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Abstract. We developed a code for the reconstruction of nonlinear force-free and non-force-free
coronal magnetic fields. The 3D magnetic field is computed numerically with the help of an optimiz-
ation principle. The force-free and non-force-free codes are compiled in one program. The force-free
approach needs photospheric vector magnetograms as input. The non-force-free code additionally
requires the line-of-sight integrated coronal density distribution in combination with a tomographic
inversion code. Previously the optimization approach has been used to compute magnetic fields using
all six boundaries of a computational box. Here we extend this method and show how the coronal
magnetic field can be reconstructed only from the bottom boundary, where the boundary conditions
are measured with vector magnetographs. The program is planed for use within the Stereo mission.

1. Introduction

The solar magnetic field is an important quantity which couples the solar interior
with the photosphere and atmosphere. Knowledge regarding the coronal magnetic
field plays a key role for eruptive phenomena, e.g., coronal mass ejection, flares and
eruptive prominences. Unfortunately a direct measurement of the coronal magnetic
field is extremely difficult. In principle one can use the polarization of emissions
from magnetic sensitive coronal line transitions to draw conclusions about the
coronal magnetic field. These lines, however, are very faint so that in the past they
have only occasionally been observed (e.g., House, 1977; Arnaud and Newkirk,
1987; Judge, 1998). In a recent study Judge et al. (2001) conclude that several
forbidden lines (e.g., of Fe XIII, He I, Mg VIII, and Si IX) may be used to determine
the coronal magnetic field. They further concluded that space-born missions are
not needed for such kinds of coronal magnetometers but a high, dry mountain site.
In their study they propose a focal plane instrument devoted to the 1 µm region.
These authors also point out that besides the observational part, a further major
problem is the interpretation of the data. The line-of-sight integration inherent
in these observations makes the data analysis a badly posed inversion problem.
Presently, algorithms based on vector tomography are studied to find out to which
extent the coronal magnetic field can be reconstructed from these observations
(Maxim Kramar and Bernd Inhester, private communication).
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Despite these promising new developments regarding the principle possibil-
ity of coronal B-field measurements we have to face the fact that currently and
probably also in the near future high-quality direct measurements of the coronal
magnetic field are not available. As an alternative to the above measurements, a
number of authors have modeled the coronal magnetic field by extrapolation from
more sound photospheric magnetic field observations.

It is generally assumed that the magnetic pressure in the corona is much higher
than the plasma pressure (small plasma β) and that therefore the magnetic field
is nearly force-free (for a critical view of this assumption see Gary (2001)). The
extrapolation methods based on this assumption include potential field extrapola-
tion (Schmidt, 1964; Semel, 1967), linear force-free field extrapolation (Chiu and
Hilton, 1977; Seehafer, 1978, 1982; Semel, 1988) and nonlinear force-free field
extrapolation (Amari et al., 1997). Methods for the extrapolation of non-force-free
fields have been developed by Petrie and Neukirch (2000) and by Wiegelmann
and Inhester (2003). Potential fields can be determined directly from line-of-sight
magnetogram data (e.g., MDI on SOHO). Linear force-free fields can as well be
calculated from line-of-sight magnetograms, but contain a free parameter α which
has to be computed from additional data, e.g., with fitting procedures which try to
match the field model with observed coronal plasma loops using data from, e.g.,
EIT (Wiegelmann and Neukirch, 2002) or Yohkoh (Carcedo et al., 2003). Unfortu-
nately, potential fields and linear force-free fields do not contain free energy and
are very probably a poor approximation for an active region prior to an eruption.
By free energy we understand energy which can be released during an eruption.
A linear force-free field has more energy than a potential field. This energy can,
however, not be released during an eruption related to ideal or resistive MHD
instabilities because a linear force-free field cannot rapidly relax to a potential field.
The reason is that the magnetic helicity is strictly conserved for ideal MHD and ap-
proximately conserved for resistive processes. (The magnetic helicity is dissipated
slower than the magnetic energy, see Berger (1984).) A nonlinear force-free field
can, however, relax to a linear force-free field with the same magnetic helicity. In
this sense a nonlinear force-free field has free energy available for an eruption.
Consequently investigations regarding nonlinear force-free fields are essential to
understand eruptive phenomena.

The calculation of nonlinear force-free fields is complicated by the intrinsic
nonlinearity of the underlying mathematical problem. From the observational point
of view the nonlinear reconstruction is also more challenging because photospheric
vector magnetograph data are required. Unfortunately the transversal component
of the photospheric B field is measured with significant lower accuracy than the
line-of-sight component. An additional problem is that the transversal magnetic
field is only known with respect to an 180◦ ambiguity and a preprocessing of the
raw data is necessary to resolve this ambiguity (One possibility is the minimum
energy method by Metcalf (1994) used for vector magnetogram data from IVM in
Hawaii.)
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Several methods have been proposed to compute nonlinear force-free fields: –
A conceptionally simple method is to reformulate the force-free equations (2) and
(3) (see next section) in such way that they can be used for an upward integration
of the vector magnetogram into the corona (Wu et al., 1990; Amari et al., 1997).
This direct extrapolation is an ill-posed problem for the elliptic equations (2) and
(3) and consequently the method is limited to low heights. In particular one finds
that an erroneous exponential growth of the magnetic field with increasing height
is a typical behavior.

– An alternative approach is to use the Grad–Rubin method (Sakurai, 1981;
Amari et al., 1999). This method uses a potential field as initial equilibrium and
then progressively currents are introduced into the system and the fields are relaxed
towards a force-free state. The method is especial useful for small deviations from
a potential field with small values of α and modest nonlinearities. The method
requires an explicit calculation of the α distribution on the photosphere. In principle
the computation of α is straightforward, α(x, y) = (∂By/∂x − ∂Bx/∂y)/Bz(x, y),
but this is inaccurate for observational data for the following reasons. First one
needs the transversal component of the photospheric magnetic field which is meas-
ured with lower accuracy than the line-of-sight magnetic field. In a second step
one has to take the horizontal derivatives (x, y) of these inaccurate values and
finally one has to divide through the normal magnetic field Bz which causes addi-
tional problems where |Bz| is small. These errors cumulate in the photospheric α

distribution.
– A third possibility is to use the method of MHD relaxation (Chodura and

Schlüter, 1981; Roumeliotis, 1996). The idea is to start with a suitable magnetic
field which is not in equilibrium and to relax it into a force-free state. For test
configurations (Low and Lou, 1989) the MHD relaxation method converges to the
exact solution, but with less accuracy than the optimization approach discussed
below (Wiegelmann and Neukirch, 2003).

– In the optimization approach (Wheatland, Sturrock, and Roumeliotis, 2000)
a functional containing the force-free equations is minimized. The method dir-
ectly uses the measured vector magnetograph data and an explicit computation
of α is not necessary. Another advantage of the method is that the quality of the
reconstructed magnetic field (force-free and solenoidal condition) is controlled
automatically within the iteration procedure. A difficulty of the method is that it
requires boundary conditions on all boundaries of a computational box while for
observational data only the bottom boundary data are known. Within this paper we
are dealing with this problem and extend the optimization method accordingly.

While the low-β plasma in the lower corona can be described with the nonlinear
force-free approach, it is necessary to include plasma pressure and solar gravitation
to describe regions with a finite plasma β, e.g., helmet streamers. Wiegelmann
and Inhester (2003) extended the force-free optimization with the aim to include
these forces and showed that the method converges for test configurations. The
difficulties regarding the lateral and top boundaries are analogous to the nonlinear
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force-free case. The non-force-free reconstruction requires additional data as input,
e.g., the coronal plasma density distribution from an assumed model or computed
with the help of tomographic methods.

We outline the paper as follows. In Section 2 we provide the basic equations
of the modified optimization method and derive the iteration equations. In Sec-
tion 3 we specify useful forms of the weighting function in the boundary regions.
Section 4 contains test runs regarding the nonlinear force-free case and Section 5
consistency checks for non-force-free configurations. We draw conclusions in Sec-
tion 6 and give an outlook for further research.

2. Basic Equations

Force-free coronal magnetic fields have to obey the equations

j × B = 0, (1)

∇ × B = µ0j, (2)

∇ · B = 0. (3)

The force-free approach is valid in the low corona where the plasma β is small.
For extended structures, e.g., helmet streamers, the plasma β increases and the
force-free assumption is not valid anymore. Therefore it is necessary to consider
the effect of plasma pressure and gravity here and solve the magneto hydrostatic
equations (MHS)

j × B − ∇P − ρ∇� = 0, (4)

∇ × B = µ0j, (5)

∇ · B = 0, (6)

where B is the magnetic field, j the electric current density, P the plasma pressure,
ρ the plasma density, µ0 the vacuum permeability and � the solar gravity potential.
We define the functional

L =
∫
V

w(x, y, z) B2 (�2
a + �2

b) d3x, (7)

with

�a =
{

B−2 [(∇ × B)] (force-free fields),

B−2 [(∇ × B) × B − µ0(∇P + ρ∇�)] (MHS),
(8)
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�b = B−2 [(∇ · B) B] . (9)

w(x, y, z) is a weighting function. Useful forms of the weighting function will be
discussed below.

For the force-free case the functional is given explicitly as

L =
∫
V

w(x, y, z)
[
B−2 |(∇ × B) × B|2 + |∇ · B|2] d3x, (10)

and it is obvious that (for w > 0) the force-free equations (1)–(3) are fulfilled
when L is equal to zero. For the non-force-free case L is given explicitly as

L =
∫
V

w(x, y, z)
[
B−2 |(∇ × B) × B − µ0(∇P + ρ∇�)|2 + |∇ · B|2] d3x, (11)

and when the functional reaches (for w > 0) its minimum at L = 0 then the MHS
equations (4)–(6) are fulfilled.

The following discussion is equivalent for the force-free and non-force-free
case. Without weighting function (w = 1) the method has been developed by
Wheatland, Sturrock, and Roumeliotis (2000) for the force-free case and by Wiegel-
mann and Inhester (2003) for the non force-free case. For w(x, y, z) = 1 the
optimization method requires that the magnetic field is given on all (6 for a rect-
angular computational box) boundaries. This causes a serious limitation of the
method because such data are only available for model configurations. For the
reconstruction of the coronal magnetic field it is necessary to develop a method
which reconstructs the magnetic field only from photospheric vector magneto-
grams. Vector magnetograms provide boundary conditions only for the bottom
boundary of a computational box while the other five boundaries remain unknown.
Without a weighting function all six boundaries of the computational box have
equal rights and influence the solution in the box. It is therefore important to di-
minish the effect of the top and lateral boundaries on the magnetic field inside the
computational box. This can be done either by including a variation of B not only
in the interior but also on those boundaries where B is unknown. This approach,
however, is numerically difficult because it involves two types of variations. We
show that it is essentially equivalent to introducing finite size boundary regions
on those boundaries where B is unknown with the weighting function w(x, y, z)

different from unity.
The idea is to define an interior physical region where we want to calculate the

magnetic field so that it fulfills the force-free or MHS equations. This region is in
the center of the box (including the photosphere) with w = 1. The computational
box additionally includes boundary layers towards the lateral and top boundary
where w decreases to 0 at the computational boundary. Consequently the method
weights deviations from the force-free state (or MHS-state) less severely close to
the boundary. The use of a weighting function has been proposed for the force-
free case by Wheatland, Sturrock, and Roumeliotis (2000) in the conclusions but
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no iteration equations or test simulations have been presented. Here we provide
these iteration equations for the more generalized case. We carry out several tests
to investigate the optimum shape of the weighting function and how the size of the
boundary layer influences the quality of the reconstruction.

We minimize Equation (7) with respect to an iteration parameter t (see the
Appendix for details) and obtain an iteration equation for the magnetic field:

⇒ 1

2

dL

dt
= −

∫
V

∂B
∂t

· F̃ d3x −
∫
S

∂B
∂t

· G̃ d2x, (12)

where

F̃ = w F + (�a × B) × ∇w + (�b · B)∇w,

G̃ = w G,
(13)

F = ∇ × (�a × B) − �a × (∇ × B)+
+∇(�b · B) − �b(∇ · B) + (�2

a + �2
b) B,

(15)

G = n̂ × (�a × B) − n̂(�b · B), (16)

and n̂ is the inward unit vector on the surface S. The surface integral in (12)
vanishes if the magnetic field is described on the boundaries of a computational
box. Inside the computational box we iterate the magnetic field with

∂B
∂t

= µF̃, (17)

which insures that L is monotonically decreasing.

2.1. ALGORITHM

We compute the 3D-coronal magnetic field in a numerical box using the following
steps:

– As a start configuration we use the measured normal component Bz of the
magnetic field to calculate a potential magnetic field in the whole box with the
help of a Fourier representation (Seehafer, 1978).

– For non-force-free (finite β) configurations the plasma density distribution is
described in the box. This step is unnecessary for force-free (β � 1) fields.

– We use vector magnetograph data to describe the bottom boundary (photo-
sphere) of the computational box. On the lateral and top boundaries the field is
chosen from the potential field above.

– We iterate for the magnetic field inside the computational box with (17) using
a Landweber iteration (see, e.g., Louis, 1989). The continuous form of (17) guaran-
tees a monotonically decreasing L. This is as well ensured in the discretized form
if the iteration step dt is sufficiently small. The code checks if L(t + dt) < L(t)
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after each time step. If the condition is not fulfilled, the iteration step is repeated
with dt reduced by a factor of 2. After each successful iteration step we increase
dt slowly by a factor of 1.01 to allow the time step to become as large as possible
with respect to the stability condition. The iteration stops if dt falls below a limiting
value, e.g., 1/100 of the initial iteration step1 in the current version of the code.

Let us remark that the main numerics of the optimization code is similar for the
method with and without a weighting function. The main problem for the optim-
ization method without weighting function is that it requires the vector magnetic
field on all six boundaries of a computational box. As only the bottom boundary is
measured one has to make assumptions regarding the lateral and top boundary, e.g.,
assume a potential field. In general this leads to inconsistent boundary conditions
(see Aly, 1989, regarding the compatibility of photospheric vector magnetograph
data) and consequently a bad quality of the reconstructed magnetic field. With
help of the weighting function the five inconsistent boundaries are replaced by
boundary layers and consequently we get more flexible boundaries around the
physical domain which will adjust automatically during the iteration. The idea
of introducing a boundary layer with w < 1 is to reduce the dependence of the
solution in the interior of the box from the unknown boundary conditions. Since we
have no measurements on these boundaries any choice of the boundary conditions
is a mere guess. The aim is only to allow the solution in the interior to evolve
more independently from the boundary conditions chosen. So the advantage of the
boundary layer is a higher degree of independence of the solution in the interior
from the chosen boundary. The price we have to pay is a higher computing time,
as the magnetic field has to be iterated within the whole computational box which
includes the physical domain as well as the boundary layers.

3. Special Forms of the Weighting Function w(x, y, z)

We want to use the weighting function to deal with the unknown top and lateral
boundaries. We define an inner physical domain Vi with w = 1 and boundary
layers Vb where w decreases monotonically from 1 to 0 through the outer numerical
boundary layer with the thickness d. Consequently w becomes one-dimensional
in each boundary layer (e.g., w = w(z) at the top boundary layer) and we get
∇w = n̂ (∂w/∂n̂). The surface integrals vanish on all boundaries because w = 0
on the top and lateral boundaries and ∂B/∂t = 0 on the bottom boundary where the
magnetic field is measured with vector magnetographs. Consequently (12) reduces
to
1We find that the time step dt keeps on decreasing recurrently when the solution has converged. We
never found a further improvement of L after dt has once fallen below 1/100 of the initial iteration
step.
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1

2

dL

dt
= −

∫
Vi

∂B
∂t

· F d3x −
∫
Vb

∂B
∂t

· F̃ d3x, (18)

⇒ 1

2

dL

dt
= −

∫
Vi

∂B
∂t

· F d3x −
∫
Vb

w
∂B
∂t

· Fd3x −

−
∫
Vb

∂B
∂t

· [(�a × B) × ∇w + (�b · B) ∇w] d3x,

(19)

⇒ 1

2

dL

dt
= −

∫
Vi

∂B
∂t

· F d3x −
∫
Vb

w
∂B
∂t

· F d3x −

−
∫
Vb

∂w

∂n̂
∂B
∂t

· [
n̂ × (�a × B) − n̂ (�b · B)

]
d3x.

(20)

It is interesting to investigate the limit of an infinitesimally thin boundary layer
d → 0 in (20). The thinner the boundary layer becomes, the steeper is ∂w/∂n̂
and for an infinitesimally thin boundary layer the gradient becomes infinity. The
boundary layer is constructed in such a way that independent from the sheet thick-
ness d we have

∫ d

0 (∂w/∂n̂) dn̂ = 1 which remains true also for d → 0. In the limit
of d → 0 the term n̂ × (�a × B) − n̂ (�b · B) remains constant through the sheet
and the integration regarding dn̂ can be carried out explicitly. Consequently only
a surface integral remains as the last term in Equation (20). The second integral in
(20) vanishes for d → 0 and we get

1

2

dL

dt
= −

∫
V

∂B
∂t

· F d3x −
∫
S

∂B
∂t

· G d2x. (21)

This exactly coincides with the non-weighted case. Consequently Equation (20) is
a generalization of the usual optimization Equation (21).

4. Tests for Nonlinear Force-Free Configurations

To test our code we use a semi-analytic model active region developed by Low
and Lou (1989). We use the Low and Lou solution with l = 0.5 and φ = 1.4
as a test. The normal photospheric magnetic field is normalized to a maximum
of 800 G. Figure 2 shows the normal magnetic field Bz on the photosphere for
this configuration. The framed region contains the physical domain. We investigate
two cases: in Force-Free I the physical domain is approximately flux-balanced and
in Force-Free II not. We are interested in reconstructing an inner region (physical
domain) of 40 × 40 × 20 points and diagnose Li and |J × B| averaged over the
physical domain here. We also diagnose L in the whole computational box.
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Figure 1. Different profiles for the weighting function w. The solid line shows a linear profile, the
dotted line a quadratic, the dashed line a cos-, and the dash-dotted line a tanh-profile. All profiles
are equal one at the physical boundary, decrease monotonically within the boundary layer, and reach
zero at the boundary of the computational box.

Figure 2. The pictures show artificial magnetograms extracted from the Low and Lou (1989) solution
with l = 0.5 and φ = 1.4. The framed region corresponds to the physical domain with a resolution
of 40 × 40 pixels. The computational box includes boundary layers of nd = 10 points towards each
boundary. The grey scaling shows the normal magnetic field strength on the photosphere. In the
left-hand picture (Force-Free I) the active region is centered and in the right-hand picture displaced
(Force-Free II). The latter simulates data, where a significant amount of flux is not balanced.

At the lateral and top boundary we introduce an additional boundary layer of nd

points and w decreases from 1 to 0 in this layer. We investigate different profiles re-
garding the weighting function, e.g., linear, quadratic, cos, and tanh (see Figure 1).
We investigate how the size of the boundary layer influences the solution. Table I
and Figure 3 show the result of our investigations.

4.1. FORCE-FREE I

Figure 3 top-right panel shows that the field lines of a potential field reconstruc-
tion are clearly different from the original Low and Lou solution. This naturally
leads to high values of the functional Li and large J × B forces after the bottom
boundary has been replaced by the original vector magnetogram. We first apply the
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TABLE I

Details of runs to reconstruct force-free and non-force-free magnetic fields. All configurations have
been calculated for a physical domain of 40 × 40 × 20 grid points. The first column specifies the
profile of the boundary layer, the second column the size nd of the boundary layers, the third column
the value of L in the computational box, the fourth column the value of Li in the physical domain and
the fifth column the force-free condition (for force-free configuration) or the force balance (for MHS
equilibria) averaged over the physical domain. We specify the start-error and discretisation error for
each configuration.

Remarks nd L Li |J × B|
(T2m) (T2m) (nN m−3)

Force-Free I

Start-error 9.5 × 105 9.5 × 105 5529

Discr-error 3 3 12

0 2.6 × 104 2.6 × 104 391

b.r. 0 2.3 × 104 2.3 × 104 383

lin 3 2518 807 152

lin 5 1383 353 112

lin 10 524 92 65

quad 10 800 98 67

cos 10 334 65 55

tanh 10 468 73 59

hom 10 8052 193 90

lin 20 329 36 45

quad 20 588 64 62

cos 20 240 27 37

tanh 20 291 27 37

Force-Free II

Start-error 5.9 × 105 5.9 × 105 3852

Discr-error 9 9 11

0 1.3 × 105 1.3 × 105 1280

b.r. 0 7.2 × 104 7.2 × 104 1082

cos 10 759 166 85

hom 10 2.4 × 104 285 105

cos 20 624 62 52

MHS Force-balance

(nN m−3)

Start-error 2.7 × 105 2.7 × 105 2935

Discr-error 45 45 34

0 4.2 × 104 4.2 × 104 1022

cos 10 2000 401 99

cos 20 1161 153 46
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Figure 3. Top row: the left-hand side shows some field lines for the original Low and Lou configur-
ation (l = 0.5 and φ = 1.4). The grey scaling shows the normal magnetic field on the photosphere.
We choose identical inner footpoints positions for all panels. The right-hand side contains a cor-
responding potential field reconstruction. The dotted field lines correspond to the original Low and
Lou solution in all pictures. Center row: the left-hand side shows a reconstruction without weighting
function and the right-hand side with a linear weighting function and a 5 pixel boundary layer. Bottom
row: both pictures show a reconstruction with cos-profile. In the left-hand picture a boundary layer
of 10 points was used and in the right-hand picture a boundary layer of 20 points.

optimization code without weighting function (nd = 0). Here the boundaries of the
physical domain coincide with the computational boundaries. The lateral and top
boundary have the value of the potential field during the iteration. Some low-lying
field lines are represented quite well (left-hand picture in Figure 3 second row).
These field lines close to the box center are of course close to the bottom boundary
and far away from the other boundaries. The (observed) bottom boundary has a
higher influence on the field here than the potential lateral and top boundary. Other
field lines, especially high-reaching field lines deviate from the analytic solution
(dotted line).

The values Li and |J × B| provide a quantitative measure of the quality of the
reconstructed magnetic field in the physical domain. High values correspond to a
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significant deviation from the force-free state. We applied the method of boundary
relaxation (marked with b.r. in Table I), but the result only slightly improved2 .

We investigate how the size and shape of a boundary layer influences the quality
of the reconstruction. Both the comparison of the field lines (Figure 3 panel 4 to
6) as well as the quantitative values in Table I show that the quality of the recon-
struction improves significantly with the size of the boundary layer (thickness in
number of grid points nd). The larger computational box displaces the lateral and
top boundary further away from the physical domain and consequently its influence
on the solution decreases. As a result the magnetic field in the physical domain is
dominated by the vector magnetogram data, which is exactly what is required. We
find that a cos-profile of the weighting function provides the best results, followed
closely by a tanh-profile. The main advantage of these profiles seem to be that they
have smooth gradients at the boundary of the physical domain to the boundary layer
as well as at the boundaries of the computational box. We tried also a homogeneous
profile (w = 1 in the whole computational box, marked with hom in Table I). In the
homogeneous case w is equal 1 in the whole computational box and a boundary
layer does not exist. The use of nd = 10 for the homogeneous case in Table I is
only for diagnostic reasons and indicates that Li and |J × B| have been computed
in the same interior box (physical domain) as in the cases with weighting function
for comparison. The effect that the lateral and top boundary are far away from
the physical domain remains valid here, but the use of a weighting function in the
boundary layers provides much better results.

4.1.1. The Influence of Noise
The previous calculations have been carried out under the assumption that the
magnetic field on the boundary of the computational box is known exactly. Such an
idealized situation will not be found when real vector magnetogram data are used.
To keep control over the amount of uncertainty, we have carried out test runs by
adding random noise to the vector magnetogram. We add the noise by multiplying
the exact boundary conditions with a number 1 + δ where δ is a random number in
the range −nl ≤ δ ≤ nl and nl is the noise level. We investigate the effect of noise
for Force-Free I with a boundary layer of nd = 10 grid points and a cos profile in
w for different noise levels.

Table II and Figure 4 show our results.
√

L,
√

Li , and |J × B| increase linearly
with the noise level. The field-line pictures in the upper panel of Figure 4 show
that low-lying field lines are represented almost correctly while there are some
deviations from the analytic Low and Lou solution for high-reaching field lines.
As the noise is completely random and independent between neighboring grid
points there are obvious difficulties regarding the discretisation. Our code uses
fourth-order finite differences and consequently five grid points are required to
2The boundary relaxation method uses the iterative improvement ∂B/∂t = µ̃G for fields on the
lateral and top boundary with G as in (16) in addition to (17) with w = 1. See Wiegelmann and
Neukirch (2003), Section 4.2.3, for details.
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Figure 4. Top row: the left-hand side shows some field lines (same footpoints as in Figure 3) for a
noise level of 5% and the right-hand side for a noise level of 10%. The dotted field lines correspond to
the original Low and Lou solution. We used a boundary layer of nd = 10 grid points and a cos-profile
in w. Bottom row: the left-hand side shows a plot of the noise level against

√
Li and the right-hand

side a plot of the noise level against |J × B|. The stars correspond to the data points and the line is a
linear fit.

compute derivatives. The highly oscillatory noise (the spatial variation of the noise
corresponds to the spatial resolution of the grid) naturally results in finite gradients
which are linearly dependent from the noise level. |J × B| is linearly dependent
from spatial deviations and does consequently also depend linearly on the noise
level. The computation of L and Li contain gradients squared and are consequently
quadratically dependent on the noise level. A pre-processing of raw magnetogram
data, e.g., a Fourier filter or some smoothing might help to reduce the effect of
random noise.

As the weighting function is designed to diminish the effect of the lateral and top
boundaries on the solution, we investigate here how changes on these boundaries
influence the solution. We undertook (for nd = 10 and a cos-profile) two runs with
linear force free magnetic fields (αLx = 2.0 and αLx = −2.0) on the lateral and
top boundaries. L, Li , and |J × B| are of the same order as for potential boundary
conditions:

potential : L = 334, Li = 65, |J × B| = 55,

αLx = 2 : L = 458, Li = 92, |J × B| = 75,

αLx = −2 : L = 492, Li = 62, |J × B| = 59.
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TABLE II

The influence of noise. All configurations have been calculated for a
physical domain of 40 × 40 × 20 grid points, a boundary layer of
nd = 10 grid points and a cos-profile in w. The first column specifies
the noise level, the second column the value of L in the computational
box, the third column the value of Li in the physical domain and
the fourth column the force-free condition averaged over the physical
domain.

Noise level L Li |J × B|
(T2m) (T2m) (nN m−3)

No noise 334 65 55

1% 678 385 150

2% 1674 1294 267

3% 2847 2440 346

4% 4243 3858 402

5% 6521 6048 505

10% 24240 23332 950

15% 52827 51382 1370

20% 92535 90360 1793

The magnetic field lines calculated from these fields look exactly the same as
for potential boundary conditions. We conclude that the influence of the lateral and
top boundary conditions towards the solution in the physical domain is indeed very
small.

4.2. FORCE-FREE II

The magnetogram on the right-hand side of Figure 2 is obviously badly condi-
tioned. Significant parts of the magnetic flux are outside of the framed physical
domain. In principle it would be better to always choose a magnetogram such that
the majority of the flux is centered and the overall flux is approximately balanced
but due to the limited size of vector magnetograms sometimes vector magneto-
graph data are not available over an entire active region. Here we investigate how
this influences the quality of the reconstruction. We find that the reconstruction
without a weighting function provides much worse results in such a case than for a
well-centered force-free configuration. This is obviously caused by the potential
field assumed on the lateral boundary in a region of a high magnetic flux and
current density. The influence of the inconsistent lateral boundary conditions on the
magnetic field in the physical domain is too strong. Here the method of boundary
relaxation improves the quality of Li nearly by a factor of two, but the result still
remains unsatisfactory. For runs with a weighting function the result is basically
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Figure 5. Here we illustrate an example of a non-force-free reconstruction. The left-hand side shows
a potential field reconstruction and the right-hand side a MHS reconstruction with help of our optim-
ization-code and a boundary layer of 10 points with cos-profile. The dotted lines show corresponding
field lines for the exact solution. The grey scaling shows the normal magnetic field strength on the
photosphere.

similar as for Force-Free I. A large boundary layer (now including all active parts
of the magnetogram) improves the quality of the reconstruction significantly. For
the largest boundary layer nd = 20 points wide the quality of the reconstruction is
approximately equal to a 10 point wide boundary layer in the Force-Free I case.

If for observational data only parts of an active region are available as vector
magnetogram data a nonlinear reconstruction of the coronal magnetic field might
become difficult or impossible. One could try to get the corresponding normal com-
ponent of the photospheric magnetic field from other sources, e.g., the line-of-sight
magnetograph MDI on SOHO, and make assumptions regarding the transversal
magnetic field. The reconstructed magnetic field will then of course be influenced
by these (not observed) assumptions.

5. Tests for Non-Force-Free Configurations

For finite β configurations it is necessary to include pressure and gravity forces
and solve the magneto hydrostatic equations (4)–(6). To test our code we use an
analytic MHS equilibrium (see Wiegelmann and Inhester, 2003, Section 3.1). with
an average plasma β = 0.2. From this analytic solution we extract a photospheric
vector magnetogram and the coronal density distribution. It is convenient to use the
analytic density distribution here to test our code, but one has to keep in mind that
for observational data the coronal density structure has to be reconstructed with the
help of a tomographic inversion. Corresponding observational data (line-of-sight
integrals of the coronal density structure) are expected from the Stereo mission. The
tomographic inversion of these data is a challenging problem on its own and we are
not going to discuss it here. Wiegelmann and Inhester (2003) give an overview over
the tomographic inversion algorithm. Here we consider the vector magnetogram
and the plasma density distribution as given. The left-hand panel of Figure 5 shows
a potential magnetic field reconstruction consistent with the normal component
of the magnetic field extracted from an analytic magneto hydrostatic equilibrium.
The comparison of the magnetic field lines of the potential field with the exact
field shows significant deviations. In Table I we diagnose L and Li similarly as
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for the force-free cases and we diagnose the force balance |J × B − ∇P | here.
Similar as in the force-free case we find that the quality of the reconstruction is poor
for an optimization without a weighting function. A boundary layer of nd = 10
points together with a cos-profile of w improves the value of functional Li by a
factor of 10−2 in the physical domain and the force balance3 by a factor of about
10−1. In the right-hand panel of Figure 5 we compare the reconstructed field with
the analytic solution and both coincide within the graphical resolution. A larger
boundary layer of nd = 20 further improves the quantitative measures of the non-
force-free reconstruction. The influence of a weighting function acts similarly for
force-free and non-force-free configuration. In both cases the reconstruction result
is significantly improved.

6. Conclusions

In this paper we improved the optimization method for the reconstruction of non-
linear force-free and non-force-free coronal magnetic fields. The optimization
method minimizes a functional which consists of a quadratic form of the force
balance and the solenoidal condition. While in previous optimization attempts the
magnetic field needed to be described on all six boundaries of a computational
box, our approach allows us to reconstruct the coronal magnetic field from the bot-
tom boundary data alone. This is possible by the introduction of a boundary layer
around the physical domain. The physical domain is a cubic area within which we
want to reconstruct the coronal magnetic field consistent with photospheric vector
magnetogram data. The boundary layer replaces the hard lateral and top boundary
used previously. We showed that the limit of an infinitesimally thin boundary layer
formally coincides with the original hard boundary. However, our test calculations
show that a finite-size weighted boundary yields much better results.

We introduced a weighting function. In the physical domain the weighting func-
tion is unity. It drops monotonically in the boundary layer and reaches zero at the
boundary of the computational box. At the boundary of the computational box
we set the field to the value of the potential field computed from Bn at the bottom
boundary. This choice is not only convenient due to its mathematic simplicity, but is
as well physically motivated. The coronal magnetic field is approaching a potential
field in quiet regions and high in the corona. The current program uses a Cartesian
geometry and is designed to reconstruct basically isolated active regions. The pho-
tospheric magnetic field outside this active region (and a surrounding area) is
ignored. This approach is the better justified the more the active region is isolated.
Often, however, active regions are not always completely isolated but magnetically
connected with other active regions. To include this effect it would in principle be
preferable to reconstruct the complete coronal magnetic field with vector magneto-
gram data on the whole photosphere as boundary. This would avoid the problems
3The functional Li contains the square of the force balance, see the definition (11).
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of prescribing the lateral boundaries and only the top boundary has to be chosen
accordingly, similar to the source surface of potential field reconstructions. We do
not expect any difficulties to apply our method to problems in spherical geometry.
Unfortunately the required photospheric boundary data are not available because
current vector magnetographs do not observe the entire solar surface. The situation
will probably be significantly improved by the vector spectromagnetograph of the
SOLIS project. It will deliver full-disk vector magnetograms.
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Appendix. Derivation of F̃ and G̃ in (12)

L =
∫
V

w(x, y, z) B2 (�2
a + �2

b) d3x, (A.1)

�a = B−2 [(∇ × B) × B + u] ,

�b = B−2 [(∇ · B) B] ,

u = −µ0(∇P + ρ∇�).

(A.2)

We vary L with respect to an iteration parameter t and get

1

2

dL

dt
=

∫
V

w �a · ∂

∂t
[(∇ × B) × B + u] d3x +

+
∫
V

w �b · ∂

∂t
[(∇ · B) B] d3x −

−
∫
V

w (�2
a + �2

b) B · ∂B
∂t

d3x.

(A.3)

Our aim is now to use vector identities and Gauss’ law in such way that all terms
contain a product with ∂B/∂t . This will allow us to provide explicit evolution
equations for B to minimize L. The third term has the correct form already. We
expand the first and second terms:
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⇒ 1

2

dL

dt
=

∫
V

w �a ·
[(

∇ × ∂B
∂t

)
× B

]
d3x +

+
∫
V

w �a ·
[
(∇ × B) × ∂B

∂t

]
d3x +

+
∫
V

w �b ·
[(

∇ · ∂B
∂t

)
B

]
d3x +

+
∫
V

w �b ·
[
(∇ · B)

∂B
∂t

]
d3x −

−
∫
V

w (�2
a + �2

b) B · ∂B
∂t

d3x.

(A.4)

The fourth and fifth terms have the correct form. We apply the vector identities
a · (b × c) = b · (c × a) = c · (a × b) to the first and second terms

⇒ 1

2

dL

dt
=

∫
V

w

(
∇ × ∂B

∂t

)
· (B × �a) d3x +

+
∫
V

w
∂B
∂t

· (�a × (∇ × B) d3x +

+
∫
V

w (�b · B) ∇ · ∂B
∂t

d3x +

+
∫
V

w [�b (∇ · B)] · ∂B
∂t

d3x −

−
∫
V

w (�2
a + �2

b) B · ∂B
∂t

d3x.

(A.5)

Terms two, four, and five have the correct form. We apply (∇ × a) · b =
a · (∇ × b) + ∇ · (a × b) to term 1 and ψ∇ · a = −a · ∇ψ + ∇ · (aψ) to
term 3:

⇒ 1

2

dL

dt
= −

∫
V

w
∂B
∂t

· [∇ × (�a × B)] d3x −

−
∫
V

w ∇ ·
[
(�a × B) × ∂B

∂t

]
d3x +

+
∫
V

w
∂B
∂t

· (�a × (∇ × B)d3x −

−
∫
V

w ∇(�b · B) · ∂B
∂t

d3x +
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+
∫
V

w ∇ ·
[
(�b · B)

∂B
∂t

]
d3x +

+
∫
V

w [�b (∇ · B)] · ∂B
∂t

d3x −

−
∫
V

w (�2
a + �2

b) B · ∂B
∂t

d3x.

(A.6)

Until here the derivation has been identical with the method without weighting
function (Wiegelmann and Inhester, 2003). Now we get additional terms with re-
spect to the weighting function. We apply ψ∇ · a = ∇ · (ψa) − a · ∇ψ to terms 2
and 5:

⇒ 1

2

dL

dt
= −

∫
V

w
∂B
∂t

· [∇ × (�a × B)] d3x −

−
∫
V

∇ ·
[

w (�a × B) × ∂B
∂t

]
d3x +

+
∫
V

[
(�a × B) × ∂B

∂t

]
· ∇w d3x +

+
∫
V

w
∂B
∂t

· (�a × (∇ × B)) d3x −

−
∫
V

w ∇(�b · B) · ∂B
∂t

d3x +

+
∫
V

∇ ·
[

w (�b · B)
∂B
∂t

]
d3x −

−
∫
V

[
(�b · B)

∂B
∂t

]
· ∇w d3x +

+
∫
V

w [�b (∇ · B)] · ∂B
∂t

d3x −

−
∫
V

w (�2
a + �2

b) B · ∂B
∂t

d3x.

(A.7)
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The terms 1, 4, 5, 7, 8, and 9 have the correct form. We apply Gauss’ law to
terms 2 and 6:

⇒ 1

2

dL

dt
= −

∫
V

∂B
∂t

· [ w ∇ × (�a × B)] d3x −

−
∫
S

n̂ ·
[

w (�a × B) × ∂B
∂t

]
d2x +

+
∫
V

[
(�a × B) × ∂B

∂t

]
· ∇w d3x +

+
∫
V

∂B
∂t

· ( w �a × (∇ × B)) d3x −

−
∫
V

w ∇(�b · B) · ∂B
∂t

d3x +

+
∫
S

n̂( w �b · B) · ∂B
∂t

d2x −

−
∫
V

[(�b · B) ∇w] · ∂B
∂t

d3x +

+
∫
V

w [�b (∇ · B)] · ∂B
∂t

d3x −

−
∫
V

w (�2
a + �2

b) B · ∂B
∂t

d3x.

(A.8)

Now all terms except terms 2 and 3 have the correct form. We apply a · (b × c) =
c · (a × b) to terms 2 and 3:

⇒ 1

2

dL

dt
= −

∫
V

∂B
∂t

· [ w ∇ × (�a × B)] d3x −

−
∫
S

[
w n̂ × (�a × B)

] · ∂B
∂t

d2x +

+
∫
V

[∇w × (�a × B)] · ∂B
∂t

d2x +
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+
∫
V

∂B
∂t

· (�a × (∇ × B)) d3x −

−
∫
V

w ∇(�b · B) · ∂B
∂t

d3x +

+
∫
S

n̂( w �b · B) · ∂B
∂t

d2x −

−
∫
V

[(�b · B) ∇w] · ∂B
∂t

d3x +

+
∫
V

w [�b (∇ · B)] · ∂B
∂t

d3x −

−
∫
V

w (�2
a + �2

b) B · ∂B
∂t

d3x.

(A.9)

Now all terms have the correct form and we write them more compactly:

⇒ 1

2

dL

dt
= −

∫
V

∂B
∂t

· F̃ d3x −
∫
S

∂B
∂t

· G̃ d2x, (A.10)

F̃ = w F + (�a × B) × ∇w + (�b · B) ∇w, (A.11)

G̃ = w G, (A.12)

F = ∇ × (�a × B) − �a × (∇ × B)+
+∇(�b · B) − �b(∇ · B) + (�2

a + �2
b) B,

(A.13)

G = n̂ × (�a × B) − n̂(�b · B). (A.14)
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