oc-
curs at the edges of the box between the photospheric bound-
ary and the side boundaries. The Low and Lou solution is not
potential on the photosphere close to the side boundaries, but
the chosen side boundary conditions are potential.

To overcome this difficulty we cannot fix the lateral and
top boundaries during the iteration, but have to relax also
these boundaries. As the iteration equation (30) has been de-
rived under the condition∂B

∂t
= 0 on all boundaries we have

to extend the optimization approach. If we allow∂B
∂t

6= 0 on
some boundaries the surface term in Eq. (26) does not nec-
essarily vanish. It is straightforward to extend the iteration
by

∂B

∂t
= µG (36)

on the open boundaries. Equation (36) changes the bound-
ary values in such way thatL decreases. In the following we
choose the lateral and top boundaries as open (they are ini-
tialized with a potential field) and apply Eq. (36) here. The
bottom boundary remains time independent during the iter-
ation. Let us remark that one might as well use the above
described photospheric boundary condition for isolated ac-
tive regions (jn fixed on the photosphere only in regions of
positiveBn). To do so one has to apply Eq. (36) also for the
transversal magnetic field on the photosphere in regions with
negativeBn.

If we do not keep the lateral and top boundary conditions
fixed, but allow them to relax with help of Eq. (36), L drops
to 36.2 which is only one order of magnitude above the dis-
cretisation error. The corresponding value of the total force
decreases slightly (|j × B| = 5.3) compared to fixed bound-
ary conditions. For observed vectormagnetograms it might
be useful to choose a sufficiently large area around an active
region, i.e. with the side boundaries relatively far away from
the non-potential active region, so that the magnetic field can
be assumed to be approximately potential close to the side
boundaries. We remark that it might be hard to find cor-
responding vector magnetograms as these instruments (e.g.

IVM in Hawaii) do not observe the complete solar disk, but
only restricted areas. We have also carried out a run on the
80× 80× 40 grid with potential field boundary conditions.
For this run a stationary state is reached after 10 000 steps,
and the forces are less than one order of magnitude higher
than the discretisation error, whileL is nearly three orders of
magnitude above the discretisation error. Please note that the
absolute error in the|j × B| has the same order of magnitude
here as for the corresponding 40× 40× 20 run. If we allow
relaxation on the side and top boundaries,L drops to 96 and
|j × B| = 8.7 is slightly higher than for fixed side boundary
conditions. We conclude that the uncertainty of the side and
top boundary conditions affects the convergence of the opti-
mization method. Its influence can be reduced significantly if
we allow for a relaxation of these boundaries and only fix the
photospheric boundary conditions, but further improvements
would still be welcome.

5 Conclusions

In the present paper we have presented an assessment of
the properties of an optimization method which has recently
been proposed for the calculation of nonlinear force-free
fields from given boundary data (Wheatland et al., 2000).
One part of the assessment was a comparison the perfor-
mance of the optimization method with the performance of
an MHD relaxation method. For both methods new paral-
lelized codes have been developed. Both methods have been
applied to finding a known semi-analytic solution (Low and
Lou, 1990) from a given non-equilibrium initial condition.
Both methods converge to the exact solution, but the opti-
mization method has higher accuracy. The MHD relaxation
method is only applied to this case since in its present numer-
ical implementation, the boundary conditions could give rise
to inconsistencies.

To simulate a more realistic situation which is closer to
working with observational data from vector magnetograms
we added noise to the boundary conditions. We have only
applied the optimization method to this type of problem
and found that already a relatively small noise level of 10%
can affect the convergence of the method quite considerably.
More work is needed to see how this difficulty can be over-
come. We also intend to generalize the relaxation method in
such way that is able of coping with more realistic boundary
data.

The ultimate aim for the future is to apply these methods to
data from vector magnetograms. Unfortunately vector mag-
netograms are less accurate than line-of-sight magnetograms
(e.g. from MDI on SOHO). Therefore, in the light of our re-
sults in the cases where noise was added to the boundary con-
ditions it will be interesting to see whether and how quickly
the methods converge. We also plan to use stereoscopic in-
formation as a further constraint in the reconstruction pro-
cess. This will become especially important for the analy-
sis of data from the STEREO mission. A method which is
based on linear force free fields has recently been proposed
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by Wiegelmann and Neukirch (2002), but linear force free
fields seem to be too restrictive to describe coronal phenom-
ena appropriately. Therefore, the natural next step will be the
use of nonlinear force free fields in such a code.
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