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Abstract. The space mission Solar TErrestrial RElations Observatory (STEREO) will provide images

from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona.

We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with

the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities

because the dilute plasma emissions complicates the association of features in image 1 with features

in image 2. As a consequence of these problems, the stereoscopic reconstruction is not unique and

multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of

different coronal magnetic field models (potential, linear, and non-linear force-free fields). The idea is

that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field

lines. Consequently, the 3D coronal magnetic field provides a proxy for the stereoscopy, which allows

to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is

more powerful than one of these tools alone. We test our method with the help of a model active

region and plan to apply it to the solar case as soon as STEREO data become available.

1. Introduction

The forthcoming space mission Solar TErrestrial RElations Observatory (STEREO)
will observe the Sun simultaneously from two viewpoints. One aim of the mission is
to reconstruct the solar corona in three dimensions (see, e.g., Schmidt and Bothmer,
1996; Gary, Davis, and Moore, 1998 for an overview). To do so, we have to develop
tools for the stereoscopic reconstruction of the 3D corona from two STEREO im-
ages. A triangulation method using the solar rotation has been applied to Skylab
images by Berton and Sakurai (1985), and Batchelor (1994). Aschwanden et al.
(1999, 2000), and Portier-Fozzani and Inhester (2001) used SOHO data and the
rotation of the Sun for a stereoscopic reconstruction. Using the rotation of the Sun
and taking images a few days apart allows of course only the reconstruction of
features with remain stationary within this time. Aschwanden et al. (1999) made
a fit of the observed loop structures to sections of circles and allowed for a time
dependence of some of the fit parameters. The method was called dynamic stere-
oscopy and used the assumption of circular coronal loops as a priori information.
Wiegelmann and Neukirch (2002) demonstrated how the 3D loops published in
Aschwanden et al. (1999) and photospheric magnetic field measurements can be
used to compute a corresponding coronal magnetic field model within the linear
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force-free model. A basic assumption was that due to the high conductivity, the
emitting coronal plasma also outlines the magnetic field. The alignment of coronal
plasma and magnetic field lines has also be used directly with 2D images from
(Yokoh/SXT) in Carcedo et al. (2003) and from (SOHO/EIT) in Marsch, Wiegel-
mann, and Xia (2004) to compute the optimal coronal magnetic field within the
linear force-free assumption. Wiegelmann et al. (2005a) used linear and non-linear
force-free magnetic field models for the identification of coronal loops in EUV
images.

The aim of this work is to develop a tool for the stereoscopic reconstruction of
coronal features (mainly closed loops in active regions) from two viewpoints. We
test the quality of our reconstruction tools with the help of a model active region.
Pure geometric stereoscopy leads to multiple solutions, mainly because the faint
coronal plasma does not allow a clear association of features in both Stereo images
with each other. Classical stereoscopy works best for objects with clear edges in
images with high contrast. Unfortunately, this is not the case in the solar corona
where the plasma structures are very faint and diffuse, e.g., visible loops in high-
resolution TRACE images are often a superposition of several individual loops
(Schrijver et al., 1999, 2004).

We demonstrate how a suitable coronal magnetic field model can be used to find
the association of loops in the STEREO images and thereby remove ambiguities
in the stereoscopic reconstruction. The method also tell us, how well the assumed
coronal magnetic field model aligns observed loops in both images and computes
(for linear force-free models) the optimal value of α. The tools are planned for use
within the STEREO mission.

2. Stereoscopy Tools

2.1. GEOMETRIC STEREOSCOPY

By geometric stereoscopy we understand a 3D reconstruction from two images,
e.g., from the projections as shown in Figure 1. As real STEREO data are not yet
available, we test our method with the help of a model active region, as described
in the appendix. Using a model active region helps us (because we know the true
solution) to check how accurate our stereoscopic reconstruction tools work. Here we
try to reconstruct the four loops in 3D from the artificial images shown in Figure 1.
For real observed images from, e.g., the two STEREO spacecraft, one needs to get
the loops (or after Aschwanden, 2005 curvi-linear 1D features) first from the 2D
EUV images by feature tracking method. Several methods have been proposed for
this aim, e.g., the brightness-gradient method and the oriented-connectivity method
(see Aschwanden, 2005; Lee, Newman and Gary, 2006 for an overview). Here we
concentrate on the 3D reconstruction and assume that the two EUV images have
been transformed into curvi-linear 1D features. In the following, we call these
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Figure 1. Artificial STEREO images (STEREO-1 in the left and STEREO-2 in right panel) with an

angle between the spacecraft of 56◦. The coloured lines show the projections of the original 3D loops

(1: blue, 2: red, 3: orange, 4: yellow).

observed elongated structures in EUV images simply loops. In contrast, field lines
are 3D curves derived from magnetic field models. The assumption is that loops
and projections of field lines are aligned.

We make a back projection of the four images into the original 3D box. Geometric
stereoscopy works well for solid objects with well-distinguished edges. If one
has correctly identified two related points in both images, a computation of the
3D location of the point is straightforward. One just has to calculate the point of
intersection along the line-of-sight of both images. Unfortunately, the situation is
more complicated for the solar corona. Coronal loops are faint elongated objects
and often have no clearly visible edges. It is not clear a priori which points along
a loop projection in image 1 belong to which points along the same loop from
another viewpoint in image 2. The situation becomes even worse for multiple
loops, which are close together in the images. Here it is not always possible to
distinguish which loops from image 1 correspond to which loops in image 2. For a
stereoscopic reconstruction in such a situation, we compute the intersection points
of all identified loop points in image 1 with all identified loop points in the second
image.1 The 3D reconstruction is not unique, however, because a pixel in one image
usually intersects with more than one pixel in the other image. An example of a
pure geometric stereoscopic reconstruction is shown in Figure 2b. The black pixels
mark the 3D intersection of the 3D reconstruction, the yellow dotted lines mark
the original loops. One can see that geometric stereoscopy finds the correct 3D
locations of the loops and reconstructs the original loop structure, but also several

1It is sufficient to search for intersection points which are on the same epipolar line because points

on different epipolar lines do not intersect.
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Figure 2. (a) Model active region. We use the model developed by Low and Lou (1990) with the

parameters l = 0.5 and � = 1.4. We show four loops (1: blue, 2: red, 3: orange, 4: yellow). The other

panels show different method of reconstruction this loops (from the two images in Figure 1). The

reconstruction is shown in black and for comparison the original loops dotted in yellow.

ghost features occur, which are not related to any real loop. The challenge is to
identify which intersections are real and correspond to magnetic loops on the Sun
and to eliminate the ghost points.

2.2. MAGNETIC MODELLING

While the blurring and the line-of-sight character of the coronal images compli-
cate the interpretation, the coronal plasma has the nice feature that the plasma
emission outlines the magnetic field. This is a consequence of the high conductiv-
ity of the coronal plasma. Outlining means that the loops visible in EUV images
also represent projections of the magnetic field lines. Consequently, the 3D re-
construction of coronal plasma loops and 3D magnetic field lines are associated
with each other. Unfortunately, the 3D coronal magnetic field cannot be mea-
sured directly and one has to extrapolate the field from photospheric measurements
into the corona. The extrapolation depends on assumptions regarding the coronal
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plasma, in particular the electric current density. In the low and middle corona, the
magnetic pressure dominates over the plasma pressure (β � 1), which allows to
use force-free magnetic field models. Force-free magnetic fields have to obey the
equations

(∇ × B) × B = 0, (1)

∇ · B = 0, (2)

which are equivalent to

(∇ × B) = αB, (3)

B · ∇α = 0. (4)

The in general non-linear force-free field model (Sakurai, 1981; Amari, Boul-
mezaoud, and Mikic, 1999; Wheatland, Sturrock, and Roumeliotis, 2000; Yan and
Sakurai, 2000; Régnier, Amari, and Kersalé, 2002; Wheatland, 2004; Wiegelmann
and Neukirch, 2003; Wiegelmann, 2004; Valori, Kliem, and Keppens, 2005; In-
hester and Wiegelmann, in press; Wiegelmann, Inhester, and Sakurai, 2006) has
potential fields (no currents, e.g., Semel, 1967) and linear force-free fields (current
proportional to the magnetic field with a global constant α, e.g., Chiu and Hilton,
1977; Seehafer, 1978) as subclasses. Potential and linear force-free fields only need
the line-of-sight magnetic field as input, which is observed routinely from e.g.,
SOHO/MDI and NSO/Kitt Peak. Non-linear force-free fields are mathematically
more challenging to compute and require photospheric vector magnetograms as in-
put. Such data contain high noise and ambiguities in the transverse magnetic field
component and currently operating vectormagnetographs (e.g., NAO/SFT, VTT
in Tenerife and IVM in Hawaii) have a limited field of view. The observational
shortage of vectormagnetograph data will improve however in the near future with
the forthcoming missions Solar-B, SOLIS and SDO. The non-linear force-free ap-
proach describes the magnetic field in active regions more accurately than potential
and linear force-free fields (see Wiegelmann et al., 2005b).

2.2.1. Potential and Linear Force-Free Fields
We use the Seehafer (1978) method to calculate potential and linear force-free
fields. The method requires a photospheric line-of-sight magnetogram (e.g., from
SOHO/MDI) as input. The Seehafer solution is computed on a rectangular grid
0, . . . , Lx and 0, . . . , L y and contains the free force-free parameter α, which cannot
be evaluated from the observed line-of-sight magnetic field. To normalize α, we
choose the harmonic mean L of Lx and L y defined by 1

L2 = 1
2
( 1

L2
x
+ 1

L2
y
). The force-

free parameter is limited by −√
2π < αL <

√
2π. Potential fields correspond to

α = 0 (see Seehafer, 1978 for details.)
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2.2.2. Non-Linear Force-Free Fields
We solve Equations (1) and (2) with the help of an optimization principle as pro-
posed by Wheatland, Sturrock, and Roumeliotis (2000) and generalized by Wiegel-
mann and Inhester (2003), and Wiegelmann (2004):

L =
∫

V
w(x, y, z) [B−2 |(∇ × B) × B|2 + |∇ · B|2] d3x, (5)

where w(x, y, z) is a weighting function. It is obvious that (for w > 0) the force-
free Equations (1–2) are fulfilled when L equals zero. As an initial configuration,
we compute a potential magnetic field in the computational box. As the next step,
we use photospheric vector magnetic field data to prescribe the bottom boundary
(photosphere) of the computational box. On the lateral and top boundaries, the field
is chosen from the potential field mentioned earlier. We iterate for the magnetic field
inside the computational box by minimizing Equation (5). The weighting function
w equals 1 everywhere in the computational box except in a boundary layer of
16 points towards the lateral and top boundary of the computational box, where w

decreases smoothly to 0 with a cosine function (see Wiegelmann, 2004 for details
of our implementation of the non-linear force-free optimization principle).

3. How Does the Magnetic Field Help us with Stereoscopy?

The scheme in Figure 3 outlines how information regarding the coronal magnetic
field can be used to improve the stereoscopic reconstruction. A key question is to
associate coronal features, e.g., loops in image 1 (from the STEREO-1 spacecraft)
with features in image 2 (observed from STEREO-2). In the following, we specify
some details of the scheme.

1. A first step is to segment the 2D images into loops. This is by no means a trivial
process and several methods have been proposed, e.g., the brightness gradient
method, the oriented-connectivity method, magnetic field extrapolation and
curvature radius constraints and the use of multiple temperature filters. An
overview about current developments for this step is given in Aschwanden
(2005) and Lee, Newman and Gary (2006).

2. The next step requires a suitable magnetic field model. As the coronal magnetic
field can usually not be measured directly, we extrapolate it from photospheric
magnetic field measurements (from vector or line-of-sight magnetographs).
The coronal magnetic field model may also contain additional parameters, e.g.,
the linear force-free parameter α. An overview about coronal magnetic field
models is given in Section 2.2. We use a fourth-order magnetic field line tracer
to compute 3D magnetic field lines from the 3D magnetic field. The starting
points are chosen randomly, magnetic flux weighted, on the photosphere and in
the current implementation only closed magnetic loops (both footpoints are on
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Figure 3. How does the magnetic field help us with stereoscopy? The scheme is explained in detail

in the text. We take �1 → �2 = π (�1) as the association between loops in images 1 and 2.

the photosphere) are stored because the main application is to identify closed
coronal loops, see also Wiegelmann et al. (2005a). Open field lines are expected
not to be visible anyway. As a result, we get space filling magnetic field lines in
3D. A basic assumption is that the emitting plasma loops also outline the coronal
magnetic field. This is a consequence of the high conductivity of the coronal
plasma. The emissivity gradient along the magnetic field is much smaller than
in the perpendicular direction.



32 T. WIEGELMANN AND B. INHESTER

Figure 4. Loop association with different coronal magnetic field models. The upper panels and the

lower left panel show the matrix 1/C which associates each loop in image 1 with each loop in image 2.

We plot 1/C instead of C because the best association of loops corresponds to maxima here, which

are better visible than minima in the stacked histogram-style plots. The lower right panel illustrates

the area between a loop (from one STEREO image) and a magnetic field line projection. C is defined

as the area divided by the length of the loop.

3. The 3D magnetic field lines are projected onto both images from the two
STEREO spacecraft. For every projected field line, we measure how well it
agrees with one of the loops identified in step 1. As a measure of this agree-
ment, we take the area between each loop and the projections of the magnetic
field line in each image (see lower right panel in Figure 4) normalized by the
length of the respective loop. The measure C = C�i (b) then corresponds to the
average distance of the loop and the projection of the 3D magnetic field line.
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Perfect agreement corresponds to C = 0. If nb is the number of field lines and
n�i the number of loops in image i (i = 1 or 2), we get a matrix of the dimension
nb × n�1

for image 1 and another nb × n�2
matrix for image 2, which contain

the corresponding values Cl1 and Cl2. We here give C in units of a pixel size to
have a clear relation to the image resolution.

4. The next step is to associate the loops in both images with each other. The
aim is to find for each pair of loops l1 and l2 a magnetic field line b for which
the summed measures Cl1(b) and Cl2(b) are minimal. As a result of this step,
we get a n�1

× n�2
matrix, which contains the arithmetic mean of Cl1l2(b) =

(Cl1(b)+Cl2(b))/2 from both images for all possible association between image
1 and image 2. Cl1 + Cl2 can be calculated for each magnetic field line. The
optimal magnetic field line b corresponds to the minimum of C = Cl1l2 in b.
Again, C = 0 corresponds to perfect agreement. Figure 4 contains a stacked
histogram-style plot for this matrix. (The 4×4 matrix for the four loops features
from two viewpoints is shown in Figure 1. We preferred to plot 1/C instead
of C for a better visualization. Here high values of 1/C correspond to a good
agreement, e.g., a value of 1/C = 5 means that the projection of the field line
and the loop are in average only one-fifth of a pixel apart.) The absolute values
C certainly depend on the chosen magnetic field model and partly also on the
number of field lines plotted in step 2.

For a good magnetic field model, one has a clear association of features in
image 1 with features in image 2 after this step already. This is certainly the case
for the non-linear force-free model shown in the lower left panel of Figure 4. The
method correctly associates loop 1 of image 1 with loop 1 of image 2 etc. with
values of C < 1/5 pixel. (1−1, C = 0.15), (2−2, C = 0.18), (3−3, C = 0.17),
(4 − 4, C = 0.16), which gives an average measure of C = 0.17 ± 0.01.

As a consequence, the 3D magnetic field lines are already an excellent
proxy for the 3D loop and an explicit geometric stereoscopic reconstruc-
tion is not necessary anymore. Figure 2e shows the four identified mag-
netic field lines in black and the original model loops dotted in yellow. The
picture shows an agreement of original and reconstruction within plotting
precision.

The loop association with help of potential and linear force-free fields (upper
left and right panel in Figure 4) is not as good as for the non-linear force-free
case. The linear force-free model associates the loops in both images with
a distance of (1 − 1, C = 1.54), (2 − 2, C = 0.89), (3 − 3, C = 0.16) (4 −
4, C = 0.44) or in average C = 0.76±0.60. All loops are associated correctly.
The linear force-free model provides us also the optimal values of α for each
loop, which are α L = −4 for loop 1 and 2 and α L = +4 for loop 3 and 4.
Different values of α on different loops are a contradiction to the assumption
of a linear force-free model, which requires a single global value of α. So the
loop association method tells us also whether a linear force-free field is a fair
approximation for the coronal magnetic field (α is identical or almost identical
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for all loops) or not. In this example it is not. Nevertheless the optimal linear-
force free 3D magnetic field lines are a proxy for the 3D plasma loop. The proxy
is the better the smaller the correspondent values of C . Figure 2d shows the four
proxy field lines for the linear force-free case. In accordance with the values of
the matrix (upper right panel of Figure 4) we get a very good agreement with
the original for loop 3, some small deviations for loop 4 and larger deviations
for loop 1 and 2.

The potential field (lower left panel of Figure 4) produces quite high values of
C and the distances between projected field lines and loops are mostly larger than
1 pixel or (1/C < 1). The potential magnetic loops are not a good approximation
for the reconstructed plasma loops due to the quite high values of C and as
visible in Figure 2 panel c). The reconstruction (black) and original (yellow)
are obviously far apart.

The potential field yet produces a correct association of the loops. (1 −
1, C = 2.52), (2 − 2, C = 1.69), (3 − 3, C = 1.22), (4 − 4, C = 1.74) or
in average C = 1.79 ± 0.54. Let us also note the lowest incorrect associations
here (1−2, C = 3.27), (3−1, C = 3.59), (4−3, C = 3.70), (3−4, C = 4.45),
which are only slightly larger than the correct associations. If C > 1, the correct
loop association might not be absolutely clear after this step. In such a situation,
a further step is necessary to associate all features in both images with each other.

5. If step 4 does not provide a clear association of features in the two images,
we need to undertake a further step. Here we check which combination of
association of features will give the lowest values of C (best agreement). In
principle, one would restrict this analysis to critical loops, which cannot be
associated clearly because for n features there are factorial of n possible com-
binations. For our test example (n = 4), we computed all factorials of (4) = 24
possibilities.2

For every combination, we compute the mean of the four C-values. The
combination with the lowest value of C is the most likely one. With all three
magnetic field models (potential, linear force-free, non-linear force-free), we
get the correct association 1 − 1, 2 − 2, 3 − 3, 4 − 4 as the most likely one.
The corresponding values of C are presented in the upper part of Table 5
(Example 1). All three magnetic field models give the lowest value of C to
the correct loop association. The best magnetic field model (non-linear force-
free) gives also the clearest answer regarding the optimal loop association.
C for the optimal combination is a factor of 10 lower than the second best
combination. For linear force-free fields, the best combination is still a factor
of almost 3 better than the second best. For potential field, the second best
combination is only about a factor of 1.5 higher than the best one. This might
still be enough to get some evidence about the correct association of loops in

2If the number of loops in the two STEREO images are different, say na < nb, we get nb!/(nb − na)!

possible permutations.
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TABLE I

Here we show for two examples how good the loops in

both STEREO images can be associated with each other for

different magnetic field models.

B-field model Cbest C2.best C3.best

Example 1

Non-linear FF 0.17 1.76 2.02

Linear FF 0.76 2.10 2.56

Potential 1.79 2.76 3.06

Example 2

Non-linear FF 0.16 0.89 1.31

Linear FF 0.87 1.52 1.96

Potential 1.54 1.54 1.92

As we associate four loops in both images, there is a total

number of 24 possible combinations. Here we show only

the best (lowest value of C) three combinations.

the two STEREO images. For the application to observational data one might
include a threshold, e.g., consider only loops as clearly associated with each
other when (the pairwise) value of C is lower than a certain threshold (say e.g.,
1 pixel). Larger values of C might be in particular problematic if the loops or
features are closer together than they are here. We apply our method to such a
case in Section 3.1.

6. As the last step, we do a geometric stereoscopic reconstruction, similar to the
one described in Section 2.1, but now with the knowledge of which pairs of
loops in the two images have to be used for the stereoscopic reconstruction.
This knowledge removes already most of the ambiguities (visible as ghosts in
Figure 2b).

But even if we have identified pairs of loops in the two images, this does not
mean that we can identify each pixel along two associated curves in both images
with each other. Consequently, there can still be multiple points of intersection
(and thus not a unique solution of the 3D reconstruction). Again, the magnetic
field proxy (but now in 3D) can help here to resolve the ambiguity. From
multiple point of intersection, we chose that point that has the closest distance
to the magnetic field proxy. Even if we use a less than optimum magnetic field
model, we get a very good geometric stereoscopic reconstruction as seen in
Figure 2f, where a potential field has been used to remove the ambiguities
of multiple intersection points. All stereoscopic reconstructed points (black)
coincide with points of the original loops (yellow dotted). The ghost points
(Figure 2b) have vanished. One can see that the combination of geometric
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stereoscopy and magnetic modelling in Figure 2f is much more powerful than
pure stereoscopy (Figure 2b) or potential field magnetic modelling (Figure 2c)
alone. We call this combination of geometric (or ordinary) stereoscopy with
magnetic modelling magnetic stereoscopy.

3.1. EXAMPLE 2

As a second example, we apply our method to a set of loops that are closer together.
The upper panel of Figure 5 shows two artificial EUV images from different view-
points (STEREO-1 and STEREO-2 in the right and left panel, respectively). The
center column shows the structures enlarged and we overplot the image with differ-
ent loops. The original loops are shown in blue and the projection of the non-linear
force-free field lines in red. As one can see the difference is very small. For loops 1
and 2, the red (non-linear force-free) and blue (original) lines can hardly be distin-
guished in the right-hand (STEREO-2) image. The projected images of the linear
force-free field (yellow) are somewhat apart from the original.

Table 1 (lower part) (Example 2) shows the quantitative measures (average value
of C as explained in the last section) for the optimal loop association as well as
for the second and third best combination. For a non-linear force-free model, the
average distance is (as in example 1) less than one-fifth of a pixel and this model
gives the clearest answer regarding the correct association of loops as the second
best loop association is a factor of 5.5 worse then the correct one.

The linear force-free model provides a considerably higher value for the op-
timum combination of C = 0.87, which is, however, almost a factor of 2 (1.74)
better than the second best combination. Here (because we know the exact solu-
tion), we can also confirm that the optimum (lowest value of C) combination is the
correct one. For real STEREO data (where we do not know the correct solution
of course), one has to trust merely the values of C alone. The higher values of C
for the linear force-free model tell us that this model is worse than the non-linear
force-free one. Here the linear force-free parameter (αL = −4) was the same for all
loops.

Similar as in example 1, the potential magnetic field gives the worst results.
And here this model does not provide a clear association of the correct loops in
both images to each other. Two combination (including the correct one) provide
the same average value of C . We therefore conclude that a potential field is a too
simple approximation.

In the left-hand bottom panel of Figure 5, we show a pure geometric loop
reconstruction (black) and the original loops in yellow. The reconstruction contains
ghost features. In the bottom right-hand panel, we use magnetic stereoscopy, similar
to the one described for the first example, but here based on a linear force-free model.
Ambiguities (leading to ghost features) are removed by using the solution which is
closest to the magnetic field model.
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Figure 5. Example 2. Left panels: STEREO-1; right panels: STEREO-2. Top: Artificial EUV images;

center: EUV images and projections of original loops (blue), non-linear force-free loops (red) and

linear force-free loops with αL = −4 (yellow). Bottom left: Pure geometric stereoscopy. Bottom right:
Magnetic stereoscopy using a linear force-free magnetic field model.
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4. Conclusions

We describe a newly developed tool for the stereoscopic reconstruction of plasma
loops from two images. The tool is intended to be used for the STEREO mission.
Within this work, we tested the method with the help of a model active region, from
which we computed images from two different viewpoints (artificial STEREO
images). We tried to reconstruct the original 3D loops from the artificial images
and compared the result with the original.

As a first step, we tried a classical geometric stereoscopic reconstruction. The
corresponding reconstruction contains ambiguities because multiple points of in-
tersection occur. As a consequence, the reconstruction contains not only the correct
3D loops but also additional several so-called ghost features. Within this approach,
we cannot distinguish between real and ghost features.

It is helpful, that the coronal plasma has a high conductivity and consequently
the emitting plasma also outlines the coronal magnetic field. This means that a
reconstruction of coronal loops is equivalent to the reconstruction of the magnetic
field, e.g., a perfect magnetic field reconstruction would (if the correct, emitting
magnetic field lines are chosen) also provide the plasma loops. Unfortunately, it
is hard to get the accurate coronal magnetic field and usually one has to extrap-
olate it from photospheric measurements with e.g., non-linear and linear force-
free models or potential fields. We investigated how such coronal magnetic field
models can be used to associate features in the two (artificial) STEREO images.
The method also provides us with a quantitative measure of the agreement be-
tween the magnetic field model and the observed loops. To do so, we compute
the average distances of the loops and the projections of magnetic field lines.
If the distance measure C is sufficiently small, then the magnetic field model is
already a good proxy of the 3D plasma loops. This is the ideal situation. As a
result, we not only get the 3D loops, but also a reasonable coronal magnetic field
model.

Due to noise, ambiguities, and limited information (say if we only have line-of-
sight magnetograms instead of vectormagnetograms), the plasma loops and mag-
netic loops (measured in both 2D projections) do not agree. In this case, we obtain
finite values of the measure C and the magnetic field proxy is not a good (or perfect)
approximation for the 3D plasma loop. The magnetic field proxy can help, how-
ever, to eliminate ambiguities in the geometric stereoscopic reconstruction. Firstly,
the proxy helps to associate features in both images with each other and secondly
if multiple intersection points still occur during the stereoscopy, we choose the
point closest to the corresponding magnetic field line. Even an imperfect (or even
an inconsistent one, e.g., different values of α on different loops within the linear
force-free approach) coronal magnetic field can be used for this aim.

As an outlook, one might think about using the stereoscopic reconstructed
plasma loops to improve the coronal magnetic field model.
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Appendix: The model

We test our stereoscopic reconstruction tools with the help of an model active
region. The advantage here is that we know the exact solution and can check if our
stereoscopy tools are able to find a reasonable reconstruction of the original.

We use the semi-analytic non-linear force-free field model developed by Low and
Lou (1990) as a model active region coronal magnetic field, with the parameters
l = 0.5 and � = 1.4. We compute this model active region in a 96 × 96 × 96
computational box. To avoid (for the magnetic modelling tools) boundary effects,
we display only the center 64 × 64 region in the 2D images (Figure 1) and the
center 64 × 64 × 80 3D box (Figure 4).

We use the following spacecraft locations. STEREO-1 is somewhat below the
ecliptic at (−120, −10, 215) and STEREO-2 is somewhat above the ecliptic at
(108, 10, 215). The angle between the spacecraft is 56◦. To compute artificial
STEREO images from two different viewpoints, we fill the magnetic field lines with
plasma. To do so, we use the scaling law FH ≈ B/L which has been developed by
Schrijver et al. (2004) to compute artificial EUV images from a potential field mag-
netic field model. We used a somewhat modified approximation FH ≈ B/(L +10),
where the magnetic field is in G and the length in pixel. (An absolute scaling is not
necessary here because these data are only used to create the artificial STEREO
images.)

We show the 3D structure of four coronal loops in Figure 2a. To compute a 3D
density distribution, we calculate a bundle of field lines for each loop, the center
loop shown in Figure 2a and 11 more loops with footpoints located in a circle with
the radius of 0.5 pixel on the photosphere around the center loops. All loops are
filled with plasma by the scaling law. Figure 1 shows two artificial images, which
mimic the different views of two STEREO spacecraft. The artificial images have
been taken with an angle of 56◦ by a line-of-sight integration. The images show
also the projection of the four center magnetic field lines.

We test our stereoscopic tools in the sense that we try to reconstruct the 3D
structure of the flux tubes from the loop projection from two viewpoints shown in
Figure 1 and compare the result with the original (center) loops shown in Figure 2a.
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