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ABSTRACT

Aims. We study the coronal magnetic field structure inside active regions and its temporal evolution. We attempt to compare the
magnetic configuration of an active region in a very quiet period with that for the same region during a flare.
Methods. Probably for the first time, we use vector magnetograph data from the Synoptic Optical Long-term Investigations of the
Sun survey (SOLIS) to model the coronal magnetic field as a sequence of nonlinear force-free equilibria. We study the active region
NOAA 10960 observed on 2007 June 7 with three snapshots taken during a small C1.0 flare of time cadence 10 min and six snapshots
during a quiet period.
Results. The total magnetic energy in the active region was approximately 3 × 1025 J. Before the flare the free magnetic energy
was about 5% of the potential field energy. A part of this excess energy was released during the flare, producing almost a potential
configuration at the beginning of the quiet period.
Conclusions. During the investigated period, the coronal magnetic energy was only a few percent higher than that of the potential
field and consequently only a small C1.0 flare occurred. This was compared with an earlier investigated active region 10540, where the
free magnetic energy was about 60% higher than that of the potential field producing two M-class flares. However, the free magnetic
energy accumulates before and is released during the flare which appears to be the case for both large and small flares.
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1. Introduction

Methods have been developed to extrapolate the observed pho-
tospheric magnetic field vector into the corona. Using the fact
that the magnetic field is dominant in solar active regions (ARs),
we are able to neglect non-magnetic forces and to assume that
the coronal magnetic field is force-free. Different instruments
provide photospheric vector magnetograph data, which are used
as input to the extrapolation methods. These data have, how-
ever had a rather low time cadence. Data of high time ca-
dence are required to investigate in detail, for example the
different evolutionary stages of solar flares. Suitable data in-
clude magnetic field observations of the Sun provided by the
SOLIS Vector-SpectroMagnetograph. With a time cadence of
≈10 min, the instrument is designed to measure multiple area
scans of ARs, which enables us for the first time to investi-
gate the evolution of the coronal magnetic field energy with
a high time cadence. Many existing studies deal with the ex-
trapolation based on vector magnetograph data. For instance,
Régnier & Priest (2007) dealt with the photospheric vector mag-
netic field provided by the Mees Solar Observatory Imaging
Vector Magnetograph, Wiegelmann et al. (2005) used spectropo-
larimetric data recorded with the Tenerife Infrared Polarimeter
of the German Vacuum Tower Telescope, and Thalmann &
Wiegelmann (2008) performed extrapolations of Solar Flare
Telescope Vector Magnetograph data. In all of these studies,
only one snapshot was however used or, as in the last of the
aforementioned studies, a sequence of vector magnetograms
with a low time cadence of one magnetogram per day. Therefore,
an improvement is achieved by applying our extrapolation

technique to the high time cadence SOLIS/VSM data as de-
scribed in the present study.

2. Method

2.1. Instrumentation: the SOLIS/VSM instrument

The Vector-SpectroMagnetograph (VSM; see Jones et al. 2002)
on the Synoptic Optical Long-term Investigations of the Sun
(SOLIS; see Keller et al. 2003) has provided magnetic field ob-
servations of the Sun almost continuously since August 2003.
The instrument is designed to measure the magnetic field vec-
tor everywhere on the solar disk. Full disk vector observations
are completed at least weekly. Multiple areas scans of ARs have
also been available since November 2006. In addition, longitu-
dinal magnetic field measurements in the photosphere (at the
Fe i 630.15 nm and 630.25 nm spectral lines) and chromo-
sphere (at the Ca ii 854.2 nm spectral line) are available on a
daily basis. Quick-look data (JPEG images and FITS files) of the
magnetic field vector in and around automatically selected ARs
(Georgoulis et al. 2008) are available online to the community.
The Quick-look data provides estimates of the magnetic field
strength, inclination, and azimuth (Henney et al. 2006, and ref-
erences therein), which should, because of the high field strength
in ARs, be comparable to fully inverted data only differing by a
few percent. The azimuth 180◦-ambiguity is solved using the
Nonpotential Magnetic Field Calculation method (NPFC; see
Georgoulis 2005), which does not introduce any error in the az-
imuth or any other quantities. Tools for full Milne-Eddington
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Fig. 1. Longitudinal component of the SOLIS/VSM data during the
C1.0 flare in panels a)–c) and after the flare in panel d).

inversion are being developed to provide more accurate mag-
netic data especially in weak field regions.

In the time period around an C1.0 flare on 2007 June 7, three
SOLIS/VSM vector magnetograms were available to use. One in
the rising phase of the emission, one at the time when the flare
peaked, and one in its decaying phase (at 17:10 UT, 17:20 UT,
and 17:29 UT as shown in panels a, b, and c in Fig. 1, re-
spectively). All the other magnetic field measurements on 2007
June 7 (between 20:30 UT and 21:42 UT) allow us to investigate
the magnetic field structure in a period of low solar activity.

2.2. Numerics: nonlinear force-free extrapolation

The basic equations for the computation of the nonlinear force-
free magnetic field vector B are

(∇ × B) × B = 0, (1)

∇ · B = 0, (2)

where Eq. (1) expresses that the Lorentz force is forced to vanish
(as a consequence of j ‖ B, where j is the electric current density)
and Eq. (2) describes the absence of magnetic monopoles. For
reviews on how to solve these equations, we refer the reader for
example to Sakurai (1989), Amari et al. (1997), and Wiegelmann
(2008).

A special form of the force-free fields are potential magnetic
fields which can be computed from the longitudinal photospheric
magnetic field alone and correspond to the minimum energy
state for given boundary conditions. We calculate the poten-
tial field with the help of a Fast-Fourier method (Alissandrakis
1981). In an AR, only the energy exceeding that of a potential
field – the so-called free magnetic energy – can partly be trans-
formed into kinetic energy during dynamic events. Therefore,
nonlinear force-free (NLFF) field models are required for a re-
alistic estimation of the coronal magnetic field. Some existing

Fig. 2. Solar SXR flux on 2007 June 7 in the wavelength range of
0.1–0.8 nm. Vertical lines indicate the availability of SOLIS/VSM data.

methods for computing NLFF fields were tested and com-
pared by Schrijver et al. (2006); Metcalf et al. (2008), and
Schrijver et al. (2008). These works revealed that the optimiza-
tion method, proposed by Wheatland et al. (2000) and imple-
mented by Wiegelmann (2004), was a reliable and fast algo-
rithm. This approach evolves the magnetic field to reproduce
the boundary, force-free, and divergence-free conditions by min-
imizing a volume integral of the form

L =
∫

V
w(x, y, z)

(
B−2|(∇ × B) × B|2 + |∇ · B|2

)
d3x, (3)

where V denotes the volume of the computational box and
w(x, y, z) is a weighting function (for details, see Wiegelmann
2004). The SOLIS data were preprocessed (for details, see
Wiegelmann et al. 2006) so that the forced photospheric bound-
ary became closer to a force-free state to provide suitable bound-
ary conditions for the minimization of Eq. (3). For the corre-
sponding potential and force-free magnetic field, we can then
estimate an upper limit to the free magnetic energy associated
with coronal currents of the form

Efree =
1

2µ0

∫
V

(
B2

nlff − B2
pot

)
d3x, (4)

where µ0 denotes the magnetic permeability of vacuum, and Bpot
and Bnlff represent the total energy content of the potential and
NLFF magnetic field, respectively. To estimate the uncertainty in
the numerical result, the code was applied to the original SOLIS
data to which random, artificial noise had been added in the form
of a normal distribution of amplitude approximately equal to
1 G in the longitudinal and 50 G in the transversal component.
The chosen noise amplitudes relate to the sensitivity of the VSM
instrument. It measures the Stokes V parameter far more accu-
rately than the parameters Q and U. While the longitudinal field
is proportional to V , the transverse component is derived from Q
and U, which are the principal source of uncertainty.

3. Results

3.1. Flare activity of NOAA AR 10960

The solar activity during the week of 2007 June 4 was domi-
nated by NOAA AR 10960. An M8.9 flare occurred on June 4
and an M 1.0 flare fired off on June 9. Furthermore, 12 C-class
flares were detected during this week and originated in this group
or from its vicinity. The peaks in the measured solar soft X-ray
(SXR) flux indicated only one C1.0 flare on June 7, peaking
at 17:20 UT, which is from interest for the present study (see
Fig. 2). SOLIS data with a high time cadence are available only
for June 7.
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Table 1. Magnetic energy of the extrapolated field.

Time Magnetic energy [×1025 J]
(UT) E1

pot E2
nlff E3

free Enlff/E4
pot

17:10 3.130 3.282 0.152 1.049
17:20 3.122 3.272 0.149 1.048
17:29 2.986 3.081 0.095 1.032
20:30 3.024 3.042 0.018 1.006
20:39 3.031 3.127 0.095 1.031
21:02 2.969 3.084 0.116 1.039
21:11 2.938 3.028 0.090 1.031
21:33 2.939 3.125 0.185 1.063
21:42 2.933 3.085 0.152 1.052

1 Energy of the potential and 2 NLFF field, 3 upper limit of the free
energy, and 4 excess energy of the NLFF over the potential field.

Fig. 3. Upper panel: magnetic energy of the potential (gray) and NLFF
(black) field. Lower panel: upper limit for the free magnetic energy
(shown on logarithmic scale). Solid and dashed lines represent the
recorded C1.0 flare and CME, respectively.

3.2. Global magnetic energy budget

For all magnetic field configurations, we find that the energy of
the extrapolated NLFF field exceeds that of the potential field
(i.e., Enlff > Epot), both being approximately 1025 J (see Table 1).
This is also the case when considering the evaluated relative
error in the energy estimation of about 0.4% for the potential
and 1% for the NLFF field (i.e. Epot ± 0.013 × 1025 J and
Enlff ± 0.032 × 1025 J, respectively). The available free magnetic
energy is always approximately 1024 J with a relative error of
about 14 % (i.e. Efree±0.026× 1024 J). These uncertainty ranges
were checked by comparing similar results for 3D fields during
the quiet period, and once by calculating the energy variation in
the force-free fields after adding artificial noise to the original
magnetograms. Both Epot and Enlff were highest in the phase of
increasing emission from the C1.0 flare. During the 20 min time
period of the flare (17:10 UT–17:29 UT, see Fig. 3) the mag-
netic energy decreased by ΔEnlff = 2.01 × 1024 J, i.e. ≈38%
of the available free magnetic energy was released. Although
the flare was already declining in intensity at 17:29 UT, it still
showed a SXR flux of above background B-level (see Fig. 2).
The next vector magnetogram snapshot was acquired only 3 h
later at 20:30 UT (see panel d of Fig. 1) and the free magnetic
energy had decreased further, such that ≈88.16% of the origi-
nal amount of free energy had been released. At 20:30 UT, the
magnetic energy was only ≈0.6% of the total energy and conse-
quently the magnetic field was almost potential.

From Fig. 2, we can see that AR10960 showed only back-
ground B-level activity (i.e. a SXR emission <10−7 Wm−2) at
about 18:15 UT and almost the entire free magnetic energy may
have been released by that time. Unfortunately, no vector magne-
tograph data was available immediately after the declining phase
of the flare and we are unable to confirm this supposition. For
the AR studied here, the maximum excess energy of a NLFF

Fig. 4. Panels a)–c) show the magnetic field configuration during the
C1.0 flare. Panel d) shows the minimum energy configuration. Shown
are field lines of the potential (gray) and NLFF (black) field. For im-
proved visibility, the z-axis is drawn elongated.

field over the potential field was about 5% during the investi-
gated period. Since this so-called free energy is an upper limit to
the available energy to drive eruptive phenomena, consequently
only a small C1.0 flare was recorded. No further flares occurred
between 20:30 UT and 21:42 UT for which SOLIS data is avail-
able, but five C-class flares were recorded about 3 hours later on
2007 June 8 between 01:00 UT and 16:00 UT. However, a signif-
icant amount of free magnetic energy accumulated again during
the quiet period after 20:30 UT (see Table 1 and Fig. 3) so that
the energy content of the field increased and became, with some
fluctuation, comparable to that measured before the C1.0 flare.
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From a visual inspection of the magnetic field lines within
the extrapolation volume, we recognize some changes in the
magnetic field structure during the C1.0 flare (see Fig. 4). We
find that the field lines show their highest vertical extent when
the C1.0 flare peaked (panel b). Ten minutes earlier a comparable
field structure was found (panel a), but with a lower vertical ex-
tend. Nine minutes after the flare peaked, the field line configu-
ration reached its lowest vertical extent (panel c), and more field
lines of the NLFF field left the extrapolation volume. However,
at 20:30 UT, which corresponds to the field configuration of the
lowest energy content, the field clearly appears to have restruc-
tured, reaching on average its lowest altitude. The return to an
almost potential structure could be assigned to a coronal mass
ejection (CME) recorded by the SoHO/LASCO instrument on
2007 June 7 around 17:30 UT which could have bodily removed
magnetic helicity of the coronal field.

4. Discussion

We have investigated the coronal magnetic field associated
with the NOAA AR 10960 on 2007 June 7 by analyzing
SOLIS/VSM data. Three vector magnetograms with a time ca-
dence of ≈10 min were available to investigate the magnetic en-
ergy content of the coronal field during a C1.0 flare, and six fur-
ther snapshots were acquired to analyze a very quiet time about
three hours after the flare. Before as well as after the small flare,
the magnetic field energy was Enlff ≈ 3 × 1025 J. The NLFF
field had a free energy of Efree ≈ 1.5 × 1024 J before the flare.
As a consequence of the flare/CME, this free magnetic energy
reduced by almost a factor of 10 and produced an almost poten-
tial configuration. Six snapshots acquired within a time period
of about 70 min, during a quiet period of 3–4 h after the flare,
showed again an increase in the free magnetic energy. Since
the estimated free magnetic energy remained only about 5% of
the total energy content, no large eruption was produced by AR
10960.

This is clearly different from the flaring of AR 10540
observed on 2004 January 18–21, which was analyzed in a pre-
vious work with the help of vector magnetograph data from the
Solar Flare Telescope in Japan of time cadence of about 1 day.
In this AR, the free energy was Efree ≈ 66% of the total energy,
which was sufficiently high to power a M 6.1 flare (for details
see Thalmann & Wiegelmann 2008). The activity of AR 10540
investigated earlier was significantly higher than for the data
analyzed in the current paper, as was the total magnetic energy.

However, despite these differences, we also found some common
features. Magnetic energy accumulates before the flare and a sig-
nificant part of the excess energy is released during the flare. The
high amount of free magnetic energy available in AR 10540 pro-
duced M-class flares, while the relatively small amount of free
energy in AR 10960 powered only a small C-class flare. In both
cases, all three components of the vector magnetogram changed
during the flare, but the energy decrease in the NLFF field was
always higher than that of the potential field, i.e. the energy
release was more related to the change in the transverse mag-
netic field components – which correspond to the field aligned
electric currents in the corona – than to that of the longitudinal
component.
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