Coronal Heating through braiding of magnetic field lines

Observable consequences

➢ 3D MHD model

spectral synthesis

results: Doppler shifts DEM variability spicules? plasma-beta

Hardi Peter, Kiepenheuer-Institut für Sonnenphysik, Freiburg
Boris Gudiksen, Institute for Theoretical Astrophysics, Oslo
Åke Nordlund, Astronomical Observatory, NBIfAFG, Copenhagen

A multi-structured low corona

A concept to heat the corona: magnetic braiding

Eugene Parker (1972, ApJ 174, 499):

braiding of magnetic field lines through **random motions** on the stellar surface

- → braided magnetic field in the corona
- → strong currents $j \sim \nabla \times B$
- → Ohmic dissipation $H \sim \eta j^2$
- \rightarrow heating of the corona

Problem: a "realistic" computational model is "costly"...

3D coronal modelling

- > 3D MHD model for the corona:
 50 x 50 x 30 Mm Box (now 150³)
 - fully compressible; high order
 - non-uniform mesh
- full energy equation
 (heat conduction, rad. losses)
- starting with scaled-down
 MDI magnetogram
 no emerging flux
- photospheric driver: foot-point shuffled by convection
- braiding of magnetic fields
 (Galsgaard, Nordlund 1995; JGR 101, 13445)
 - → heating: DC current dissipation (Parker 1972; ApJ 174, 499)
 - → heating rate $\eta j^2 \sim \exp(-z/H)$
 - ➔ loop-structured 10⁶K corona

Emissivity from a 3D coronal model

ssumptions:

0.29 dex

5.0

 $\log T[K]$

5.2

4.8

4.6

- equilibrium excitation and ionisation (not too bad...)
- photospheric abundances —

use CHIANTI to evaluate ratios (Dere et al. 1997)

 \rightarrow G depends mainly on T (and weakly on n_{e})

Synthetic spectra

- 1) emissivity at each grid point
- 2) velocity along the line-of-sight from the MHD calculation
- 3) temperature at each grid point

line profile at each grid point:

 $I_{v}(\mathbf{x},t) = I_{0} \exp \left| -\frac{(v - v_{\text{los}})^{2}}{w_{\text{sl}}^{2}} \right|$

 $\overrightarrow{} \varepsilon (\mathbf{x}, t)$ $\overrightarrow{} v_{\text{los}}$ $\overrightarrow{} T$

 $w_{th} = \sqrt{\frac{2k_{\rm B}T(\boldsymbol{x},t)}{m_{\rm ion}}}$

total intensity corresponding to emissivity

line width corresponding

to thermal width

 $I_0 w_{\text{th}} \propto \varepsilon(\mathbf{x}, t)$

integrate along line-of-sight

maps of spectra as would be obtained by a scan with an EUV spectrograph, e.g. SUMER

analyse these spectra like observations

- calculate moments: line intensity, shift & width
- emission measure (DEM)
- etc. ...

Coronal evolution

Mg X (625 Å) ~10⁶ K

- large coronal loops connecting active regions
- gradual evolution in line intensity ("wriggling tail")
- higher spatial structure and dynamics in Doppler shift signal
 - \rightarrow it is important to have full spectral information!

Transition region evolution

C IV (1548 Å) ~10⁵ K

- very fine structured loops highly dynamic
- also small loops connecting to "quiet regions"
- cool plasma flows locks like "plasma injection"
 - \rightarrow dynamics quite different from coronal material !

Doppler shifts

spatial and temporal averages

- + very good match in TR
- + overall trend $v_{\rm D}$ vs. T quite good
- still no match in low corona
 - \rightarrow boundary conditions?
 - \rightarrow missing physics?

temporal variability

- + high variability as observed
- for some times almost net blueshifts in low coronal
 - no "fine-tuning" applied !
 - best over-all match of models so far

Emission measure

 $DEM = n_{\rm e}^2 \frac{{\rm d} h}{{\rm d} T}$

DEM inversion using CHIANTI:

- 1 using synthetic spectra derived from 3D MHD model
- 2 using solar observations (SUMER, same lines)
- good match to observations!! DEM increases towards low T in the model !

Supporting suggestions that numerous cool structures cause increase of DEM to low *T*

Temporal variability: individual examples

- Iarge variability in TR
- smooth variation in coronal intensity
- variability in coronal shift comparable to TR !!
- ~5 7 min variability signature of the photospheric driver?
- similar variations found in observations!

A real observation: SUMER / SOHO S IV (1394 Å) ~ 10^5 K 1x1", 10 sec exposures

Temporal variability: average properties

observations:

[Brković, Peter & Solanki (2003), A&A 403, 725]

- rms intensity fluctuations have pronounced peak at ~10⁵ K
- rms Doppler shift variations increase monotonically

synthetic spectra from 3D model

- very good match of observed trend(s)
- correct description of "overall" variability
- real Sun shows variations on much shorter times (seconds)
 - → lack of spatial resolution in 3D MHD model ?

Magnetic structure: from TR \rightarrow Corona

A cooling front: is this a spicule?

- transition region is intricately folded / highly convoluted (TR height some Mm)
- high time-variability
- \succ upward moving cooling front $\parallel B$
 - coronal material is falling down (C IV redshifted)
 - TR shows apparent upward motion

```
is a spicule hidden in the dark core ??
```

properties of cooling front $v_{up} \sim 20$ km/s height ~ 7 Mm Ø dark core < 2 Mm

Coronal emission and plasma– β

- > atmosphere is *mostly* in low– β state,
- > numerous β >1 regions even at high T (but mostly at low density)
- > source region of coronal emission:
 90% of emission from log I/⟨I⟩ > 0
 → there ~5% of volume at β>1
- corona is **not** in a pure low-β state:
 plasma able to distort magnetic field to some extent

How would a spectrometer see the model?

- use synthetic spectra from 3D MHD model
- perform a raster as SUMER would see the model
- spat. resolution: 1 Mm
 exposure time: 10 sec
 one raster in: 10 min
- barely possible
 with SUMER (S/N)
- two subsequent rasters:
- similar appearance in intensity
- big difference in Doppler shift
 - necessity for fast scanning EUV spectrometer !

first map – simulated SUMER rasters (10 m

10

clative intensity I/<I>

Conclusions

- spectra synthesized from the 3D model match observed...
 - + TR Doppler shifts
 - + emission measure, especially at $T < 10^5$ K
 - + variability in Doppler shift and line intensity
 - + apparent height of TR
- good arguments for flux braiding as (the) heating mechanism in moderately active regions
- transition region and low corona consist of a hierarchy of structures
 no cool *detached* TR structures
- > corona is **not** in a pure low– β state: plasma able to distort magnetic field to some extent
- simulated raster scans show need for fast scanning EUV spectrometer

Outlook

- ➢ improve model − MHD & ionization
- > apply to other structures: network

- stellar structures
- help for future instrumentation

