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Abstract. Recentobservationsof thesolarcoronawith theLASCOcoronagraphon boardtheSOHO
spacecrafthaverevealedtheoccurrenceof triplehelmetstreamerseven during solarminimum,which
occasionally gounstableandgiverisetoparticularly hugecoronalmassejections.Wepresentamethod
to calculate (semi-)analytically self-consistent stationary configurations of triple helmet streamers
whichcanserveasinputfor stability considerationsanddynamicalcalculations.Themethodis based
on an asymptotic expansion procedure using the elongated structure of the streamers. The method
is very flexible and canbeusedin both Cartesianandspherical geometry. We discussthe effects of
magnetic shear, gravity and field-aligned flow on open field lines. Example solutions illustrating the
influenceof eachof thesefeatureson thesolution structurearepresented.

1. Int roduction

Recentobservationsof the coronawith the LASCOcoronagraph(Schwennet al.,
1997)on board the SOHO spacecraft showedthatthecoronacanbehighly struc-
tured even during the solar activity minimum.Theobservationsrevealeda triple
structureof thestreamerbelt whichexistedfor severalconsecutivedays.Theobser-
vationsfurthershowedthatthesetriplestructuresoccasionally gounstableleading
to aseemingly new andextraordinarily hugekindof coronalmassejection (global
CMEs). Natural questionsarising from theseobservationsare whether the helmet
streamertriplestructureisdirectly connectedwithorresponsiblefor theoccurrence
of globalCMEs,andwhatis thephysicalmechanism of their formation.Theaim
of this paperis to provideafirst step towardsa better theoreticalunderstandingof
thesephenomena.

The structure of helmet streamers and their stability has been studied both
observationally andtheoretically for a longtime (e.g.,PneumanandKopp,1971;
Cuperman,Ofman,andDryer, 1990;Cupermanetal., 1992,1995;Koutchmyand
Livshits, 1992;Wangetal., 1993;Wu, Guo,andWang,1995;Hundhausen,1995;
Bavassano,Woo,andBruno,1997).

A natural association seems to exist between helmet streamer stability and
coronalmassejections(CMEs)andsometimesCMEsareaccompaniedby erupting
prominencesor filaments. Coronal streamers are also thought to be the source
regionsof theslow solarwindandtheactivity processesdiscussedabovemaywell
contribute to this componentof the solarwind.
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Multiplestreamer structureshavealready beenobservedbeforeSOHO,however
mainly during themaximumphaseof thesolaractivity cycle.Also,observationsof
theheliospheric plasmasheet seemto indicateamultiple current sheet substructure
of theplasmasheet itself (Crooker etal., 1993;Wooetal., 1995)whichhasinitiated
several theoretical investigations of the stability of multiple current sheets (Otto
andBirk, 1992;Yan etal., 1994;Dahlburg andKarpen,1995;Birk andOtto, 1997;
Birk, Konz,andOtto, 1997;Wang,Liu, andZheng,1997).

The aim of this work is to present a simple method by which triple helmet
streamerstructurescanbecalculatedself-consistently. Wewantto keepthemethod
simple enoughso that we canobtain largely analytical results without rendering
ourmodelstoounrealistic. Sincetheobservedstructuresseemtobequiteelongated
(the radial magnetic field componentis considerably larger than the longitudinal
magnetic field component), we can employ a method which has alreadybeen
applied very successfully to the equilib rium structure of the magnetotail of the
Earth (Schindler, 1972;Birn, Sommer, andSchindler, 1975). Themethodis based
onanasymptoticexpansion.Herewegeneralizethismethodandshow how it canbe
applied to find solutionswith internal multiple structures. Obviousgeneralizations
of the original magnetospheric versions to solar applications are the use of a
moresuitablecoordinatesystem(spherical rather thanCartesian), theinclusion of
magneticshear, of thesolar gravity fieldfor largescalestructuresandof plasmaflow
onopenfield lines.For reasonsof mathematicalsimplicity andsinceweonly deal
with the subcritical part of the flow, we confine the discussion to incompressible
flow. Our models provide a flexible quantitative description of structured helmet
streamers.They canalsobeusedasthestarting configurationsfor futurestudiesof
thedynamicalevolution of suchstructures.

Theoutlineof thepaper isasfollows. In Section 2 wepresent themathematical
basisof themethod.Section 3 containsrepresentativeresultsobtainedby applying
the method undervarious sets of assumptions. In Section 4 we summarize the
paper, givea discussionof our results andan outlookon future work.

2. Mathematical Formulation

2.1. BASIC EQUATIONS

We usethe equationsof stationary ideal magnetohydrodynamics to describe the
coronalplasma:

�rP +
1
�0
(r�B)�B� �r	 = �v � rv ; (1)

r � (�v) = 0 ; (2)

E+ v �B = 0 ; (3)
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r �B = 0 ; (4)

P = �RT : (5)

Here,P standsfor theplasmapressure, B for themagnetic field, � for theplasma
density, 	 for the solar gravitational potential, v for the plasma velocity, E for
the electric field, R is the gas constant, T the temperature and �0 the vacuum
permeability. Dueto thehigh conductivity of thecoronalplasmathemagneticfield
is frozen into it (Equation (3)) and we can make the assumption that the observed
plasma featuresoutline the magneticfield structure.Throughoutthe rest of the
paperwemake thefollowing assumptions:

– Thestreamerstructureisvery extendedinazimuthandvariesonly very slowly
along this direction (this assumption is supported by the observations(Schwenn
et al., 1997)which showedthat the triple structure existed for several days); we
canthendescribethe structure asapproximately two-dimensional in thesenseof
rotational invariance.

– The streamers are elongated in the radial direction and the radial magnetic
field componentis considerablystrongerthanthelatitudinalcomponent;this is the
basic assumption allowingusto apply an asymptotic expansion procedure.

– If flow isincluded,it ispurely field-alignedandconfinedto theopenfield line
region;sincewedescribeonly thelow-lyingpartsof thestreamerstructure,theflow
velocitiesshouldbesubcritical,andwewill thereforeonlyconsiderincompressible
flow.

– For simplicity, we consider only isothermal equilib ria; in principle, other
temperaturestructuresor even theinclusion of an energy equation into thescheme
is possible.

In the following, we normalize the magnetic field by a typical valueB0, the
plasmapressure p by B2

0=�0 (where p = 1 is themaximumvalueof p), the mass
density � by B2

0=�0RT , the length L by a solar radiusandthecurrent density by
jy = B0=�0L.

2.2. METHOD

To demonstrate the method we first usea two-dimensional Cartesian geometry
with no spatial variation in they-direction (@=@y = 0) andassumestatic structures
(v = 0) withoutmagnetic shear(By = 0). In othergeometriesthebasic properties
of themethodstaysimilar thoughthedetails mayvary dueto the geometry.

Writing themagnetic field as

B(x; z) = rA(x; z) � ey (6)

we find from Equation (1) that the flux function A hasto obey theequation (e.g.,
Low, 1975,1980;Birn, Goldstein, andSchindler, 1978;Birn andSchindler, 1981)

��A =
@

@A

�
P (A;	)

�
: (7)
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With the assumption of a constant temperature and because	 = 	(z) in
Cartesian geometry we get

P (A;	) = P (A; z) = k(z) p(A) (8)

with k(z) = exp(�(	(z)�	(0))=RT ). For slow variation of 	(z) with heightz
onecanneglectgravity andonefindsk(z) = 1.

If we assumethat the magnetic field perpendicular to the photosphere (Bz in
the Cartesian geometry) is much larger than the parallel component(Bx in the
Cartesian geometry), or in other words, that streamers are rather elongated in the
radial direction, we canusethe method of asymptotic expansion and apply it to
Equation (7). Mathematically stretched configurations are characterized by the
ordering

@

@x
= O(1)) Bz = O(1) ;

@

@z
= O(�)� 1) Bx = O(�) : (9)

If we neglectterms of theorder�2 in Equation (7) we obtain after oneintegration
with respect to x

@A

@x
= �

q
2
�
p0� p(A)

�
; (10)

wherep0 = p0(z) is an integration constant (total pressure on the z-axis), which
dependsparametrically on z. We solve this differential equation by separation
(Birn, Sommer, andSchindler, 1975),

x� x0 =

Z
A

A0

dAq
2
�
p0� p(A)

� ; (11)

andfix theconstantA0 = A(x0) sothatp(A0) = p0.
Unfortunately it is impossible to derive the pressure function p(A) directly

from the observations presently available. We will therefore choosep(A) by a
compromisebetweenphysical reasoning andmathematical simplicity. We do not
choosepressure functionswhich have too simple a dependenceonA like p(A) �
constant, A or A2 becausesolutions of this type are a) known to be linearly
stable andb) have alreadybeendiscussedin Wiegelmann(1997). A popular and
convenient choice is p(A) � exp(cA) becauseit correspondsto the physical
assumption that the plasma is in local thermodynamicequilibrium andit hasthe
mathematicaladvantagethatonecanfind analyticalsolutions.Using

p(A) = k exp(cA) ; (12)

wherek may be a function of z andc may be positive or negative, we get from
Equation (11):

A(x; z) = �
2
c

log
�

cosh
�
c

r
p0

2
(x� x0)

��
+

1
c

log
�
p0

k

�
: (13)
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Thecomponentsof themagnetic field are thengivenby

Bz =

@A

@x
= �

p
2p0 tanh

�
c

r
p0

2
(x� x0)

�
; (14)

Bx = �
@A

@z
= �

@A

@p0

@p0

@z
�

@A

@k

@k

@z
: (15)

Weremark thatonecannotevaluate@A=@p0 and@A=@k in Equation (12)directly
becausein general x0 dependsonp0(z) andk(z) aswell. Theplasmapressurecan
beobtainedfrom Equation (12),

p =
p0

cosh2(
q

p0
2 c(x� x0))

; (16)

andthecurrent density jy from jy = @p=@A:

jy = cp =
p0c

cosh2
�r

p0

2
c(x� x0)

� : (17)

2.3. TRIPLE STRUCTURES

Themethodjustoutlinedhasbeenappliedverysuccessfullyto calculatethestruc-
tureof theEarth’smagnetotail (Birn, Sommer, andSchindler, 1975;Schindlerund
Birn, 1982;WiegelmannandSchindler, 1995). However, sincewe want to apply
this method to describe multiple streamer structures a few details of the method
haveto bechanged,thoughthe basic approachstaysthesame.

In an arcade structure the direction of theBz componentof the magnetic field
changesits sign asonecrossesthe centre of the arcade.In a triple structure, one
will thereforeencounterthreesuchchangesasonemovesacrossthestructure.In a
stretchedconfiguration describedby theasymptotic expansion procedure,theonly
possibility to achieve this is for the current density jy to changeits sign between
the streamers, or, in other words, in the central streamer the current flows in the
opposite direction with respectto the two outer streamers. In terms of thesign of
Bz thismeansthatin orderto pastethethreearcadescontinuously together, theBz

componentin the central streamerhasto changejust in the opposite senseto the
outer two streamers.

Since the current density jy is directly linked to the plasmapressure by the
relation jy = @P=@A, this implies thatthederivative of the pressure with respect
to the flux function A hasto changeits sign, too. We can therefore not usea
singleexponential function to modelthepressurebecausetheexponential function
andits derivative have no zero. The simplestalternative is that we usedifferent
pressure functionsfor themiddle (p1(A) say)andfor the outerstreamers (p2(A)).



444 THOMAS WIEGELMANN ET AL.

In principle, we could also usea different pressure function for eachof the three
streamers,but sincewedonotwant to makethemodeltoocomplicatedweassume
thestructure to bemirror symmetric with respect to thez-axis for simplicity.

Dueto thedifferentpressurefunctionsoursolutionwill havetwoseparatrix field
linescharacterizedbyA = As whichseparatetheregionsof differentpressurefrom
eachother. Theseseparatriceshaveto becalculated self-consistently togetherwith
thesolution but dueto oursymmetry assumption weonly haveto calculateoneof
thoseseparatrix field lines.In theasymptotic expansion procedure thelocation of
the separatrix field line will begiven by xsep = f(z) wheref only varies weakly
with z.

If werequireasmooth transition of magnetic field acrosstheseparatrix from the
outer to the innerstreamer, thepressure functionsmustbecontinuous.Therefore
wechoose

p1(A) = k1 exp(�c1A) (18)

for themiddlestreamerand

p2(A) = k2 exp(c2A) (19)

for the outer streamers, while the coefficients k1, k2, c1 andc2 (c1; c2 > 0) are
related by

k2 = k1 exp(�(c1 + c2)As) (20)

on the separatrix labeled by A = As. This choice hasthe consequencethat the
current density jy hasa discontinuity at the separatrix. We remark, however, that
theabsolutevalueof jy isonly rathersmall attheseparatrix andonly changesfrom
a small negative to a small positive value and therefore the discontinuity of the
current density should not influencethesolution structure very much.

We choosex0 = 0 to put the centre of the middle streameron the z-axis. To
calculate the separatrix betweenthe middle andoneof the outerstreamers we use
Equation (11) with the form of p(A) inside themiddle streamer to obtain

xsep =

s
2
p0

1
c1

arctanh

 s
(p0� k1 exp(�c1As)

p0

!
: (21)

Note that both p0 andk1 may dependweakly onz.
If wecall thecentreof theouterstreamerx02, wecancalculatethiscentral field

linerelativeto theseparatrix field lineagain with Equation (11), but this timeusing
p2(A) and setting x0 = x02:

x02 = xsep +

s
2
p0

1
c2

arctanh

 s
(p0� k2 exp(c2As)

p0

!
: (22)
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Figure1. Thispicture illustratestheright sideof our configuration (the left-hand sidecan bederived
from thesymmetry assumption). Thedashed(��) linecorrespondsto theseparatrix xsep(z) between
the streamers, the dotted (� � �) line correspondsto the center of the outer streamerx02(z) andthe
dash-dotted (� �) linecorrespondsto theouter separatrix xout(z).

If onetakes into consideration thatp1(As) = p2(As) andEquation (21)onefinds:

x02 = arctanh

 s
(p0� k1 exp(�c1As)

p0

!s
2
p0

�
1
c1

+
1
c2

�
=

= arctanh

 s
(p0� k2 exp(c2As)

p0

!s
2
p0

�
1
c1

+
1
c2

�
: (23)

A sketch of thewholestructure isshown in Figure 1.
Wecannow calculateA,Bz,Bx,p andjy asfunctionsofx andz fromEquations

(13)–(17)andby usingthesymmetrypropertiesof thesequantities. As aninputwe
needthetotalpressurep0(z)whichisthesameinall threestreamers,theparameters
c1, c2 andk1 andk2. If gravitation is included,k1 andk2 may dependweakly onz,
but could bedifferent if weallow different temperatures inside the streamers.

2.4. INCLUSION OF FLOW

Themethodasoutlinedso far neglectsthat coronal streamersarethesourceregions
of the slow solarwind. It is anopenquestion if a stationary slow solar wind com-
ponentexistsor whethertheslow solar wind is theresult of many small eruptions.
Recentobservations(SchwennandInhester, 1997,private communication) seem
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to favour the second alternative. If that is true, a steady state model providing the
start configuration for a time-dependentcomputation of theeruption processneed
not includethe flow, at leastnot nearthe symmetry plane.Neverthelesswe want
to show how a stationary plasmaflow canbe includedin our model. It may be
relevant for theopenfield regionsat largerdistancesfrom theecliptic, to whichwe
confinetheflow.

Theinclusionof plasmaflow into theasymptotic expansionprocedurehasbeen
carriedoutfor both incompressible(Gebhardt, 1989;Birn, 1991)andcompressible
flow (Birn, 1992; Young and Hameiri, 1992).Thereare threecritical points in
the solar wind: the slow magnetosonic point vs, the Alfvénpoint vA andthe fast
magnetosonic point vf with vs < vA < vf for thecoronalplasma.If oneassumes
that the flow velocity at the basis of the corona is less than vs the solar wind
hasto pass throughall these critical points. Birn (1992)showedthat in stretched
configurationsthe total pressure function p0(z) is related to the flow velocity. For
v < vs the flow velocity decreaseswith decreasing p0(z) andfor v > vs the flow
velocity increaseswith decreasing p0(z). As it is necessary that p0(z) decrease
with respect to z to get closedarcadestructures, the solar wind velocity should
havea minimum at the helmetstreamercusp.This result is of courseonly valid if
a stationary slow solar wind exists. The assumption of incompressible flow in the
solar wind,however, cannotbejustifiedin astrict sense,becausegenerally gravity
isnotnegligible.Sinceinthepaperourmainemphasisisplacedonclosedstructures
without directedflow, this modelassumption doesnot influenceour conclusions
significantly. (In fact, all ourexplicit examplesarestructureswithoutflow.) Wenote
that theabove-mentionedvariation of thesolar wind velocity remainsqualitatively
valid, if oneneglects gravity andassumesincompressible flow. We will assume
that the flow is purely field-alignedand sincewe will not extend our solution to
thefirst critical point, wewill for simplicity maketheassumption of theflow being
incompressibleandsub-Al fvénic.

We mention that, as a useful nice property, such stationary solutions with flow
can be directly calculated by transformation from static solutions (Gebhardt and
Kiessling, 1992). Here we follow the approachdevelopedin Birn (1991). Equa-
tion (10) is then substituted by

@A

@x
= �

s
2
�
p0� p(A)

�
1�M2

A(A)
; (24)

whereMA(A) is the Alfv énMachnumberdefinedby MA = v=vA, where vA =
B=
p
�0� is theAlfv énvelocity. Note thatfor incompressibleflow both theAl fvén

Machnumberand the plasmadensity areconstant alongopenfield lines.
Toextendthemethodoutlinedso far to includeflow onopenfield lines, wehave

to definea second separatrix field lineAv betweenthe regionsof openandclosed
magneticflux.Sincethereshall benoflow intheclosedfield lineregions,wechoose
MA(A) = 0 on the left-hand side of the separatrix and 0 < MA(A) < 1 (sub-
Alfv énicflow) ontherighthandof theseparatrix. In thespecialcaseMA = constant
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wefindwithEquation(24)thatonecaneasily includeincompressiblesub-Al fvénic
plasmaflow (MA < 1), if we replacethe term (x � x0) in the static theory by

(x�x0)=
q

1�M2
A. Thelocationof theseparatrix field lineAv couldbecalculated

by a similar procedure as theinnerseparatrix, but it is more convenientto choose
it to be at the same distance from the centre of the outer streamer as the inner
separatrix so that we have a symmetric situation again and one findsAv = As.
Weremarkthatthisconditionisnecessaryif oneinvestigatesconfigurationswith a
cuspstructure.Onecanthencalculatetheshapeof theseparatrix definedby xout(z)
simply from xout(z) = 2x02(z)� xsep(z) (seeFigure1 for illustration).

2.5. INCLUSION OF MAGNETIC SHEAR

It is possible to extend our method and includemagnetic shear writingB as

B(x; z) = rA(x; z) � ey +By(x; z)ey : (25)

Using they componentof Equation (1) onefindsBy = By(A(x; z)) andinstead
of (7) weget

��A =
@

@A

�
�(A;	)

�
(26)

with

�(A;	) = �(A; z) = k(z)p(A) +
B2
y(A)

2
:

Using themethodof asymptotic expansion we get

x� x0 =

AZ
A0

dAq
2
�
p0(z)��(A; z)

� : (27)

Weremark thatthereasonfor magneticshearshouldbeadisplacementof magnetic
foot points and that only closedfield lineswill besheared.We assumeBy(A) �
exp(dA) for mathematical simplicity. In general we cannotsolve Equation (27)
analytically. This is only possible if wechoosethespecial cased = c=2 which we
will do to illustrate the effect of magnetic shear. Then we get

�(A; z) =

�
k(z) +

�

2

�
exp(cA) (28)

and we can easily include magnetic shear by substituting k(z) by k(z) + �=2 in
Equation (13). It is possible to investigate other values(c 6= 2d) numerically, but
onecanseethemain effectof magnetic shearalreadyin this special case.

We calculate triple structures analogously to the method without shearand
substitute p(A; z) by �(A; z). We have to consider shearonly on closedfield
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lines. We use �1(A) =
�
k(z) + �=2

�
exp(�c1A) in the middle streamer,

�2(A) = exp(�(c1 + c2)As)
�
k(z) + �=2

�
exp(c2A) in the outer streamers and

�3(A) = exp(�(c1 + c2)As)k(z)exp(c2A) on openfield lines.Thusthere is a
jumpin� andacorrespondingjumpin themagnetic field at theboundary between
outerstreamersandopenfield linesandconsequently there is a thin current sheet.
Unlike thecalculationson closedfield linesonecannotfix �3(A0) = p0. Instead
of (11)onehasto use

x� x0 =

AZ
Av

dAp
2(p0��3(A))

; (29)

whereAv is thevalueof thelastclosedfield line(boundary field linebetweenopen
andclosedregions). OnefindsAv = As for configurationswith cuspstructure.

We remark that violating the condition �1(As) = �2(As) could still make
sense.For example, onecould useP1(As) = P2(As) but By1(As) 6= By2(As).
Of course this mismatch in the value of � would have to be compensated by a
corresponding mismatch in Bz and this would leadto additional current sheets
betweenthemiddle and theouterstreamers.

2.6. SPHERICAL COORDINATES

In thissubsectionweformulatethemethodin sphericalcoordinates(r; �; �), which
are more realistic to describe the solar coronaon scalescomparable to or larger
thana solar radius.We assumestatic (v = 0) configurationsanddo not consider
spatial variation in the�-direction (@=@� = 0). Thuswecanpresentthemagnetic
field as:

Br =
1

r2 sin�
@�

@�
;

B� = �
1

r sin�
@�

@r
; (30)

B� = B�(r; �) :

Here� is the flux function in spherical coordinates. We remark that in spherical
coordinates the flux function is not identical with a componentof the magnetic
vector potential. Onefinds� = r sin(�)A�, whereA� is the �-componentof the
vector potential A. Wefind from (1) that�(r; �) hasto obey theequation

@2�

@r2 +
sin�
r2

@

@�

�
1

sin�
@�

@�

�
= �r2 sin2 �

@P (�;	)

@�
�

1
2
@f2(�)

@�
; (31)

wheref(�) = r sin�B� isconstant onfield lines. With theassumptionof aconstant
temperatureandbecause	 = 	(r) onefinds:

P (�;	) = k(r)p(�) (32)
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with k(r) = exp(�(	(r)�	(0))=RT ).
Weassumethatthemagnetic field perpendicular to thephotosphereBr is much

larger thantheparallel componentB�. For simplicity wedonotconsidermagnetic
shearhere (B� = 0). Stretchedconfigurationsarecharacterizedby

1
r2

@

@�
= O(1)) Br = O(1) ;

1
r

@

@r
= O(�)� 1) B� = O(�) :

This approximation is valid for configurationscloseto the equatorial plane(� =
�=2) andr2p0(r) has to vary only slowly with respect to r. The second condition
limits theouterboundary of ourmodelcoronato afew solar radii. As theobserved
configurationsare indeedconcentrated nearthe equatorial planeand the closed
streamerfield lines seemto be radially boundedto a few (about2 � 4) solar
radii, our asymptotic modelshould describe theseconfigurationsapproximately
correctly.

If we neglectterms of theorder�2 in Equation (31) we obtain after oneinteg-
ration with respect to �:

@�

@�
=+
�

r2 sin(�)
q

2(p0(r)� k(r)p(�)) : (33)

Weuse(analogousto ourcalculationsin Cartesian geometry) p(�) = exp(c�) and
solve this differential equation by separation.Insteadof (13)weget:

�(r; �) =
log(p0(r))� log(k(r)� 2 log(cosh(c

q
p0
2 r

2 �cos(�)� cos(�0)
�
)

c
:

(34)

We remark that onecannotfind a one-dimensional solution of Equation (31)
with � = �(�) asin Cartesian geometry. Thusno analogy to the Harris sheetin
Cartesian geometry exists in sphericalcoordinates.

To calculate triple structures in spherical geometry one uses a
similar procedure as that described for Cartesian geometry. We choose
�0 = �=2 ) sin�0 = 0 to put the centre of the middle streamer andcalculate
theseparatrix field line analogousto (21)andget

cos(�sep) = r2

s
2
p0

1
c1

arctanh

 s
(p0� k1 exp(�c1As)

p0

!
: (35)

If wecall thecenter of theouterstreamer�02 wegetanalogousto ourcalculations
in Cartesian geometry

cos(�02) = r2

s
2
p0

�
1
c1
+

1
c2

�
arctanh

 s
(p0� k1 exp(�c1As)

p0

!
=

= r2

s
2
p0

�
1
c1
+

1
c2

�
arctanh

 s
(p0� k2 exp(�c2As)

p0

!
: (36)
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Table I
Parameter setsused tocalculatethesolutionspresented
in Figure2

Solution s1 s2 s3 c1 c2 As

a 0.8 0.4 0.2 15.0 15.0 0.1
b 0.8 0.4 0.2 15.0 15.0 0.08
c 0.8 0.4 0.2 20.0 20.0 0.12
d 0.8 0.4 0.2 10.0 30.0 0.12
e 0.8 0.4 0.2 30.0 12.0 0.04
f 0.8 1.2 0.2 15.0 15.0 0.12

Thequantities�, Br, B�, p, j� canthenbecalculated asfunctionsof r and� in the
usualway.

3. Results

3.1. STATIC SOLUTIONSIN CARTESIAN GEOMETRY WITHOUT GRAVITATION

We first give a few examples for triple streamers calculated with our model to
illustrate theinfluenceof thedifferent functionsand parameterson thestructureof
the solutions.To calculate a solution we have to specify the functionsp0(z) and
k1(z) andtheparametersc1, c2 andAs. In thefirstexampleswe neglectthe effect
of plasmaflow and of the solar gravitation which gives k1(z) = 1. Our solutions
areconfinedwithin theboundariesx = �0:5 : : : 0:5 and z = 0 : : : 5 corresponding
to onesolar radius in thex direction andfivesolar radii in thez direction.We use
symmetry with respect to thez axis.

Weprescribethetotal pressureby p0(z) = s1 exp(�s2z)+s3. Withinourmodel
A(x; z) dependsonly parametrically onz by p0(z) andso theexactform of p0(z)
hasnot too much influenceon the configuration as longasits general properties
are similar. Oneimportant property of p0(z) is that it hasto be a monotonically
decreasing function of z to obtain singly connectedclosedfield lineregions.Phys-
ically onecan identify thetotal pressureon thex-axiswith thesumof themagnetic
pressureB2=2 on openfield linesoutsidethehelmetstreamerandahomogeneous
plasmapressureof the solarwind.

In Figure2 weshow field lineplotsof six solutionscalculated for different sets
of parameters which are summarized in Table I. In Figures 2(a–c) we investigate
the influence of the location of the separatrix field line on the solution structure,
whereasp0 is kept fixedandtheparameters c1 andc2 are fixed to a value of 15:0
in (a), and (b) whereaswe usedc1 = c2 = 20:0 in (c) which leadsto thinner
configurations. In thesecasesall three streamers have exactly the same width,
thoughthe width itself varies.In Figure2(a) theseparatrix is astraight line giving
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Figure2. Magnetic field lines(contour plot of A(x; z)) for triple helmet streamers (see text).

rise to parallel streamers. In Figure 2(b) the separatrix has been moved closer to
thecentreof thestructureandthethreestreamersconverge,whereasin Figure2(c)
theseparatrix hasbeenmoved furtheroutgiving riseto diverging streamers.

In Figure 2(d) we have decreasedthe value of c1 to 10:0 and increasedthe
valueof c2 to 30:0. Alsothevaluefor As hasbeenincreased.Theeffectis that the
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Table II
Parameter setsusedtocalculatethesolutionspresentedinFigure3

Solution a b n zcusp c1 c2 As

a 0.8 0.2 3.0 4.0 15.0 15.0 0.1073
b 0.8 0.2 4.0 4.0 10.0 25.0 0.1609
c 0.8 0.2 6.0 4.0 25.0 12.0 0.0644

central streamer now containsmore magnetic flux thantheouter streamers and is
widerin thex-direction. In Figure 2(e) this effecthasbeenreversedby making c2

smaller than c1. It isobviousthatnow theouterstreamersarewiderthanthecentral
streamer.

Finally, in Figure2(f) wehavevariedthe total pressurep0(z) by increasing the
parameter s2 to 1:2, resulting in a faster decrease of p0 with z. One noticesthat
the closedfield line regions(which we definehere loosely as thosefield linesnot
crossingtheupperboundary) haveshrunk,andthatthewholestructurehasamuch
slimmer appearancefor largez.

In anext step weuseourmodelto describehelmetstreamerconfigurationswith
acusp.Up to now wehavenotgiven aradial boundary of theclosedmagnetic field
lines.Now wedefinesuchapoint atx = 0, z = zcusp which definesthelastclosed
field line.

Weuseasa function for the total pressure:

p0(z) =

8>><
>>:

a

 
zcusp� z

zcusp

!
n

+ b for z � zcusp ;

b for z > zcusp :

(37)

Field line plots for threedifferent sets of parameters are shown in Figure 3. The
parameter setsusedare listed in Table II. It canbeseenthat theeffectof changing
theparametersc1 andc2 staysthesameasin thecasewithoutacusp.An increaseof
theexponentn leadsto astrongerdecreaseof p0(z) asthecusppoint isapproached
from below andthis leadsto asharpercuspstructure.

Theseexamplesillustratetheflexibility of our model. Onecandescribedifferent
typesof triple helmet streamers by specifying the free parameters in the general
solutions.

3.2. STATIC SOLUTIONSIN CARTESIAN GEOMETRY INCLUDING MAGNETIC SHEAR
AND GRAVITATION

In this section we investigate the influence of the solar gravitational field on the
structureof thesolutions. Thoughwearestill calculatingin Cartesiangeometrywe
will not take the gravitationalforceto beconstant, as is usually donein Cartesian
geometry if the length scale underconsideration is much smaller than a solar
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Figure 3. Magnetic field lines(contour plot of A(x; z)) for triple helmet streamers with cusp (see
text for discussion).

radius(e.g.,Zwingmann1987;Platt andNeukirch 1994), but wewill usethemore
appropriatepotential 	 = 	(z) = �GMs=z +Rs. Together with the assumption
of constant temperatureweget

k(z) = exp
�
�

l

Rs

�
exp

�
l

z +Rs

�
; (38)

whereG is the constant of gravitation,Ms the solarmass,Rs the solar radiusand
l = GMs=RT . Underthe assumption of a pure hydrogenplasmaand a constant
temperatureof 3�106 K, onefindsl � 7:5 correspondingto 7:5Rs. Onedifficulty
of the method in Cartesian geometry is that k(z) must decreasemore slowly with
respectto z than p0(z), becauseotherwise onecannotfind arcadetypesolutions.
This is difficult to achieve with a realistic value of l, but sincewe only want to
investigatethequalitativeeffect of gravitationonthesolution,weusetheunrealistic
but mathematically moreconvenient value l = 2:5. Weremark that this problem is
alleviatedin sphericalgeometry, which ismorerealistic anyway(seeSection 3.3).

The inclusion of shearonly makessenseon closedfield lines.As we have a
well definedboundary betweenopenand closedregions only in solutions with
cuspstructure,weonly investigatesuchconfigurationshere. In Figure4 wefix the
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Figure 4. Magnetic field lines (contour plot of A(x; z)) for triple helmet streamers. In (b) and
(c) we included magnetic shear and in the lower pictures we additionally investigated the effect of
gravitation.

parameters c1 = c2 = 25:0; zcusp = 4:0; a = 0:8; n = 4:0; b = 0:2 andusefor the
total pressure:

p0(z) =

8>>>><
>>>>:

�
k(z) +

�

2

�"
a

 
zcusp� z

zcusp

!
n

+ b

#
for z � zcusp ;

b

�
k(z) +

�

2

�
for z > zcusp :

(39)
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Figure 5. The main magnetic field componentBz(x) without (� = 0) and with (� = 10) shear:
(a)below thecusp (z = 1:0); (b) above thecusp(z = 4:5).

Thefactor
�
k(z) + �=2

�
canbeusedto fix thenormalcomponentof themagnetic

field at thesolarsurface,whichwecoulduseasaboundarycondition.
The main effect of magnetic shear is that there is a jump in the magnetic field

and consequently a thin current sheetbetweenthe closedand openfield lines.
Indicationsof suchacurrent sheetarealso foundin recentobservations(Schwenn
et al., 1997). In Figure 5(a) we plot Bz asa function of x at the height z = 1 for
thesameparametersas in Figures4(a)and4(c).

If we do not includeshear, the structure above the helmet streamer cuspz >

zcusp becomesequivalent to a Harris sheet, and Bz goessmoothly throughzero
in the center of the configuration. The inclusion of shearon closedfield lines
leads to a jump in Bz from a positive to a negative value in the center of the
whole configuration (seeFigure 5(b)). This causesa thin current sheet, which is
more pronouncedthan the current sheetat the outer boundary of the streamer
configuration below the cusp.This current sheetcorrespondsto the heliospheric
current sheet. Theeffectcanclearly beseenin Figure 4. In Figures4(b), and 4(c)
weincludedmagneticshearandin4(c) theshearisstrongerthanin4(b) leading toa
larger jumpinBz. Thiscanbeseenin thecontourplot ofA asthefield linedensity
ismuchhigherin thecenter abovethecuspin Figure4(c) thanin 4(b). In thelower
panel(Figures 4(d–f)) we investigated the sameconfigurationsas in the upper
pictures but includedgravitation. One canseethat without shear(Figure 4(d)),
the configuration gets wider with increasing z. (If one uses the realistic value
l = 7:5 insteadof l = 2:5 the configuration will become unrealistically wide
without shear.) The inclusion of shearreducesthis effect andif oneinvestigates
force-free configurations

�
@P (A)=@A = rP = 0

�
or nearly-force-free solutions
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@B2

y
(A)=@A� @P (A)=@A

�
, which is accomplishedin Figures4(c) and4(f),

theeffect of gravitation vanishes.

3.3. SOLUTIONSIN SPHERICAL GEOMETRY

Now wepresentsomesamplesolutionsof helmetstreamerconfigurationsin spher-
ical coordinates.This geometry is of coursemore realistic to describethe coronal
magnetic field on large scales.In this section we also includethe influenceof the
solar gravitationalfield on thestructure of thesolutionsfrom thebeginning.With
	 = 	(r) = �GMs=r wegetas in Cartesiangeometry (seeSection 3.2)

k(r) = exp
�
�

l

Rs

�
exp

�
l

r

�
: (40)

Hereweuse the realistic value l = 7:5.
In Figure 6(a) we show a field line plot of a solution in which we prescribed

the total pressure asp0(r) = k(r)
�
s1 exp(�s2(r � 1)) + s3

�
andusedthe same

parametersasin Figure2(a) (seeTableI, casea).Thusp0(r)=k(r) variesin thesame
way asp0(z) in theCartesiancasewithoutgravitation.Theeffectsof thedifferent
geometry show upasabendingof theouterstreamerstowardstheequatorial plane.

In Figure6(b) (seeTable II, caseb) wepresent asolution with cusp structure in
sphericalgeometry with the total pressure

p0(r) =

8>><
>>:
k(r)

"
a(
rcusp � r + 1

rcusp
)n + b

#
for r � rcusp

k(r)b for r > rcusp

(41)

anduse the sameparameters as in Figure 3(c). Again the bending of the outer
streamers isobvious.

We remark that prescribing the parameters c1; c2, and p0(Rs) is equivalent to
prescribing thenormal componentof the magnetic field at the solar surface.This
property of the solutionscould be usedto match measured magnetic fields and
generate thecorrespondingstreamerstructure.

4. Conclusionsand Outlook

We have developeda comparatively simple procedure basedon the method of
asymptotic expansion to calculate equilib ria of triple helmet streamer structures.
The procedure represents a generalization of the asymptotic expansion method
usedin the theoryof magnetotailequilibria (Schindler, 1972;Birn, Sommer, and
Schindler, 1975;SchindlerundBirn, 1982). Wehaveapplied this procedureto the
calculationof stationarystatesof triple helmetstreamersundervariousconditions
andinvestigatedthedependenceof thesolutionpropertiesonthemodelparameters,
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Figure 6. Magnetic field lines (contour plot of �(r; �)) for triple helmet streamersin spherical
geometry (seetext).
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the influenceof thesolar gravitationalfield, the inclusionof field alignedflow and
on thebasic geometry used.

As anext step weplan to usethecalculated configurationsasstarting equilib ria
for MHD simulations.Thesesimulationswill answer thequestionof stability which
wedid notaddressin thispaperandprovideimportant insightsinto possiblemech-
anismsof eruptivephenomenain thesolar atmosphere, especially thoseconnected
with a triple structure of the solar corona.Thesimulationsshould have relevance
both for hugecoronalmassejectionsandvery small but frequenteruptionswhich
mayrepresentthe sourcemechanism of theslow solar wind.

Acknowledgements

Theauthors thankAlanHood,Bernd Inhester, Eric PriestandRainerSchwennfor
discussionsanduseful comments.We also thankthe referee,R. A. Kopp,for his
useful remarks.We acknowledgefinancial support by theDFGGraduiertenkolleg
‘Hochtemperaturplasmaphysik’ (TW), by PPARC (TN) andby a British-German
Academic ResearchCollaboration grant.

Appendix

Herewecalculatethe terms@A=@p0 and@A=@k which wherenot explicitly given
in Equation (15).

MIDDLE STREAMER

With c = �c1, k = k1 andx0 = 0 onefinds:

@A

@p0
=

1
c1

�
�

1
p0

+
c1xp
2p0

tanh
�r

p0

2
c1x

��
;

@A

@k1
=

1
k1c1

:

OUTER STREAMERS

With c = c2, k = k2 andx0 = x02 (seeEquation(23)) onefinds:

@A

@p0
=

�
2
p
p0
p
�1c1

q
1
p0

cosh(�2) + sinh(�2)p0
p

2
p
�1

q
1
p0
xc1c2� 2 sinh(�2)(c1 + c2)

�

2
�
p

3=2
0
p
�1c1

q
1
p0

cosh(�2)c2

� ;
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@A

@k2
=

�
sinh(�2)p0

vuut 1
p0

c2 + sinh(�2)p0

s
1
p0

c1�

�

p
p0
p
�1c1 cosh(�2)

�.p
p0
p
�1k2c1 cosh(�2)c2) :

Thereforeweusedasabbreviations:

�1 :=
p0� k2 exp(c2As)

p0
;

�2 :=
1
2
p
p0

 
p

2xc1c2 + 2 arctanh(
p
�1)

s
1
p0

c2+

+2 arctanh(
p
�1)

s
1
p0

c1

!.
c1 :
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