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ABSTRACT

Direct observations of chromospheric and coronal mag-
netic fields are difficult and usually one has to reconstruct
the 3D magnetic field from photospheric measurements.
The extrapolation method depends on assumptions re-
garding the electric current flow in the coronal plasma.
Due to the low plasma beta it is justified to assume that
the currents are parallel or antiparallel to the magnetic
field, the so called force-free assumption. Simplifications
of the in general non-linear force-free magnetic model
are linear force-free and potential fields. We compare the
different magnetic field models (potential, linear force-
free, non-linear force-free) with the observationally in-
ferred structure of magnetic loops in a newly developed
active region. This is the first time that the reconstructed
3D-topology of the magnetic field is available to test the
extrapolations. This comparison reveals that a potential
field extrapolation is not suitable for a reconstruction of
the magnetic field in this young, developing active region.
The inclusion of field-line-parallel electric currents gives
much better results. Furthermore, a non-linear force-free
computation reproduces the observations better than the
linear force-free approximation.
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1. INTRODUCTION

Modern magnetographs, e.g. the German Vacuum Tower
Telescope (VTT) measure the magnetic field vector on
the photosphere. Unfortunately the magnetic field in the
solar corona and chromosphere is usually not measured
directly, except for a few individual case, eg. Solanki
et al. (2003); Lagg et al. (2004). The classical approach
to derive the chromospheric and coronal magnetic field
is to extrapolate the photospheric magnetic field into the
solar’s atmosphere. Here we compare measurements of
chromospheric magnetic fields with extrapolated fields.

2. CORONAL MAGNETIC FIELD MODELS.

The magnetic pressure in the low and middle corona is
much higher than the plasma pressure (small plasmaβ)
therefore the magnetic field is nearly force-free. The
extrapolation methods based on this assumption include
potential field extrapolation (e.g. Semel (1967)), lin-
ear force-free field extrapolation (e.g. Chiu and Hilton
(1977); Seehafer (1978)) and nonlinear force-free field
extrapolation (e.g. Sakurai (1981); Amari et al. (1999);
Wheatland et al. (2000); Wiegelmann (2004); Wheatland
(2004); Valori et al. (2005). Force-free magnetic fields
have to obey the equations

(∇×B)×B = 0, (1)

∇ ·B = 0. (2)

which are equivalent to

(∇×B) = αB, (3)
B · ∇α = 0. (4)

In generalα is a function of space, which corresponds
to the non-linear force-free approach. A popular simpli-
fication is to chooseα = constant in the entire space,
the linear force-free approach. A further simplification is
the choiceα = 0 which corresponds to current-free po-
tential fields. Here, we compute potential fields, linear
force-free and non-linear force-free fields and compare
the result with the observed magnetic loops.

2.1. Potential and linear force-free fields.

We use the method of Seehafer (1978) for calculating
the linear force-free field for a given magnetogram and
a given value ofα. This method gives the components of
the magnetic field for a semi-finite column of rectangular
cross-section in terms of a Fourier series.

The observed magnetogram which covers a rectangular
region extending from0 toLx in x and0 toLy in y is arti-
ficially extended onto a rectangular region covering−Lx
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Figure 1. Observation and magnetic field extrapolations with different models.



Figure 2. Observed loops (red) and non-linear force-free loops (yellow) from different viewpoints.



to Lx and−Ly to Ly by taking an antisymmetric mir-
ror image of the original magnetogram in the extended
region, i.e.

Bz(−x, y) = −Bz(x, y) (5)
Bz(x,−y) = −Bz(x, y). (6)

The advantage of taking the antisymmetric extension of
the original magnetogram is that the extended magne-
togram is automatically flux balanced. The method has
the further advantage that a Fast Fourier Transformation
(FFT) scheme can be used to determine the coefficients of
the Fourier series. For more details regarding this method
see Seehafer (1978). The expression for the magnetic
field is given by
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with λmn = π2(m2/L2
x + n2/L2

y) and rmn =√
λmn − α2.

The coefficientsCmn are obtained by comparing Equa-
tion (9) forz = 0 with a FFT of the magnetogram data.

To normalizeα we choose the harmonic meanL of Lx

andLy defined by 1
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)
. The Seehafer

solution contains the force-free parameterα. The force-
free parameter is limited by−√2π < αL <

√
2π. (See

Seehafer (1978) for details.)

2.2. Non-linear force-free fields.

We solve the equations (1) and (2) by means of an opti-
mization principle Wheatland et al. (2000); Wiegelmann
(2004):

L =
∫

V

w(x, y, z)
[
B−2 |(∇×B)×B|2 + |∇ ·B|2] d3x,

(10)

wherew(x, y, z) is a weighting function. It is obvious
that (for w > 0) the force-free equations (1-2) are ful-
filled when L equals zero. We minimize the functional
(10) with an iterative scheme:

∂B
∂t

= µF̃, (11)

F̃ = w F + (Ωa ×B)×∇w

+(Ωb ·B)∇w (12)

F = ∇× (Ωa ×B)−Ωa × (∇×B) +∇(Ωb ·B)
−Ωb(∇ ·B) + (Ω2

a + Ω2
b) B (13)

Ωa = B−2 (∇×B)×B (14)

Ωb = B−2 (∇ ·B) B. (15)

The iterative scheme (11) ensures (forµ > 0) that L is
monotonically decreasing. The method works as follows:

1. Compute a potential field in the computational box.

2. Replace the bottom boundary with the observed vec-
tor magnetogramm.

3. Minimize the functional (10) with the help of Eq.
(11). The continuous form of (11) guaranties a
monotonically decreasingL. This is as well ensured
in the discretized form if the iteration stepdt is suf-
ficiently small. The code checks ifL(t+dt) < L(t)
after each time step. If the condition is not fulfilled,
the iteration step is repeated withdt reduced by a
factor of 2. After each successful iteration step we
increasedt slowly by a factor of1.01 to allow the
time step to become as large as possible with respect
to the stability condition.

4. The iteration stops ifL becomes stationary. Station-
arity is assumed if∂L

∂t /L < 1.0 · 10−4 for 100 con-
secutive iteration steps.

The program is written in C and has been parallelized
with OpenMP. (See Wiegelmann (2004) for details.)

3. MEASUREMENTS OF MAGNETIC LOOPS IN
THE UPPER CHROMOSPHERE

Complimentary to extrapolations from the photosphere,
we discuss here measurements of the chromospheric
magnetic field. The measurement of the magnetic field
direction is based on an inversion technique applied to
spectropolarimetric data of the photospheric Si I line at
1082.7 nm and the chromospheric He I 1083 nm triplet.
The data were recorded with the Tenerife Infrared Po-
larimeter mounted on the German Vacuum Tower Tele-
scope (VTT). The inclination and azimuthal angle from



the chromospheric magnetic field map was used to trace
magnetic field lines. We identified field lines as magnetic
loops if the following criteria were fulfilled: the mag-
netic field strength must decrease with height, the incli-
nation and azimuthal angles must not vary strongly from
one pixel to the other and the height of the two footpoints
must be similar. For a more detailed description of the
observations and the analysis technique we refer to Lagg
et al. (2004) and Solanki et al. (2003).

4. COMPARISON OF OBSERVED AND EX-
TRAPOLATED LOOPS

From the 3D magnetic field models, we compute mag-
netic field lines with the help of a fourth order Runge-
Kutta field-line tracer. The field-line tracer starts the inte-
gration at any arbitrary point in space and traces the mag-
netic field in+B and−B direction until the photosphere
is reached in both directions. For a comparison with the
observed loops, the integration start-points are located on
the observed loop structures.

Fig. 1 shows14 observed loops and corresponding loops
from a potential, linear and non-linear force free mag-
netic field model. The inspection of Fig. 1 reveals that
potential fields do not agree with the observations. The
linear force-free approach is better, but not as good as
the non-linear force-free model. In the following, we
compare the different magnetic field models with the ob-
served loops quantitatively. As a measure of how well
the magnetic field lines and the observed loops agree,
we compute the spatial distance of the two curves in 3D
integrated along the whole loop lengthl from τ = 0
to τ = l. As a result we get a dimensionless num-

ber C = 1
l2

∫ l

0

√
(robs(τ)− rextrapol(τ))2dτ , whereτ

is the geometrical length measured along the loop and
C = 0 if both curves coincide. For details of the com-
parison method and values ofC for the individual loops
see Wiegelmann et al. (2005). The average values ofC
are given in Tab. 1. As lower the value ofC as bet-
ter observed and reconstructed loops agree. The quan-

Table 1. Quantitative comparison (average value ofC)
of the observed loops with different magnetic field models
for the 14 loops shown in Fig. 1 and Fig. 2.

Model averageC Standard deviation
Potential field 0.52 +

−0.09
Linear force-free 0.33 +

−0.04
Non-linear force-free 0.21 +

−0.06

titative comparison shows that we get the best agree-
ment of observations and model for a non-linear force-
free approach. The linear force-free model is worse then
the non-linear one, but significantly better than potential
fields. We show a comparison of the observed loops (in
red) and non-linear force-free loops in Fig. 2 from differ-
ent viewpoints. There is certainly no perfect alignment,

but the overall structure of the magnetic field is very sim-
ilar.

5. CONCLUSIONS

We compared direct observations of magnetic loops in the
upper chromosphere with the magnetic field extrapolated
from the photosphere with different models. The simplest
model, a potential field, does not reproduce the observa-
tions. A linear force-free model provided better signifi-
cantly better results and the shear of the loops seems to
be described approximately correct within this approach.
The most involved model used here, a non-linear force-
free approach provided the best results. Let us remark
that the computation of non-linear force-free fields is
more challenging because of the intrinsic non-linearity
of the underlying mathematical problem. A further com-
plication is, that this model requires photospheric vector
magnetograms as input, which have ambiguities and high
noise in the transversal photospheric magnetic field com-
ponent. Current vector magnetographs have also a lim-
ited field of view and data are not available for many re-
gions. This limitation will vanish, however, in the nearest
future as soon as data from the full disc vectormagneto-
graph SOLIS (Synoptic Optical Long-term Investigations
of the Sun, U.S. National Solar Observatory, Kitt Peak)
become available. The mathematical difficulty as well as
the lack of data from vectormagnetographs explain the
popularity of potential and linear force-free models. This
study revealed, however, that a non-linear force-free ap-
proach is necessary to describe the magnetic field in ac-
tive regions accurately. Furthermore a known limitation
of linear force-free models Seehafer (1978) is that they
cannot be used to compute the magnetic energy, because
within this model the magnetic energy is unbounded in
the half space above the photosphere. As the free mag-
netic energy in active regions is supposed to play an im-
portant role for the occurrence of eruptive phenomena,
e.g. flares and coronal mass ejections, it is important to
compute this quantity accurately with help of a non-linear
force-free approach.
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