MAGNETIC MODELING AND TOMOGRAPHY: FIRST STEPS
TOWARDS A CONSISTENT RECONSTRUCTION OF THE SOLAR
CORONA

T. WIEGELMANN and B. INHESTER
Max-Planck-Institut fiir Aeronomie, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany
(e-mail: wiegelmann@ linmpi.mpg.de)

(Received 17 December 2002; accepted 21 January 2003)

Abstract. We undertake a first attempt towards a consistent reconstruction of the coronal magnetic
field and the coronal density structure. We consider a stationary solar corona which has to obey
the equations of magnetohydrostatics. We solve these equations with help of a newly developed
optimization scheme. As a first step we illustrate how tomographic information can be included into
the reconstruction of coronal magnetic fields. In a second step we use coronal magnetic field infor-
mation to improve the tomographic inversion process. As input the scheme requires magnetic field
measurements on the photosphere from vector-magnetographs and the line-of-sight integrated den-
sity distribution from coronagraphs. We test our codes with well-known analytic magnetohydrostatic
equilibria and models. The program is planned for use within the STEREO mission.

1. Introduction

The solar magnetic field is an important quantity which couples the solar interior,
the photosphere and the atmosphere. The quasi stationary coronal magnetic field
configuration is an interesting and challenging topic on its own right. But even to
understand basic processes like coronal mass ejections and flares it is important
to understand the quiescent magnetic configuration out of which these dynamic
phenomena arise. Unfortunately the coronal magnetic field cannot be measured di-
rectly, but it has to be reconstructed from photospheric measurements. A magnetic
field reconstruction of the solar corona has to be consistent with the observed spa-
tial variation of the coronal plasma (density, pressure, temperature) often elongated
along the magnetic field.

Here we are mainly interested in long-living structures which are time-
independent in first order. We also concentrate on closed magnetic configurations
where a stationary plasma flow (solar wind) does not significantly contribute to
the force balance. Such configurations are static equilibria and have to obey the
magnetohydrostatic equations (MHS).

As the magnetic field B and the density distribution N are physically closely
related their model reconstruction should also be linked as much as possible. In
this paper we attempt to show how this can be achieved. We propose variational
principles which if they can be solved should give a consistent model for an isother-
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mal corona. For the magnetic field reconstruction this leads to a generalization of
a nonlinear force-free approach by Wheatland, Sturrock, and Roumeliotis (2000),
for the density reconstruction we obtain a tomography problem with an improved
regularization term.

The ground-based or space-borne magnetograph observations provide either the
line-of-sight magnetic field (B, €.g., MDI on SOHO), which is sufficient for
potential and linear force-free fields, or all three components of the photospheric
magnetic field (e.g., IVM in Hawaii, expected also from Solar B). The latter in-
formation is sufficient to determine nonlinear force-free fields completely. As a
force-free approximation is justified only in the limit of a vanishing plasma g, we
take into account forces (pressure gradient and gravity) for configurations with a
finite plasma B even though we shall consider 8 small.

Popular simplifications for the reconstruction of coronal magnetic fields are:

— Potential fields (j = 0) (e.g., Schmidt, 1964; Semel, 1967; Schatten, Wilcox,
and Ness, 1969; Sakurai, 1982; Rudenko, 2001a).

— Linear force-free fields (e.g., Nakagawa and Raadu, 1972; Chiu and Hilton,
1977; Seehafer, 1978; Semel, 1988; Gary, 1989; Lothian and Browning, 1995).

— Linear non-force-free fields (e.g., Zhao and Hoeksema, 1993, 1994; Petrie
and Neukirch, 2000; Zhao, Hoeksema, and Scherrer, 2000; Rudenko, 2001b).

— Nonlinear force-free fields (e.g., Sakurai, 1981; Wu, Chang, and Hagyard,
1985; Roumeliotis, 1996; Amari et al., 1997; McClymont, Jiao, and Miki¢, 1997;
Wheatland, Sturrock, and Roumeliotis, 2000; Yan and Sakurai, 2000).

Within this work we do not use any of these assumptions but consider the
general case of nonlinear non-force-free equilibria. The mathematical problem of
calculating nonlinear non-force-free fields is closely related to the problem of cal-
culating nonlinear force-free fields which coincides with the above in the limit of
B — 0. Under ideal conditions the information contained in a (perfect) vector mag-
netogram together with the force-free condition would be sufficient to calculate the
coronal magnetic field. Within this work we show that the information contained in
a vector magnetogram together with a tomographic reconstructed coronal density
distribution and the assumption of magnetohydrostatic force balance is as well
sufficient to calculate the finite 8 coronal magnetic field. Unfortunately current
vector magnetograms and tomographic reconstruction are far from being perfect,
which affects the quality of reconstruction. Within this work we use well-known
MHS equilibria to test our newly developed reconstruction program. The use of
analytic equilibria as artificial data allows us to extract ideal vector magnetograms
as well as ideal coronal density distributions.

As for the density observations, ground-based coronagraphs (e.g., the Mark III
coronagraph on Hawaii, LASCO coronagraph on SOHO and the future STEREO
mission) provide the line-of-sight integrated density structure of the solar corona
from different relative viewpoints as the Sun rotates. These measurements have
been used for a 3D-reconstruction of the coronal plasma distribution with help
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of tomographic methods (Davila, 1994; Zidowitz, 1999; Frazin, 2000, 2002). The
major problems here are:

— the assumption of stationarity of coronal structures as the Sun rotates,

— the lack of data due to the occulted center of the image,

— the non-ideal viewing geometry caused by a slight tilt of the Sun’s axis with
respect to the ecliptic.

These shortcomings generally enhance the intrinsic ill-posedness of the tomog-
raphy problem. The general approach to stabilize the reconstruction is to smooth
the solution by regularization. The price to pay is a reduced spatial resolution
of the model depending on the quality of the data and inconsistencies and ill-
conditioning due to the above effects. So far only very general, isotropic regu-
larization operators have been applied to coronal density reconstruction problems.
Our approach to the density reconstruction in connection with the reconstruction
of the coronal magnetic field leads to a new regularization operator which, as
we demonstrate by test calculations, could yield a better spatial resolution than
conventional reconstructions.

The paper is outlined as follows. In Section 2 we describe the basic equations
and the newly developed algorithm of the magnetic field reconstruction program
in the case where the plasma density distribution N is given. Section 3 contains
several test runs where we apply our code for the reconstruction of analytic MHS
equilibria. In Section 4 we propose an algorithm for an improved reconstruction
of N if some information of B is given. This approach is tested and compared
with conventional methods by with the help of a two-dimensional analytic coronal
density distribution. In Section 5 we discuss how both methods could be used
together to derive a consistent model of the Sun’s corona. In Appendix A, B, and
C we provide the algebra which has been omitted in the text.

2. Basic Equations

We describe the coronal plasma with help of the magnetohydrostatic (MHS) equa-
tions. The MHS equations are

jxB—-VP —pVV¥ =0, (D
V x B = uoj, (2)
V-B=0, 3)

where B is the magnetic field, j the electric current density, P the plasma pres-
sure, p the plasma density, (o the vacuum permeability, and W the solar gravity
potential. We define the functional

L= f [B2(V xB) x B— po(VP + pV¥)|* + |V - B]*] d’x. 4)
\%4
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The domain V is a volume which on one side is bounded by the Sun’s pho-
tosphere. Obviously, L is bound from below by 0. This bound is attained if the
magnetic field satisfies the MHS equations. Here we assume that the plasma pres-
sure and the density are given. It is assumed that the corresponding information
will be provided by tomographic reconstruction of the solar corona. We vary func-
tional L with respect to an iteration parameter ¢ and get (see Appendix A for the
derivation)

1 dL 0B 0B
2 dt ot ot
\4 S
where
F=Vx(®Q,xB) -2, x(VxB)-+
(6)
+V(2 - B) — 2,(V - B) + (2; + 2}) B,
G =1 x (2, xB) —i(2, -B), (7)
Q. =B 2 [(VxB)xB—puy(VP +pVW¥)], ®

@, =B~ [(V-B)B].

The surface integral in (5) vanishes if B is prescribed on the boundary. We iterate
the magnetic field inside the computational box with

B

ot
which ensures that L is monotonically decreasing. For the bottom the boundary
values are given by the photospheric vector magnetograph observations. On other
boundaries we may either assume B or include the boundary values in the varia-
tion. Actually the handling of the not observed lateral and top boundaries of the
computational box is similar here as in the nonlinear force-free case (Wiegelmann
and Neukirch, 2003). On the boundary of the computational box the magnetic field
is iterated with

B

= uF, ©))

T =0 where B is observed, (10)
oB .
T = uG otherwise. (1D

We propose to use this iteration process to solve for the minimum of L. If a
solution of the MHS equations for the prescribed boundary condition exists, the
global minimum of L corresponds to this solution and attains L = 0. Please note
that the iteration procedure ensures finding this global minimum if the solution
space is convex. For a non-convex solution space it is possible that the iteration
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will lead to a local minimum. For complicated magnetic field configurations it
is difficult to decide in advance whether the solution space is convex or not. For
a non-convex solution space it is still possible to find the global minimum by
iteration if the starting configuration is sufficient close (within a convex area) to
this minimum. The method generalizes an approach by Wheatland, Sturrock, and
Roumeliotis (2000) which has been used to compute force-free fields.

3. Convergence Tests

Since analytic truly 3D MHS equilibria are not available, we use an analytic 2D
MHS equilibrium to test the newly developed code. The analytic equilibria are
not meant to be a good representation of the solar corona and the tests are only
carried out to check the convergence of the newly developed code. We represent
the magnetic field with help of the flux-function A(x, z) as

B=VAxey+ B, e (12)
and the MHS equations reduce to a Grad—Shafranov equation
AA = 9 P(A, W) + B}%(A) (13)
- 0A ’ 2 )

3.1. EQUILIBRIUM MHS-1

As a first test we consider equilibria without gravity (P = P(A)) and choose
P(A) ~ A? and B,(A) ~ A. The corresponding Grad—Shafranov equation is
linear in A and can be solved analytically by a separation ansatz. It is convenient
to define a function

B>(A)
M(A)=c* A>=P(A) + ~‘2 : (14)
P(A) =ay * A%, (15)
By(A) =/ (1 —ap) cA. (16)
Configurations with ¢ = 0 correspond to potential fields, finite ¢ and ay = 0

to force-free equilibria, ay = 1 to equilibria with pressure gradient but without
magnetic shear and finally 0 < ayp < 1 is the general case including both forces
and magnetic shear. With this approach we get the solution of (13):

A(x,z) = Zexp(—vnz/L) [ak cos(kmx/L) + by sin(knx/L)] , 17
k=1
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Figure 1. MHS-1: some field lines for the first equilibrium. The colors on the photosphere correspond
to the normal component of the magnetic field.

where v = k2 — ¢2, for ¢? < k*. The solutions of the Grad—Shafranov equation
are invariant in one spatial coordinate (d/dy = 0). To test our 3D-optimization
code it would be more convenient to have equilibria varying in all three spatial
directions. We construct such equilibria by rotating the solution of Grad—Shafranov
equation by an angle ¢, around the z-axis and by ¢, around the y-axis. As a result
the solution varies in all of our three coordinate directions. The final equilibrium
has the following free parameters: c, ag, ax, b, ¢1, ¢». As an example we choose
c =08,a0 = 05,01 = 1.0,a3 = —0.8,a; = by = 0 for all other k, ¢; =
—0.05m, ¢, = 0.157. With help of the flux function (17), the equations for the
pressure (15), shear field (16), and the magnetic field definition (12) we get the
magnetic field B and the plasma pressure P. For an isothermal plasma we derive
the density as p = P/RT. We normalize the maximum normal magnetic field at
z=0t0300G=0.03T.

As a first test, we want to reconstruct this equilibrium with our code. The code
needs any 3D-vector field as start configuration for the iteration procedure and it is
convenient to choose a potential magnetic field with respect to the photospheric line
of sight magnetic field. The potential field can be easily computed for an observed
magnetogram. For our model data a potential field is computed with the same para-
meter set but ¢ = 0. The boundary values for the iteration are in practical cases only
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known on the bottom plane. On the others planes they have to be iterated too using
(11). In this test we fix the magnetic field however everywhere on the boundary to
the value of the analytic solution to simplify the problem. For the force-free case
we treated the side and top boundaries as unknowns in Wiegelmann and Neukirch
(2003) and showed how they can be iteratively determined by (11). This latter way
of treating the boundary values makes the finding of a solution much more difficult.

In Figure 1 we show three-dimensional plots of selected field lines for this MHS
equilibrium. The color coding of the bottom boundary indicates the distribution of
B, on that boundary. To test our code we try to reconstruct that equilibrium in the
following way:

— Inside the computational box we choose a potential magnetic field as the
starting equilibrium.

— We prescribe the plasma pressure in the box with the analytic solution.

— We prescribe the vector magnetic field on the boundaries of the computational
box.

— We iterate for the magnetic field inside the computational box with (9).

During the computations we calculate the quantities L, the absolute value of
the force balance |J x B — V P| (averaged over the numerical grid), the value of
|V -B| (averaged over the numerical grid), and the difference between the numerical
magnetic field and the known analytical solution |B(#) — Bua|?/|Bana|”® (averaged
over the numerical grid) at each time step. In Figure 2 we show the development of
these quantities during the iteration process with logarithmic scaling. All quantities
decrease over several orders of magnitude during the optimization process and
reach the level of the discretisation error. The discretisation error corresponds to
the value of L, |JxB—V P —p VY|, and |V -B| for the analytic solution computed
on a numerical grid. In the upper half of Table I we summarize the main result of
the iteration process. The first row corresponds to the analytic solution computed
on a grid and defines the discretisation error. The second row contains the values of
L, the force balance and the relative error for the starting configuration, where the
interior points have been replaced by a potential field. The relatively large values
of the three quantities are due to the deviation from the equilibrium. The next rows
show how the three diagnostic quantities evolve during the iteration. After 10 000
iteration steps the discretisation error is reached for all values and the original
equilibrium MHS-1 has been reconstructed.

We use a Landweber iteration (see, e.g., Louis, 1989) with some automatic con-
trol of the step size. The continuous form of Equation (9) ensures a monotonically
decreasing L. A monotonically decreasing L in the discretized form is ensured if
the iteration step dt is sufficiently small. The code checks if L(¢# 4+df) < L(¢) after
each time step and if the condition is not fulfilled, the iteration step is refused and
dr is reduced by a factor of 2. After each successful iteration step we increase dt
slowly by a factor of 1.01 to allow the time step to become as large as possible
with respect to the stability condition. In principle there are more sophisticated
methods available to calculate an effective d¢ for each iteration step (see, e.g.,
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TABLEI

Details of runs to reconstruct MHS equilibria.

L Force — balance i
nx X ny X ng Step [72m] Nm=3] Relative error
40 x 40 x 20 MHS-1  0.0028 0.19 Reference
Start 0 140613 1205 0.27
500 74 25.5 0.025
5000 0.021 0.4 1.4 %107
10000 0.0028 0.19 <1070
40 x 40 x 200 MHS-2 43 10.7 Reference
Start 0 3.7 x 107 15290 0.14
500 101423 2399 0.017
1000 3393 430 9 x 107%
5000 4.3 10.8 <1076

Geiger and Kanzow, 1999) but these methods have a huge numerical overhead
and further numerical experiments will have to show which of these are favorable
for our problem.

3.2. EQUILIBRIUM MHS-2, HELMET STREAMER

As a second example we consider an equilibrium with gravity which has been used
to model coronal helmet streamers (Wiegelmann, Schindler, and Neukirch, 1998).
The method is based on the asymptotic expansion method (Schindler, 1972) and
corresponds to a nonlinear Grad—Shafranov equation. Here we choose for the terms
in (13)

P(A,¥) =ay exp (—%) exp (cA), (18)

By(A) =21 —ap exp (% A). (19)

For simplicity we use a constant gravity ¥ = gz, g = 270 m s~ and a
constant coronal temperature 7 = 3 x 10° K. Consequently we get the mass density
from the plasma pressure as p = P/RT. The parameters correspond to a coronal
pressure scale height

_ kg T _ RT
T m|VU| g

of 93 Mm = 0.13 solar radii. With help of the method of asymptotic expansion we
find an analytic solution of (13):

0 (20)
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Figure 2. MHS-1: evolution of L, force balance |j x B— V P|, |V - B| and the difference between the
numerical magnetic field and the known analytical solution |B(z) — Banal2 /|Bana\2. All quantities
are averaged over the numerical grid.

Alx,z) = —% log | cosh | ¢ pO—(Z) X + l log (pO(Z)> , 2D
c 2 c ko(z)

po(z) = m, (22)

ko(z) = Y < 23

0(z) = exp (—ﬁ> = exp (_Fo) . (23)

We choose ¢ = 0.05 Mm~' and A = 0.001 Mm~!' for the free parameters and
compute the solution on a grid of nx = ny = 40, nz = 200. With help of the flux
function (21), the equations for the pressure (18), shear field (19), and the magnetic
field definition (12) we get the magnetic field B and the plasma pressure P. For an
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Figure 3. MHS 2: a projection of some field lines for MHS-2. The background colors correspond to
the logarithm of the electron number density N m™3. Please note the different scale in x and z.

isothermal plasma we derive the number density as N = P/kg T. Let us remark
that the quantity N is what we will get for real data from coronal measurements
after the tomographic reconstruction. In principle a non-constant temperature 7 can
also be used, e.g. from a standard atmosphere model. Figure 3 shows a projection
of magnetic field lines and the electron density structure as background for the
helmet streamer configuration MHS-2.

The solution is invariant in y and we rotate the solution around the z-axis with an
angle ¢ = 7 /10 which is useful for testing our reconstruction code (all derivatives
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Figure 4. MHS-2: evolution of L, force balance |[j x B — VP — pVV¥|, |V - B| and the difference
between the numerical magnetic field and the known analytical solution [B(¢) — Baml2 / |Bana\2. All
quantities are averaged over the numerical grid.

appear). As a starting magnetic field we choose a Harris sheet, where the magnetic
field has only one component B. = —+/2 tanh ((c/ V2) x> which is invariant in z

and y. We apply our code for the reconstruction of this helmet streamer equilibrium
MHS-2 in the following way:

— Inside the computational box we choose a Harris-sheet magnetic field as a
starting equilibrium.

— We prescribe the electron number density N in the box with the analytic
solution.

— Under the assumption of a constant coronal temperature and a constant grav-
ity we calculate the plasma pressure, density and compute u = —ug(VP + pVW)
on the grid.
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— We prescribe the vector magnetic field on the boundaries of the computational
box. Similar as in the previous example we use the analytic solution to fix the
magnetic field on all boundaries for simplicity.

— We iterate for the magnetic field inside the computational box with (9).

Similar as for MHS-1 we diagnose the quantities L, the absolute value of the
force balance |JxB—V P —p VW] (averaged over the numerical grid), the value of
|V-B| (averaged over the numerical grid), and the difference between the numerical
magnetic field and the known analytical solution |B(¢) — B.nal?/IBanal? (averaged
over the numerical grid) at each time step. In Figure 4 we show the development of
these quantities during the iteration process with logarithmic scaling. All quantities
decrease over several orders of magnitude during the optimization process and
reach the level of the discretisation error. The discretisation error corresponds to the
value of L, |JxB—-V P —p VW¥|, and |V -B| for the analytic solution computed on
anumerical grid. Please note that the discretisation error for MHS-2 is significantly
larger than for MHS-1 due to the nature of nonlinear analytic solution. In the lower
half of Table I we summarize the main result of the iteration process.

The first row corresponds to the analytic solution computed on a grid and de-
fines the discretisation error. The second row contains the values of L, the force
balance and the relative error for the start configuration, where the interior points
have been replaced by a Harris-sheet magnetic field. The large values of the three
quantities are due to the deviation from the equilibrium. The next rows show how
the three diagnostic quantities evolve during the iteration. After 5000 iteration steps
the discretisation error is reached for all values and the original helmet-streamer
configuration MHS-2 has been reconstructed.

3.3. FORCE-FREE AND MHS RECONSTRUCTION FOR DIFFERENT

It is generally assumed that the magnetic pressure in the lower corona is much
larger than the plasma pressure leading to 8 <« 1. For longer structures like helmet
streamers the plasma S increases significantly. It is generally assumed that the ef-
fects of plasma pressure and gravity can be neglected for low 8 plasmas leading to a
nearly force-free state. Let us remark that one can construct high g force-free equi-
libria by adding a homogeneous plasma pressure VP = 0 (or a barometric density
distribution VP = —p VW for configurations with gravity) to any exact force-
free configuration. Here we do not study such singular cases, but more realistic
configurations where VP ~ P/I, where [ is a typical length scale of the problem.
The equilibrium MHS-1 allows us to compute configurations with different plasma
B by prescribing the parameter ay, where @y = 0 corresponds to an exact force-
free state. We use our code to investigate how well a magnetic field configuration
can be reconstructed by the force-free approach. We start all reconstruction runs
with a potential field solution ¢ = 0.0 and the magnetic field boundary conditions
extracted from the exact solution (artificial vector magnetograms). The configura-
tions in the left-hand side in Table II have been reconstructed by the assumption of a
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force-free configuration and the configurations in the right-hand side in Table II are
reconstructed as MHS equilibria. The force-free reconstruction needs the boundary
magnetic field data as input and the MHS reconstruction additionally requires the
plasma-density structure, which we extract here from the analytical solution. This
corresponds to artificial tomographic information.

We diagnose the quantities L (Lgg for force-free and Lyys for magnetohydro-
static) and the deviation from the the analytic solution (Errorgg for force-free and
Erroryys for magnetohydrostatic) similarly as described in the previous sections.
For MHS reconstruction our code finds the magnetic field structure for all config-
urations with an error corresponding to the discretisation error. If we restrict our
code to an exact force-free reconstruction we still get a considerably good agree-
ment with the exact solution for a plasma 8 of less than 10~2. For higher values of 8
both the value of L (where L = 0 corresponds to an exact force-free state) and the
error in the magnetic field increase. Consequently our code finds the expected result
that the effect of plasma pressure is negligible for low-8 configurations. The result
also shows that a direct consideration of tomographic information regarding the
electron density is only useful for finite-8 plasmas. For low-8 plasmas the magnetic
field structure is practically not influenced by the plasma density distribution. Let
us remark that it is still possible to consider some indirect information provided by
the plasma density for low-g plasmas, e.g., the fact that the density gradient parallel
to the magnetic field is much lower than the density gradient perpendicular to the
magnetic field. Consequently the magnetic field lines are outlined by the emitting
plasma. This allows one to consider stereoscopic information for the reconstruction
of low-f plasmas (Wiegelmann and Neukirch, 2002).

3.4. SPEED OF THE METHOD

The speed of our code is approximately proportional to N> (N is the number of
points for one side of the computational box) similar as found by Wheatland,
Sturrock, and Roumeliotis (2000) for the force-free case. This N> dependence
looks discouraging for the reconstruction of large boxes. We undertake some rough
estimations to see if the method is practical for modern vector magnetographs. For
a grid of N = 40 a reconstruction takes about 5 min on a 4 processor computer.
The IVM vector magnetograph in Hawaii has a resolution of N = 256 pixel.
Consequently a reconstruction with full [IVM-resolution would take approximately
5 min x (256/40)° ~ 35 days. If only one half IVM-resolution is used the re-
construction time would be 5 min x (128/40)° & 28 hours, which seems to be
acceptable. We are optimistic that an improved numerical scheme (e.g., using con-
jugated gradients or multi-grid methods), a massive parallelization (using 16-32
processors instead of 4*.) and increasing computer speed will speed up the re-
construction time significantly. The computing time for the optimization approach

*The method seems to parallelize quite well. On 4 processors the reconstruction is about 3 times
faster than on one processor.
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TABLE II

Force-free and MHS reconstruction. The first column contains the plasma g,
the second column ag, the third column the final value of L for a force-free
reconstruction, the fourth column the error in the magnetic field structure
compared to the analytic solution, the fifth column the final L-value for a
MHS reconstruction and finally the sixth column the error in the magnetic
field structure compared to the analytic solution for the MHS reconstruction.
All runs have been computed with MHS-1 on a grid ny = ny = 40, n; =20
for 5000 iteration steps.

Plasma 8 qg LFp Errorgp Lyus — Errorvys
0 0 0.027 1.5x107°

104 0.00045 0.028 1.5x107° 0028 15x107°
1073 0.0045 004 15x107% 0028 15x107°
1072 0.045 126 49x107% 0028 15x107°
107! 0.41 112 6.0x 1073 0027 1.7x1073
0.2 0.74 807 0.05 0015 1.0x 1073
0.3 1.0 1443 0.2 0.007 2.0 x 107

seems to be high, but comparisons of the optimization method with classical MHD
relaxation (for the force-free case) have shown that the optimization method is
more effective (Wiegelmann and Neukirch, 2003). Direct extrapolation methods
(e.g., Wu, Chang, and Hagyard, 1985) are much faster than iterative methods but
known to become unstable with increasing coronal height.

4. Using Coronal Magnetic Field Information as a Constraint for
Tomography

Until now, we used information regarding the coronal density and pressure struc-
ture as given. In principal we could consider density and pressure in functional (4)
as additional variables to be optimized just as B. In this case, however, the prob-
lem of minimizing L would be hopelessly under-determined even if the boundary
values of B, p and P were given at the Sun’s surface.

If the magnetic field was known on the other hand, we could use (4) and assume
a temperature variation to determine a consistent density and pressure. Even though
we will find immediately that this approach is doomed to fail we here mention for
completeness the optimization equations which can be derived from (4),

p=mN, P =ksTN

and we get (see Appendix B)
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1 dL AN AN

- —=|H—¢& I — dx, 24

2 dr f 8tx+/ or 24
\4 S

H = pom R, - VYV — g kgT V - Q,, 25)

1 = Ko kBT ﬂa'ﬁ. (26)

(See (8) for the definition of 2, and £2y.)* Physically speaking, the solution to
these equations yields a pressure which exactly balances excessive magnetic field
forces onto the plasma. However, due to the small value of § in the corona, already
a small relative error in the assumed magnetic field will result in residual forces
which need a huge plasma pressure to be balanced so that a small relative error in
B will produce a large relative error in N. We obviously need another approach to
get hold of a decent estimate of the coronal density distribution and this must be
based on additional observations.

The coronal electron density can be observed by coronagraphs. Unfortunately,
coronagraphs yield only integrated column densities along the line of sight and
the 3D density distribution itself has to be reconstructed from these measurements
by means of a tomographic inversion (Zidowitz, 1999; Frazin, 2000, 2002). This
inversion process has besides its intrinsic ill-posedness additional problems to cope
with if applied to coronagraph data:

— non-stationarity of the coronal density structures,

— incomplete data due to the occultation of the image centers (exterior tomog-
raphy problem),

— non-ideal viewing geometry due to the tilt of the Sun’s axis with respect to
the ecliptic.

As a result of all these problems, the spatial resolution which ultimately can be
achieved with the reconstruction is limited. The conventional procedure to obtain
a reliable solution is to minimize an expression of the following form:

G(N) =) I35 — 4, (NP + 1 / IR(N)? dx, 27
Dl Vv

where /) "bs is the observed intensity in pixel p of image i and [, ; is the respective
s1mulated intensity which is calculated from a density N as a line-of-sight integral

im:fNM. (28)

*Let us remark that the general form of dL/d¢ will vary both the density distribution and the
magnetic field:

1dL 5 9B N o

- —=—-|=.F H—d G+ — dx

S AR KA
N
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Here, C,; is the beam from pixel p of image i, i.e., the location of points € V
which project onto the respective pixel. We omit here modifications of (28) due to
the scattering geometry and the scattering cross section of the electrons which lead
to slight variations of the integrand in (28). In (27), R is a regularization function
to be specified below. The primary aim is to find a density model N which makes
the first term vanish. In this case N is compatible with the observations. However,
due to measurements errors, inconsistencies of the observations mentioned above
and its possible insensitivity to certain density structures, it does not make sense to
minimize the first term alone below a level approximately given by the measure-
ment error variance. To stabilize the model reconstruction on density structures
to which the observations are insensitive, the regularization term is added with
a regularization parameter p tuned so that the first term is approximately brought
down to the observation error variance when the complete expression G is minimal.

Since L(N) is basically an integration operator, R(N) very often is chosen as a
differential operator, e.g.,

R(N) = V>N. (29)

As aresult, while the integration makes (V) insensitive to small scale structures,
R(N) responds to these but has little effect on the large scales. Therefore, when
minimizing G, the large scales are shaped by the first term to comply with the
observations, while the small scales are kept smooth by the regularization term
in G. The transition between large and small scales is mainly determined by the
weight p of the regularization in G which must be enhanced the worse the quality
of the observations. In this sense, the spatial resolution of the model density N
which can be achieved depends largely on errors, inconsistencies and gaps of the
data.

But the power of the regularization term goes beyond suppressing unwanted
small-scale noise in the reconstructed model N. Any additional physical constraint
for N can be included here just like the V - B = 0 constraint was added to the force
balance condition in (4). One obvious constraint for the density is its positivity,
which can be taken account of in R by so-called barrier functions (see Frazin,
2000). For a more stabilizing constraint we may return to (24). It was derived so as
to minimize the square of €2, which is proportional to the local force balance. Note
that €2j, has no dependence on N and therefore is not varied here. The argument
which led us to discard (24) as a starting point for an iteration for the density
mainly applies to the force components 2, ~ (V xB) xB — uo(V_ P 4+ pV, V)
perpendicular the magnetic field which are dominated by the magnetic term to
lowest order. We therefore choose a regularization term which at least takes care of
the field-aligned force balance in 2, | ~ —uo (V) P + pVW¥). This is achieved by

RN A . B i
R(N):—(B-V)P—I—,O(B-V)\If=(B-V)N——rN, 30)
kBT HO
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Figure 5. A reconstruction of completely noisy images with the regularization term (30). The visible
structures are imprints of the dipole magnetic field assumed in the regularization term.

where again an isothermal plasma is assumed and H, is the pressure scale height
of the solar corona as in (20). An extension to a varying temperature is straight
forward if it is given, however we cannot solve for an unknown 7" unless we make
use of additional observations.

The regularization term (30) effectively smoothes the density out along the
magnetic field lines and thereby takes account of the fact that the transport co-
efficients in a magnetized plasma are much larger along the magnetic field than in
perpendicular direction. In the perpendicular direction to B the density may have
gradients as sharp as our model resolution allows without changing the value of G.

The magnetic field assumed in the test calculations below was a simple dipole
field. The effect of the above regularization operator becomes particularly visible
if instead of meaningful data, we assume that 7°® is pure noise. The magnetic field
then is the only real information in the inversion process and it becomes directly
visible in the reconstruction results (see Figure 5).

In Appendix C we derive an expression for an iterative descent step analogous to
(24) but which is preferable to (24) because it includes the additional observations
to stabilize the reconstruction

4@ _ f N oy + f el d’x, (31)
dr at at
v s

where
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HX) = 2 86, ()i (N) — 1)~

pii

: s 32
=21 |:(B -V)R(N) + —R(N)j| ,
Hy

I1(x) =2u(B - A)R(N), (33)

and é¢,, is 1 inside the beam emanating from pixel p of image i and 0 otherwise
(see Appendix C).

In order to test the feasibility of our scheme, we minimize (31) for a 2D test
model by means of a conjugate gradient iteration. In Table III we compare the
action of this operator with more conventional means of regularization for a two-
dimensional reconstruction. Here, the model and data errors of a reconstructed
model density N are defined as

1 .
data error = 3 Z 1195 — L0 (NI,
oy

1
model error = 3 f | Nana — N|2 d*x.
%

Here, N, is the analytic density model used to obtain the data [ °bs The re-
construction (a) was obtained without explicit regularization (i.e., with u = 0).
Instead, the iteration was stopped after 13 iterations when the model error was
minimal. Subsequent iterations further decrease the data error but enhance the
model error (which for real data is not known), a phenomenon which is known as
semi-convergence. For reconstructions (b) and (d) the conventional regularization
operator (29), and for (c) and (e) the operator (30) was used, however with the scale
height Hj set to oo.

In cases (d) and (e), the regularization parameter u and the number of iterations
were optimized to achieve the best agreement with the original model. We show
these results only to demonstrate how close a reconstruction can come to the true
solution in principle. In practical cases, however, the true density distribution is not
known and the optimum solution has to be sought based only on the values for the
data error and the regularization term. In cases (b) and (c) these values have been
used in an L-curve search for the optimum solution (Hansen and O’Leary, 1993).

In Figure 6 we show the models associated with the test inversions in Table III.
The upper left shows the original model simulating a coronal loop on the western
limb and a streamer on the eastern limb. This model was used to calculate the
artificial data used as input for the reconstruction after some noise was added. The
standard deviation of the noise was 3x 1072 times the square root of the local data
intensity when the maximum data intensity is normalized to unity.

In terms of the model error, (30) yields slightly better results than (29). The
major improvement comes from the region close to the occulter. In this region
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TABLE III

Comparison of different regularization methods. The model and data errors are de-
fined in the text. The results (a) to (c) correspond to the cases in Figure 6. Case (a)
uses no regularization at all and has a minimum model error after 14 iteration steps.
Cases (b) and (d) use the isotropic regularization as in (29), cases (c) and (e) the
isotropic regularization as in (30). Iteration steps and p are optimized in (b) and (c)
from an L-curve search, in cases (d) and (e) for a minimum model error.

Regularization method Optimal iteration =~ Model error  Data error
steps

(a) stopping rule, R = 0 14 12.4 6.46 x 1072

(b) R = (29), . =0.01082 102 1.65 13.9 x 107

(c) R = (30), u = 0.00787 103 1.21 12.5 x 1073

(d) R = (29), u = 0.0050 53 1.21 12.2 x 107

(&) R = (30), u = 0.0065 120 1.13 12.0 x 107>

conventional tomography can only yield a limited resolution because close to the
occulter the structures are only seen in a few observations. On the other hand,
this is the area where we observe the strongest gradients in the density structures
and where spatial resolution is needed most. This fundamental lack of resolution
can only be overcome if new information (either observations or assumptions) is
fed into the inversion process. The new regularization operator (30) contains this
additional information in form of the local magnetic field direction.

The price we have to pay is a more lengthy computation as the number of
iterations increases (see Table III). Another problem which might occur are spuri-
ous field-aligned density structures in the reconstruction which add up to zero in
the tomographic projections. Formally, (30) has a null-space which asymptotically
comes close to the null-space of the {. In practical cases, however, the discretisation
error in the differentiation is sufficient to give (30) some isotropic component SO
that even exactly field-aligned structures yield a small non-zero contribution in a
discretized operator (30).

5. Conclusions

In this paper we undertook a first step towards the inclusion of tomographic infor-
mation into the reconstruction of coronal magnetic fields and a first step towards
the inclusion of coronal magnetic field information into the tomographic inver-
sion procedure. Until now we considered the reconstruction of the magnetic field
from its boundary values with an optimization code when the density structure is
given and the tomographic reconstruction of the coronal density distribution from
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P,

~ original

S

Figure 6. Comparison of different regularization methods for the reconstruction of the original model
Nana in the upper left. The results (a)—(c) correspond to the cases in Table III.

coronagraph data under the constraint of a given magnetic field. As neither N nor
B are known a priori in the solar corona, we rather have to find a way to consis-
tently reconstruct both quantities from the observations simultaneously without the
assumption that one of the quantities is given.

In fact we observe that the two approaches discussed in the previous sections
are not only formally closely related but can be derived from a single variational
problem if the expression for L is slightly modified and the factor B~2 in the
integrand is omitted:

L(B,N) = f|(VxB) x B — uo(VP + pVW)|* + B}V - B’ d*x+

v (34)
+7 DU = g, (NP
p.i
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A variation with respect to B obviously leads to an iteration scheme similar to (5),
except for the effect of the B~2 term in the integrand. We have tested the resulting
scheme and found that it also converges towards the analytic solution from which
the boundary conditions were taken, but the convergence speed was much slower
than with (5). If L is varied with respect to N alone, we can ignore the terms which
depend only on B and we obtain (31) again if we discard the perpendicular force
balance in £2,. This suggests that the individual reconstruction problems for B and
N are just two projections of a unique reconstruction problem. In this case we
could apply both algorithms simultaneously and replace N in the algorithm for B
and B in the algorithm for N by the respective iterate and the problem as a whole
should converge as they do individually. A test of this hypothesis will be attempted
in the future. The code is planed for use within the STEREO mission.
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Appendix A. Derivation of F and G in (5)
(4) can also be written as

L= f B (Q2 + Q) &x. (A1)

14

Q, =B 2 [(VxB)xB+u],
2, = B~* [(V-B)B], (A.2)
u = —ug(VP + pVV¥),

We vary L with respect to an iteration parameter ¢ and get

1dL 9
Sd /Sla-—[(VxB)xB+u]d3x+

(V B) B]d x— (A.3)

1%
9B
/ Q2+ Q) B — dx.
ot
\%
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Our aim is now to use vector identities and Gauss’ law in such way that all terms

oB
contain a product with —. This will allow us to provide explicit evolution

: .. Ot .
equations for B to minimize L. The third term has the correct form already. We
expand the first and second terms:

ldL /ﬂa-[<Vx@)xB] dx+ (A4)
~ 2 at
\%
+/ [(VXB)X%—B}d3x+f9b-|:<v-%>B}d3x+
\% \4 B
—/ [(v B) ]d3 /(92+9>Baad
\%

The fourth and fifth terms have the correct form. We apply the vector identities
a-(bxc)=>b-(cxa)=c-(axb)to the first and second terms:

;»ldL / v 9B (B x R,) &x+

_ = X — . X

2dr o1 a) &
\%4

9B 3 B
_|_/a_.(szax(VxB))dx+f(9b'B)V'_dx+ (A5)

oB
/[szb(v B)]- /(92+Q v d3x
Terms two, four and five have the correct form. We apply (V x a) - b =
a-(Vxb)+V-(axb)toterm 1 and ¥V -a = —a - Vi + V - (ay) to
term 3
N 1dL /BB IV x (2, x B)] d
—— = X X
2 dr ot
14
oB oB
—/V-[(SlaxB)xE} d3x+/ 5 (R, x (V x B) &®x—
v Y A.6)
9B 0B (
—/V(Slb-B)-—d3x+/V-[(Slb-B) —] dx+
) oB
(2 (V-B)]- (Q2+QY) d

Terms one, three, four, six and seven have the correct form. We apply Gauss’ law
to terms two and five:
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1 dL B
:§_=_/at [V x (2, x B)] d (A7)

\%
—/ [(sz ><B)><a—}d2 /@-(ﬂax(vXB))d%—
s 0 ot
\4

—/V(Slb-B) -¥d3x+/ﬁ(szb-3)-@d2x+
\%4 ) B
/[szb(v B)]- /(sz rapB. 2 e
\%4

Now all terms but the second have the correct form. We apply a-(bxc¢) = c¢-(axb)
to the second term:

Ll /BB V% (@ x By
eI gr LV X

\%4
—/[ﬁx[(szaxB)]-@d%Jr/@-(szax(VxB))ch—
s ot ot

v
B
—/V(Slb-B) -—t d*x / (2, - B) - —d2 (A.8)
v
5 B
(2 (V-B)]- (Q2 4+ Q7) d
v
Now all terms have the correct form and we write them more compactly as
1 dL oB
— -Fd’x — -G d%x, A9
TR f f o1 g (A.9)
s
with
F=Vx(Q,xB)—Q,x(VxB)+
(A.11)
+V(2 - B) — 2,(V-B) + (Q + Q;) B,
G=nx (2, xB) — (2, -B). (A.11)

Appendix B. Derivation of H and I in (24)

We vary L with respect to an iteration parameter ¢ where the magnetic field is
independent of ¢ here:

1 dZ fsz 910V xB) x B — 1g(VP + pVI)] & (B.1)
Q" — — X. .
2 dar a1 Ho p

\%
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We write the pressure P and the mass density p as functions of the number density

3
=55 = / Q, - 5 [(V xB) x B — po(ksT VN +mN V)] d*x. (B.2)
\%4

. . .. ON . . .
Our aim is to write all terms as products with — to derive evolution equations for

L . t
N to minimize L. The first term vanishes here because B does not depend on ¢. We
expand the second term:

:>1dL— Q. kzT V IN d? Q anun (B.3)
> dr Mo a"Kp 91 X — Mo a"m 91 X. (b.
\% \%

The second term has the correct form. We applya- V¢ = V- (ay) — ¢V -ato
the first term:

1 dL AN
= Vo RksT — ) &
PR, Mof <aB 8t> xr
B.4)
ON ON (

v-szakBTEch—Mofﬂa-mng&x.

14

+Ho

Se— <

Terms two and three have the correct form. We apply Gauss’ law to the first term:

S 1d A @ kT Y Pt
—_—_— = — n- JES—
2 dt Ho afpl 5O
ON ON (B.5)
V~SlakBT§d3x—,u0/Sla-m—V\IJd3x.

_|_
Mo Y

<\m\

14

Now all terms have the correct form and we write more compactly

1dL IN IN
S5 = fH e [15 e
2 dt at ot
14 N

H = puom R, - VV — o kgT V - R,, (B.6)

1 =,bL0kBTﬂa-ﬁ.

Appendix C. Derivation of H and I in (31)

An essential advantage in the derivation of the variational derivative of G in (27)
is the fact that G is a convex quadratic expression. While 7°% is just a data vector,
4 is a linear operator from the model space {N (V)} into the data space {/, ;}:
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d,i(N) = / N(x) d¢ : model space —> data space. (C.1H
Cp.i
The beam was defined in the main text as C,; = {x € V |x projects onto pixel p

for the view direction of image i }. The adjoint of (C.1) is

gx, 1) = Z 8¢, (x) Ip;: data space —> model space, (C.2)
p.i

where §¢,,(x) = 1 forx € C,; and d¢,; = 0 otherwise. The adjointness can easily
be checked by insertion of the respective definitions into

D Lidpi(N) = / 9(x, I) N(x) &*x. (C.3)
\%4

Pyl

Now minimizing (27),

GIN) =) IS — 4, (N> + u/ R(N)* &x, (C.4)
Py Vv
with (30),

A

| B A N Bt
RIN) = —@B-V)P + pB-V)W = B-V)N — —LN, (C.5)
kBT HO
yields

dG . ON
& = 2T ()

. _dN B-taN
2u | R|B-V)— — ——| d&°
+’“‘f {( NPT 8t:| *

\%
obs aN
V A
2 / B V)R+RB'f IN +2 /R(fs A)aNdZ
J— . [ —_— .n_
H Hy | ot =M ar o
\% N
IN IN
= | H— &Ex + | 1— &,
ot ot
1% S

where n is the unit normal on the surface S and

Hx) = 2) e, 0{yi(N) = I3%)—

M P (C.6)
o |:(B-V)R(N)+—R(N)]
Hy
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1(x) =21 (B-h)R(N). (C.7)
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