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What is a dynamo ? 

Wikipedia: Dynamo theory 
Dynamo theory describes the process through which 
a rotating, convecting, and electrically conducting 
fluid acts to maintain a magnetic field 
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The disc dynamo 
Self-sustained dynamo if some 
conditions are satisfied. 

Helpful are: 
• Fast rotation Ω 
• High electrical conductivity σ 
• Large size (length scale) L 
⇒  Critical condition on σΩL2 

Can start from tiny seed field B 

Works in the same way when B is 
replaced by –B: two polarity states 

When Ω kept constant, B will grow 
(or decay) exponentially. 
When torque constant, Lorentz force 
opposes rotation (Lenz‘s rule) and 
leads to saturation of field strength 

B B 

j 

Ω 

L 
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How can a dynamo work in 
planetary cores ? 

Planetary rotation (Coriolis force) helps to set up such structure  

Some basic requirements satisfied: 

• Fluid electrical conductor   
• Set into motion by thermal or 
compositional convection 

But:  

Almost homogeneous sphere 
without wires and sliding contacts  
⇒ „shortcut“ between different parts 

For homogeneous dynamo to work, 
the complex geometry of electrical 
conductors in a technical dynamo 
must be replaced by a complex (but 
ordered) structure of the fluid flow 
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 Ohm‘s law                Lorentz transform           Ohm‘s law in moving medium 
 
       Substitute (3) into (1), take the curl, and eliminate E by using eqn. (2): 

Magnetic induction equation 
How does a magnetic field B evolve in a fluid with conductivity σ for a 

known velocity field u  ?  

(Pre-) Maxwell equations 

BBuB ×∇×∇−××∇=∂∂
µσ
1)(/ t

(1)  Ampère‘s law 
(2)  Faraday‘s law 

(3)B)u(EjBuEEEj ×+=×+== σ''σ

t
tc

∂∂−=×∇
∂∂+=×∇

/
//1 2

BE
EjB µ

 [Assumptions made:   u << c ;       μ,σ  isotropic and  constant]  
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                                  advection        induction     diffusion 
 
     Compare advection-diffusion equation for temperature: 
 
        

Magnetic induction equation II 

(1) with ∇⋅B=0 :            ∇×∇×B = - ∇2B 
(2) introduce magnetic diffusivity     λ = 1/(µσ)  
(3) incompressible flow (∇⋅u=0) :    ∇×(u×B) =(B ⋅∇)u – (u ⋅∇)B       

BBuB ×∇×∇−××∇=∂∂
µσ
1)(/ t

TTtT 2)(/ ∇=∇⋅+∂∂ κu

BuBBuB 2)()(/ ∇+∇⋅=∇⋅+∂∂ λt
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Magnetic Reynolds number 

Introduce non-dimensional variables (underlined) by scaling with 
characteristic values for length L, velocity Uo and magnetic field 
strength Bo:     u = u/Uo,   ∇  = L∇,    t = t Uo/L,    B = B/Bo. 
 
The non-dimensional induction equation contains one non-
dimensional parameter, the magnetic Reynolds number Rm.   

BuBBuB 21Rm)()(/ ∇+∇⋅=∇⋅+∂∂ −t

BuBBuB 2)()(/ ∇+∇⋅=∇⋅+∂∂ λt

λ
LURm 0=

For Rm < 1, diffusion dominates; for Rm > 1 advection and induction dominates 
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Kinematic dynamo problem 

Assume flow pattern u and seek solutions of magn. induction eqn. 
Field structure:    eigenmodes that grow or decrease with time 
 

                      B(r,t)  =  Bn(r)  exp(σnt) 

BuBBuB 21Rm)()(/ ∇+∇⋅=∇⋅+∂∂ −t

Seek growing solutions with Re(σ)>0. For small Rm only 
decaying solutions will exist. What is, for a given flow pattern, 
the minimum value of Rm for which growing solutions exist? 
 
In simplest case with u=0 only decaying solutions. Free decay 
modes (mode with slowest decay in a sphere of radius R is a 
dipole field with σ = -π2λ/R2)  
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Kinematic dynamo theory: 
Cowling‘s theorem 

A (strictly) axisymmetric magnetic field 
cannot be generated by a dynamo 
(Example for an „antidynamo-theorem“, Cowling, 1934) 

Implication: It is not possible 
to study dynamos in two 
dimensions as a simplifying 
step. Any numerical dynamo 
model must be 3D. 
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Kinematic dynamo: an example 

Schematic flow pattern in VKS 
dynamo experiment, where 
two propellers drive a flow of 
liquid sodium in a cylindrical 
container 

Kinematic dynamo simulation 
for VKS flow for different 
magnetic field modes and 
different boundary conditions   
(Gissinger, EPL, 2009) 
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Alfvén‘s theorem (frozen flux) 

∫∫ ⋅=Φ dSB

t1                    t2 

Consider case of negligible diffusion  (Rm → ∞) 

Magnetic flux                     passing through a bounded material 

surface that moves and deforms with the flow does not change.  

A related statement is that, if 
a magnetic field line passes 
at a given time through a 
certain chain of fluid 
particles, it will always pass 
through the same droplets, 
irrespective of how they 
move (frozen field line). 

For large Rm>>1 it holds approximately and is a useful concept 
to understand how the magnetic field evolves. 
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Field line stretching 

Induction term positive when fluid stretches in direction of field lines  

Flux through cylinder face S conserved;  S  shrinks  ⇒  B  grows 
Magnetic energy density  B2/(2µo) increases (volume conserved) 
Contraction of cylinder requires work done against Lorentz force 
that points radially outward    

....)(..../ +∇⋅=+∂∂ uBB t

S 

u1                        u2>u1 j 
F = j x B  (Lorentz force) 
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Hydrodynamic flow in rotating 
reference system 

  ρ: density      p: pressure         Ω = Ωez : rotation vector     ν: kinematic viscosity 

bodyp
t

Fuuuuu
+∇+×Ω−∇−=∇⋅+

∂
∂ 2)(2))(( ρνρρ
             inertia               Coriolis    viscosity 

             Navier-Stokes equation with Coriolis term 

bodyzp
t

Fuueuuu
+∇+×−∇−=∇⋅+

∂
∂ 2E)(2))((Ro

Non-dimensionalize by scaling u, ∇, t as before and scale p by ρΩUoL  

           Earth core value 
Rossby number     Ro =  Uo/(LΩ) 10-6 

Ekman number E   =   ν/(L2Ω)  10-15 
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   Ro << 1      and     E << 1       and ignore Fbody 
   2ez x u + ∇p = 0          Geostrophic flow (follows isobars) 
   take curl      ⇒          ∂u/∂z = 0 
Velocity vector does not change in direction of rotation axis ! 

Proudman-Taylor theorem 

Cylindrical water tank on rotating table with 
small off-center obstacle on bottom 

Obstacle 

Phantom 
Obstacle 
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Ekman boundary layer 
When fluid meets a rigid wall in z-direction, where u=0, 
Proudman-Taylor theorem cannot be strictly satisfied. In a thin 
boundary layer of width δ, viscosity enters the force balance   

For Earth‘s core, δ ≈ 10-7.5             
in dimensional terms dEkman = 0.1 m 
 
Flow velocity not only decreases in 
the Ekman layer, but also changes 
direction. Close to the rigid 
boundary, it moves at a 45 degree 
angle to the isobars  

Obstacle 

2/122 E1EE)(2 ≈≈∇≈× − δδuue z
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gBBuuuuu ρ
µ

ρνρρ +××∇+∇+×Ω−∇−=∇⋅+
∂
∂ )(1)(2))(( 2p

t

Rotating MHD equation 
MHD = magnetohydrodynamic 

             inertia               Coriolis    viscosity          Lorentz        gravity 

Lorentz force can be 
expressed as gradient of a 
pressure-like term and 
divergence of a (stress) 
tensor. Tensor component  
(BB)ij = Bi Bj 









⋅∇+








∇−=××∇

µµµ
BBBB

2
)(1 2B

magnetic 
pressure 

Maxwell 
stress 
tensor 

x 

y 
B 

(BB)xx > 0 (BB)xy > 0 

Magnetic field lines in a good conductor (Rm>>1) can be compared with 
elastic strings that resist stretching and bending 
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T)(
Pr

RaE)(
Pm
1E)(2'))((E

0

2

g
rgp

t z +××∇+∇+×−∇−=∇⋅+
∂
∂ BBuueuuu

Full dynamo equations 
Non-dimensional, for convection-driven flow in a rotating system 

Scaling of variables: length scale L, time scale L2/ν, velocity scale ν/L, magnetic 
field scale (ρμλΩ)1/2, temperature scale ∆T.  p‘ is non-hydrostatic pressure.  
 

Boussinesq-approximation: ρ = constant, except in the gravity term 
(buoyancy term) of the momentum equation, where ρ=ρo(1-αT) 
  

BuBBuB 2

Pm
1)()(/ ∇+∇⋅=∇⋅+∂∂ t

T
Pr
1T)(/T 2∇=∇⋅+∂∂ ut

00 =⋅∇=⋅∇ Bu
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Non-dimensional control parameters 

α: thermal expansion coefficient, go: gravity (reference value)   ∆T: temperature contrast  

Definition   Name   Balance   Earth  
  value 

  Model  
  values 

Ra=  
Rayleigh 
number 

      Buoyancy 
       Diffusion  

  104  x 
 critical ? 

 1 – 100   
x critical 

 E = ν/ΩL2  
Ekman 
number 

     Viscosity 
   Coriolis force     10-15    ≥  10-6 

 Pr = ν/κ 
Prandtl   
number 

     Viscosity 
Thermal diffusion   0.1 - 1   0.1 – 10 

 Pm = ν/λ 
Magnetic 
Prandtl # 

       Viscosity 
  Magnetic diffus.     10-6  0.06 - 20 

κν
α 3LTg ∆o
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Non-dimensional diagnostic parameters 

  Name     Ratio of   Earth    Models  

Re = UL/ν Reynolds 
number 

 Nonlinear inertia 
       Viscosity  

     108 10 - 2000 

Rm = UL/λ 
Magnetic  
Reynold# 

     Advection 
  Magnet. diffus. 

     103 40 - 3000 

Ro = U/ΩL Rossby 
number 

Nonlinear inertia 
       Coriolis      10-5  10-4  -  1 

Nu = q/qcon 
Nusselt   
number 

 Total heat flow 
Conductive heat 

  ? (>>1)    1  -  30 

Λ=B2/ρµλΩ Elsasser 
number 

    Lorentz force 
    Coriolis force    1 - 10 0.03 - 100 
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Geometry and boundary 
conditions 

Rotating fluid spherical shell 
Impenetrable boundaries 
No slip or free-slip 
boundaries 
Fixed temperatures or fixed 
heat flux boundaries 
Magnetic field: match at 
boundary to potential field in 
the outside that decays with 
radius (at least ∝ r -3) 
Tangent cylinder divides 
shell into dynamically 
distinct regions 
  

Tangent 
cylinder 

Fluid  
outer core Solid  

inner core 

To+∆T 

To 
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Convection in rotating sphere 
Rayleigh # must exceed critical value Racrit  

At low E, convection starts in form of    
narrow elongated columns parallel to Ω 
(Taylor / Busse rolls)      [PT-theorem] 

The columns end at sloping boundaries        
⇒ Proudman-Taylor not strictly satisfied 

      For E << 1: 

     Racrit  ∝  E-4/3 

     mcrit   ∝  E-1/3   (wave #) 
Columns array near tangent cylinder (TC) boundary, outside the TC. 
Convection inside the TC occurs only when Ra significantly > Racrit  

ωz = (∇×u)z 
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Helical columnar convection 
Primary motion is around column axis 

A secondary motion is along the column 
axis, diverging from the equatorial plane 
in columns with clockwise motion (as 
seen from North) and converging 
towards equator in anticlockwise 
columns. The net motion is spiralling   
or helical. 

Helicity:       H  =  u ⋅ (∇ × u) 

  

Helicity is consistently negative in the northern hemisphere and 
positive in the southern hemisphere 
Note: When Ra >> Racrit, flow structures are no longer well 
ordered, but many properties persist in a statistical sense  
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Toroidal-poloidal decomposition 
Any vector field B with ∇⋅B=0 can be written as 
a combination of a toroidal part BT and  
poloidal part BP: 
B  =  BT + BP   =   ∇×Ter   +   ∇×(∇×Per) 
T and P are scalar fields. 
BT has no radial component .  BT is confined  
to inside the dynamo and „invisible“ from  
outside 
The current associated with BP    ( j~∇×BP)   has 
no radial component 
A dynamo cannot generate a purely toroidal or 
a purely poloidal magnetic field   

Poloidal 

Toroidal 
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α - effect   
How can an axisymmetric poloidal field be (re-)created 
from an axi-symmetric toroidal field  by induction 
processes that may involve small-scale flow and small-
scale magnetic fields ? 

  
Helical flow 

elements 
Parker 
loop 
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ω - effect   
How can an axisymmetric toroidal field be (re-)created from an axi-
symmetric poloidal field  ?   

(1) The α-effect can also work in this direction 
(2)  Another mechanism is through shearing of poloidal field lines by 
axisymmetric toroidal flow (differential rotation) – the ω-effect  
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A simple dynamo model 
The benchmark dynamo 

 
           Br at r=ro                                  ur at r=0.9ro                  Magnetic field lines 

 
Ra=105,     E=10-3,      Pr=1,      Pm=5.  
Solution is stationary, aside from a drift in longitude 
Rm=39 (near minimum required for a dynamo)  
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Flow structure 

Vorticity     ∇× u                 Helicity      u ⋅ (∇× u) 
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Toroidal - poloidal conversion in  
benchmark dynamo 

The dipole field is generated from the toroidal axisymmetric field by a 
macroscopic α-effect in the helical convection columns.  

Axisymmetric field. Toroi-
dal: color, poloidal: lines 

Advection and twisting of toroidal field lines (assuming 
frozen flux) by helical columar flow, transforming them 
into configuration with strong poloidal dipole part  
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Poloidal - toroidal conversion 
in benchmark dynamo 

Axisymmetric toroidal field generated by α-effect in helical columns. 
In this case ω-effect does not play a constructive role 

Bundle of field lines. Yellow: 
anticyclonic vortices. 

Evolution of a poloidal field line starting close 
to the tangent cylinder. 
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More extreme parameters 
 

Radial magnetic field              Radial velocity                Axisymmetric field 

Ra = 1.2x108     Pr = 1    E = 3x10-5   Pm = 2.5         Rm = 925 

Small scale magnetic flux concentrations, but dipole still dominant. 
N-S-alignment of flow structures  ⇒  (imperfect) convection columns 
In addition strong convection inside tangent cylinder (TC). 
Similar toroidal field as in simple model outside TC  ⇒  same mechanism 
Strong toroidal flux rings inside TC generated by ω-effect 



Christensen  Overview Dynamo Theory    04 November 2015 31 

  

 

Comparison with Earth‘s field at 
core-mantle boundary 

Dynamo model, full resolution 

Dynamo model, filtered to n<13 

Br 

Earth‘s CMB field 

Because in the observed field the 
contribution of crustal origin 
dominates at degrees n>13 , we do 
not know the small-scale core 
field.  Comparison is best made at 
the same spatial resolution 
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