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ABSTRACT

The solar magnetic field is an important quantity which
couples the solar interior with the photosphere and at-
mosphere. Knowledge regarding the coronal magnetic
field plays a key role for eruptive phenomena, e.g. coro-
nal mass ejection, flares and eruptive prominences. We
describe a computer code for a non-linear force-free ex-
trapolation of photospheric measurements into the corona
based on an optimization principle.

We test the accuracy and performance of the method with
help of a semi-analytic non-linear force-free equilibrium.
Here, we apply the code to data from IVM in Hawaii and
SFT in Tokyo.
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1. INTRODUCTION

A good knowledge of the coronal magnetic field is neces-
sary to understand and predict basic processes like coro-
nal mass ejections and flares. A magnetic field recon-
struction in the solar corona has to be consistent with the
observed spatial variation of the coronal plasma (density,
pressure, temperature) often elongated along the mag-
netic field. Unfortunately the coronal magnetic field can-
not be measured directly with sufficient accuracy. It is
therefore necessary to extrapolate the coronal magnetic
field from photospheric measurements.

The magnetic field reconstruction in the solar corona de-
pends on assumptions about the coronal current distribu-
tion. Popular simplifications are potential (current free)
fields (e.g. Schmidt (1964); Semel (1967)) and linear
force free fields (e.g. Chiu and Hilton (1977); Seehafer
(1978)). Potential fields and linear force-free fields do not
contain free energy and are very probably a poor approx-
imation for active region fields prior to an eruption. The
calculation of non-linear force-free fields (e.g. Sakurai
(1981); Wheatland et al. (2000); Yan and Sakurai (2000);
Wiegelmann and Neukirch (2003); Wiegelmann (2004);

Valori et al. (2005)) is complicated by the intrinsic non-
linearity of the underlying mathematical problem. From
the observational point of view the non linear reconstruc-
tion is also more challenging because photospheric vector
magnetograph data are required. In future, SOLIS and
the Solar-B spacecraft will be ideal instruments for this
purpose.

The connectivity of the coronal magnetic field can be
seen in 2D projection by e.g. TRACE or EIT. EUV-
observations of coronal loop structures will be supplied
by STEREO from two viewpoints in space. A 3D stereo-
scopic reconstruction of these structures is possible in
only a limited number of cases. A combined loop and
field reconstruction promises to be much more powerful.

2. OPTIMIZATION CODE WITH WEIGHTING
FUNCTIONS

2.1. Basic equations

Force-free coronal magnetic fields have to obey the equa-
tions

(∇×B)×B = 0, (1)
∇ ·B = 0. (2)

We define the functional

L =
∫

V

[
wa B−2 |(∇×B)×B|2 + wb |∇ ·B|2] d3x,

(3)
wherewa andwb are weighting functions. It is obvious
that (for wa, wb > 0) the force-free equations (1-2) are
fulfilled when L is equal zero. We minimize the func-
tional (3) with an iterative scheme:

∂B
∂t

= µF̃, (4)

which (for µ > 0) ensures thatL is monotonically de-
creasing. See Wiegelmann (2004) for the definition of
F̃ for the case of one weighting function (wa = wb =
w). A generalization towards two weighting functions is
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straight forward (see appendix A). The method has been
developed by Wheatland et al. (2000) for the case without
weighting function. Our code reduces to this approach for
the choicewa = wb ≡ 1 in the entire box. The weight-
ing functions are useful if only the bottom boundary data
are known. In this case we introduce a buffer boundary
of several grid points towards the lateral and top bound-
ary of the computational box. The weighting functions
are chosen constant in the inner, physical domain and
drop to0 with a cosinus-profile in the buffer boundary to-
wards the lateral and top boundary of the computational
box (see Wiegelmann (2004) for details). In most cases
the weighting functionswa andwb are chosen identically
(wa = wb = w), which gives the same weighting to the
force-free and solenoidal condition.

2.2. Implementation

The method works as follows:

1. Compute start equilibrium (e.g. a potential field) in
the computational box.

2. Replace the bottom boundary (or all six boundaries)
with the vector magnetogramm.

3. Minimize the functional (3) with the help of Eq. (4).
The continuous form of (4) guaranties a monoton-
ically decreasingL. This is as well ensured in the
discretized form if the iteration stepdt is sufficiently
small. The code checks ifL(t + dt) < L(t) after
each time step. If the condition is not fulfilled, the
iteration step is repeated withdt reduced by a factor
of 2. After each successful iteration step we increase
dt slowly by a factor of1.01 to allow the time step
to become as large as possible with respect to the
stability condition.

4. The iteration stops ifL becomes stationary. Station-
arity is assumed if∂L

∂t /L < 1.0 · 10−4 for 100 con-
secutive iteration steps.

The program is written in C and has been parallelized
with OpenMP.

3. TESTS AND PERFORMANCE

The optimization method has been tested with help of the
semi-analytic solution by Low & Lou (1990) for small
boxes in Wheatland et al. (2000) and Wiegelmann and
Neukirch (2003) showed that the optimization principle
is faster and gives higher accuracy than MHD relaxation.
Here, we demonstrate that the method can be as well
be applied to larger boxes, where the largest box used
contained2563 grid points. By theoretical investigations
Wheatland et al. (2000) predicted that the method has 5th
order and consequently doubling the resolution leads to

Figure 1. Performance of the optimization principle. We
carried out computations with cubic boxes of643, 1283

and2563 grid points on a 9 processor parallel computer.
Both axes are in logarithmic scaling.

an increase in computing time by a factor of32. We
checked the performance explicitly in Fig. 1 for differ-
ent box size and found that the computing time increases
with a potence of5.4. Let us remark that the computer
was also busy with other programs during the computa-
tion of the largest box (2563 grid points, 14 days) which
slowed down our computation.

The result of our computation is shown for the1283 box
in Fig. 2. Panel a) shows the original Low and Lou solu-
tion and panel b) the reconstruction with our code. A rea-
sonable agreement is obvious. For comparison we show
a corresponding potential field (to the same line of sight
photospheric magnetic field) in panel c).

3.1. Magnetic energy

For the prediction of a magnetic configuration is likely to
erupt soon two quantities are assumed to play and impor-
tant role, the magnetic energy and the magnetic helicity.
It is therefore important to check, if the code get’s these
quantities correct. The magnetic energy is defined as

Emag =
∫

B2 d3x

2µ0
(5)

To get some information about the free energy of a con-
figuration we compute the energy compared with the en-
ergy of a potential field, which corresponds to the min-
imum energy state for a given photospheric flux. The
magnetic energy of the the original Low and Lou field
is 1.51 the energy of the potential field. Our force-free
code computes the energy to1.49 the energy of the po-
tential field which corresponds to an error of1.3%. This
seems to be acceptable.



Figure 2. Panel (a) shows the original Low and Lou solu-
tion, panel (b) a non-linear force-free extrapolation and
panel (c) a potential field. It is obvious that the non-linear
force-free approach agrees with the original much better.
The computation was done in a1283 computational box
including a boundary layer of16 points towards the lat-
eral and top boundaries of the computational box.

3.2. Magnetic helicity

The magnetic helicity is defined as

H =
∫

A ·Bd3x (6)

Unfortunately this definition is not gauge invariant. It is
only gauge invariant for an isolated volume with no mag-
netic flux through the boundaries of the volume. Configu-
rations with this feature are useful for theoretical investi-
gations, but not fulfilled for coronal magnetic fields. Ac-
tive regions are not isolated, but of course connected with
the photosphere and the reconstructed force-free mag-
netic fields have certainly magnetic flux through the pho-
tospheric boundary and in most cases also through the
lateral and top boundary of the computational box. It is
therefore important to find a gauge invariant definition of
the magnetic helicity for this general case. Such a defini-
tion was given in Schindler et al. (1988) and called rela-
tive magnetic helicity:

Hmag =
∫

(A + A0) · (B−B0)d3x (7)

whereA is the magnetic vector potential andA0 andB0

correspond to the potential field. The relative magnetic
helicity is gauge free. Relative means relative to a corre-
sponding potential field and a potential field has per defi-
nition a relative magnetic helicity of 0.

The relative magnetic helicity is−0.94 for the original
Low and Lou field and−1.00 for the force-free extrapo-
lation which corresponds to and error of6.0%. We nor-
malize the magnetic helicity with

B2 Lave (8)

whereLaveis the average box length.

Our reconstruction code not uses the vector potential ex-
plicitly and we computeA from the reconstructed force-
free magnetic field together with the Coulomb gauge con-
dition

∇ ·A. (9)

Let us remark that we use a preliminary version to com-
pute the vector potential, which might be improved in fu-
ture.

3.3. Evaluation of the test

The comparison with a known analytic non-linear force-
free solution demonstrated that our code works correct.
We find a good agreement of the original solution and
the reconstructed field. We got a reasonable agreement
of the topology of the magnetic field lines as well as
for the magnetic energy and magnetic helicity. Conse-
quently we conclude that we can extrapolate a non-linear
force-free coronal magnetic field from photospheric vec-
tor magnetograph observations. We applied our code to



data from VTT and compared the reconstruction result
with chromospheric measurements in Wiegelmann et al.
(2005) and found a reasonable agreement for non-linear
force-free fields.

4. APPLICATION

In the following we apply our method to vector magneto-
graph data from IVM and SFT.

4.1. AR7986 taken with IVM in Hawaii

We apply the reconstruction code to IVM-data for active
regionAR7986 taken on 28. August 1996. Fig. 3 a)
shows a potential field reconstruction and Fig. 3 b) a non-
linear force-free reconstruction. The non-linear force-
free magnetic field line plots in Fig. 3 b) show a deviation
from the potential field in Fig. 3 a) but the deviation is
rather small. The magnetic energy of the force-free field
is a factor of1.16 higher compared with a corresponding
potential field and has a positive helicity (0.25 normalized
with B2 Lave). The small value of the magnetic energy
(only16%) higher than the magnetic energy of a potential
field, the small helicity as well as the magnetic field line
plots suggest, that the configuration is close to a potential
field. To compare the magnetic field lines of the poten-
tial field with the non-linear force-free field we fixed the
locations of the photospheric footpoints at positive flux.
Despite the similarity of the majority of the field lines in
Fig. 3 a) and b) there are some topological differences. In
the potential field a small positive spot close at the right
front is connected with a tiny loop to a nearby negative
flux region, but for the non-linear force-free field in 3 b)
the same spot is connected with the far away negative flux
region in the left.

4.2. AR7321 taken with SFT in Tokyo

Table 1. Time evolution of AR7321. See also Fig. 4.
Time Emag

Epot

Hmag
B2 Lave

26/10/92 1.41 -0.16
27/10/92 1.30 +1.90

Fig. 4 shows the time evolution of Active region AR7321.
The photospheric vector magnetic field was taken with
the Solar Flare Telescope (SFT) in Tokyo on 26th and
27th october 1992 and we applied our non-linear force-
free extrapolation code to compute the 3D magnetic field
structure. A visual inspection of the right panels of Fig.
4 reveal that the magnetic configuration changed signifi-
cantly from the 26th to 27th october. From Tab. 1 we see
that the total and relative magnetic energy as well as the
magnetic helicity changed, too.

Figure 3. AR7986 taken on 28. August 1996 with IVM.
Panel (a) shows a potential field reconstruction and panel
(b) a non-linear force-free extrapolation. The computa-
tion was done in a96 × 96 × 80 computational box in-
cluding a boundary layer of16 points towards the lateral
and top boundaries of the computational box (boundary
layer not shown in the image).



Figure 4. Time evolution of AR7321, non-linear force-free computations with vector magnetogram data from SFT in
Tokyo. The computation was done in a75× 75× 65 computational box including a boundary layer of10 points towards
the lateral and top boundaries of the computational box. The left-hand pictures are a potential field reconstruction and
the right-hand pictures a non-linear force-free reconstruction.



5. CONCLUSIONS

We described a computer program for the computation
of non-linear force-free fields from photospheric vector
magnetograms. We tested our code with the help of a
semi- analytic equilibria and found a good agreement.
The performance test also revealed that the present ver-
sion of the code can handle moderately large computa-
tional boxes up to approximately2563 grid points on a
parallel computer which required3.2 GB of free mem-
ory. We applied our code to data from IVM in Hawaii
and SFT in Tokyo. In future we are also planning to
use data from SOLIS and Solar-B. A current problem of
non-linear force-free modelling is that the required vector
magnetograph data are often not available or have a lim-
ited field of view. This will hopefully change in the near-
est future as soon as data from the full disc vector magne-
tograph SOLIS become available. The current version of
the code is written in Cartesian coordinates and applica-
tions are mainly dedicated to active regions. In principle
it would be desired to write the code as well in spherical
coordinates to get a global non-linear force-free coronal
magnetic field model. One has to think in advance how-
ever, how to deal with the fast increasing computing time
(5th order) which makes it hard to handel very large com-
putational boxes.

A. MATHEMATICAL APPENDIX

With

Ωa = B−2 (∇×B)×B (A.10)

Ωb = B−2 (∇ ·B) B. (A.11)

the functional reads:

L =
∫

V

wa B2Ω2
a + wb B2Ω2

b d3x, (A.12)

We minimize equation (A.12) with respect to an iteration
parametert and obtain an iteration equation for the mag-
netic field

⇒ 1
2

dL

dt
= −

∫

V

∂B
∂t
·F̃ d3x−

∫

S

∂B
∂t
·G̃ d2x (A.13)

F̃ = F̃a + F̃b (A.14)

G̃ = G̃a + G̃b (A.15)

F̃a = wa Fa + (Ωa ×B)×∇wa (A.16)

F̃b = wb Fb + (Ωb ·B) ∇wb (A.17)

G̃a = wa Ga (A.18)

G̃b = wb Gb (A.19)

Fa = ∇× (Ωa ×B)
−Ωa × (∇×B) + Ω2

a B (A.20)

Fb = ∇(Ωb ·B)−Ωb(∇ ·B) + Ω2
b B(A.21)

(A.22)

Ga = n̂× (Ωa ×B) (A.23)
Gb = −n̂(Ωb ·B) (A.24)

and n̂ is the inward unit vector on the surfaceS. The
surface integral in (A.13) vanishes if the magnetic field
is described on the boundaries of a computational box
(boundary layer not shown in the image).

ACKNOWLEDGMENTS

We acknowledge use of data from IVM in Hawaii and
SFT in Tokyo. This work was supported by DLR-grant
50 OC 0007.

REFERENCES

Amari, T., Boulmezaoud, T. Z., Mikic, Z.: 1999, A&A,
350, 1051.

Chiu, Y.T., Hilton, H.H.: 1977, ApJ, 212, 821.

Low, B. C., & Lou, Y. Q. 1990,ApJ, 352, 343

Sakurai, T.: 1981, Sol. Phys., 69, 343.

Schindler, K., Hesse, M., & Birn, J. 1988,JGR, 93, 5547

Schmidt, H.V.: 1964 in W.N. Ness (ed.),ASS-NASA Sym-
posium on the Physics of Solar Flares, NASA SP-50,
p. 107.

Seehafer, N.: 1978, Sol. Phys., 58, 215.

Semel, M.: 1967, Ann. Astrophys. ,30, 513.

Valori, G., Kliem, B., & Keppens, R. 2005, A&A, 433,
335

Wheatland, M. S., Sturrock, P. A., Roumeliotis, G.: 2000,
ApJ., 540, 1150.

Wheatland, M. S. 2004, Sol. Phys., 222, 247

Wiegelmann, T. and Neukirch, T.: 2003,Nonlinear Pro-
cesses in Geophysics, 10, 313-322

Wiegelmann, T. 2004, Sol. Phys., 219, 87.

Wiegelmann, T., Lagg, A., Solanki, S. K., Inhester, B., &
Woch, J. 2005, A&A, 433, 701

Yan, Y. and Sakurai, T.: 2000,Solar Phys.195, 89.


