Magnetic fields in spicules

Arturo López Ariste
Roberto Casini (HAO)
Broadened profiles

- Stokes I
- Stokes Q
- Stokes U
- Stokes V
Broadened profiles
Aproach to inversion

1. Get an (empirical) description of the anomalous broadening:
 A convolution of Doppler-shifted profiles each one given a weight by a gaussian distribution
1. Get an (empirical) description of the anomalous broadening:
 A convolution of Doppler-shifted profiles each one given a weight by a gaussian distribution

2. Investigate how much magnetic information is still available in the so-broadened profiles:
 Create synthetic profiles, broaden them and try to invert
Model theory

- Quantum theory of polarized line formation (Landi Degl’Innocenti, 1983)
- Spectrally flat incident radiation (CRD)
- No collisions
- Includes level-crossing and coherence effects within each atomic term
Synthetic broad profiles inverted
Aproach to inversion

1. Get an (empirical) description of the anomalous broadening:
 A convolution of Doppler-shifted profiles each one given a weight by a gaussian distribution

2. Investigate how much magnetic information is still available in the so-broadened profiles:
 Create synthetic profiles, broaden them and try to invert

3. Try with the real data and see what happens!
Error bars are not always just white noise.
Inversion of real data: Distribution of inferred field strengths
Not yet done!

ASP Data, D₃ spectropolarimetry
5/28/2 at 13:54:2 UT
The 90 degrees ambiguity

\[Q \approx \frac{3}{8} \omega (3 \cos^2 \vartheta_B - 1) \sin^2 \Theta_B \cos 2\Phi_B \]
A few conclusions

• Broadened profiles are well reproduced by subpixel velocity distribution (either real or arisen from projection effects)

• Magnetic field in spicules appear to be either ALIGNED or TRANSVERSAL to the visible structure

• Field strengths of up to 40 G are present. No much higher than that though.
Scattering Geometry
He I atomic model

- 5 atomic terms
- L-S coupling

\[2^3S_1 \rightarrow 2^3P_{0,1,2} \quad \text{5876 Å} \]

\[3^3S_1 \rightarrow 3^3P_{0,1,2} \quad \text{7065 Å} \]

\[3^3P_{0,1,2} \rightarrow 3^3D_{1,2,3} \quad \text{10830 Å} \]

\[2^3P_{0,1,2} \rightarrow 3^3D_{1,2,3} \quad \text{5876 Å} \]

\[2^3S_1 \rightarrow 3^3S_1 \quad \text{3889 Å} \]

\[2^3P_{0,1,2} \rightarrow 3^3S_1 \quad \text{10830 Å} \]
Subpixel velocity distributions
Global magnetic structure

The solar coronal magnetic field

16 February 1980: White Light

Near cycle maximum

Source: High Altitude Observatory Archives
Global magnetic structure

18 March 1983: White Light

Source: High Altitude Observatory Archives