

The Spherical MHD Code MagIC, Fundamentals

Johannes Wicht, Thomas Gasting, Ankit Barik MPS Katlenburg-Lindau

The Goal

Saturn

Very simple axisymmetric field.

D=0° B=B_E

Dynamo region: electrically conducting high pressure hydrogen phase

Uranus

Compex field, not dipole dominated D=60° B=B_E

Dynamo region: mixture of water and ammonia ice

The Setup

Setup

MagIC Heritage

MagIC in Words

- Domain = spherical shell
- Region below and above domain treated as boundary conditions or parametrized
- Frame of reference rotating with system rotation Ω
- MagIC uses a dimensionless formulation
- Poloidal/toroidal decomposition in employed
- MagIC is a pseudo spectral code
- MagIC uses a mixed impicite, explicite time stepping

Why using MagIC?

- MagIC is the fastest code on up to 1000 cores. (See recent speed benchmark)
- MagIC is well documented. (Ankit, Thomas)
- MagIC has been tested extensively. (Autotest implemented by Thomas)
- MagIC offers a lot of usefull output and supporting analysis tools
- Matching visualization tools are available.
- MagIC has active and accessible users & developers.
- MagIC has been used in around 80 publications.

MagIC Success

MagIC Topics

MagIC Users

MagIC github

This repository	Search	Pull requests Issues Gis	st	≰ +-	÷
magic-sph /	magic		O Unwatch → 8	★ Star 4 ¥ Fork	
lagIC is a high-per tps://magic-sph.git	formance code that solves the magn thub.io/	eto-hydrodynamics equations	s in rotating spherical shells	<> Code	
323 commit	ts 🖗 4 branches	🛇 3 releases	$\hat{\mathfrak{g}}_{UV}^{C_0}$ 6 contributors	() Issues	1
) Branch: maste	er - magic / +			🕅 Pull requests	0
tgastine fix g file	header when WITH_MPI=False	Lat	est commit c9de562 18 hours ago	🗉 Wiki	
bin	Auto-detect GWDG and set ccompiler f	for f2py	a month ago	- Inverse	
cmake	make cmake backward compatible for 2	2.6	22 hours ago		
doc	replace USE_MKL by USE_LAPACKLI	B, add Iapack	22 hours ago	III Graphs	
license	- merge the python subroutines into the	MPI version (latest version)	2 months ago	HTTPS clone URL	
paraview	Create a new branch for temporarily sto	re the mpi version. Will be	2 years ago	https://github.cc	Ē
python/magic	Fixed butterfly.py file. It was actually taking the values at some lo		22 hours ago	You can clone with HTTP SSH, or Subversion. ③	S,
samples	fix USE_OMP flag in auto-test script		6 days ago	Clone in Deskt	op
src	fix g file header when WITH_MPI=False		18 hours ago	ြာ Download ZIF)
submitscripts	NEW hybrid MPI/OpenMP version.		2 years ago	+	
.gitignore	mv magic.cfg to magic.cfg.default		a month ago		
CMakeLists.txt	make cmake backward compatible for 2	2.6	22 hours ago		
README.md	fix architecture + improve magic_check	s.pl	7 days ago		

MagIC homepage

Get it/Run it Contribute! Numerical methods Home

Contents

Table Of Contents

Welcome

- Quickly starting using MagIC
- Documentation
- Contributing to the code
- Giving credit

MC

This Page

Show Source

Quick search

Go

Enter search terms or a module, class or function name.

Formation of polar spots in a

Welcome

fully-convective star model

Yadav, R. et al., A&A, 2015

MagIC is a numerical code that can simulate fluid dynamics in a spherical shell. MagIC solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD) and a temperature (or entropy) equation under both the anelastic and the Boussinesg approximations.

MagIC uses Chebyshev polynomials in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

MagIC is written in Fortran and designed to be used on supercomputing clusters. It thus relies on a hybrid

MagIC documentation

Home Get it/Run it Contribute! Numerical methods Contents

Magic 5.2 documentation »

Table Of Contents

Formulation of the (magneto)hydrodynamics problem

- The anelastic approximation
- An adiabatic reference state
 - Analytical solution in the limit of an ideal gas
- MHD equations
 - Entropy equation and turbulent diffusion
 - The Boussinesq limits of the equation $Di \rightarrow 0$
 - Dimensionless control parameters
 - Usual diagnostic quantities
- Boundary conditions and treatment of inner core
 - Mechanical conditions
 - Magnetic boundary conditions and inner core conductivity
 - Thermal boundary conditions and distribution of buoyancy sources

Previous topic Get MagIC and run it

Formulation of the (magneto)-hydrodynamics problem

The general equations describing thermal convection and dynamo action of a rotating compressible fluid are the starting point from which the Boussinesq or the anelastic approximations are developed. In MagIC, we consider a spherical shell rotating about the vertical z axis with a constant angular velocity Ω . The conservation of mass is expressed by the continuity equation:

$$rac{\partial
ho}{\partial t} + ec
abla \cdot
ho ec u = 0,$$
⁽¹⁾

previous | next | modules | fortran modules | index

The conservation of momentum by

$$\rho\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \, \vec{u}\right) = -\vec{\nabla}p + \frac{1}{\mu_0}(\vec{\nabla} \times \vec{B}) \times \vec{B} + \rho \vec{g} - 2\rho \vec{\Omega} \times \vec{u} + \vec{\nabla} \cdot \mathsf{S}, \tag{2}$$

where S corresponds to the rate-of-strain tensor given by:

$$S_{ij} = 2
u
ho \left[e_{ij} - rac{1}{3} \delta_{ij} \, ec
abla \cdot ec u
ight],
onumber \ e_{ij} = rac{1}{2} igg(rac{\partial u_i}{\partial x_j} + rac{\partial u_j}{\partial x_i} igg).$$

Concerning the energy equation, several forms are possible (using internal energy, temperature or entropy). Here we use entropy *s* as the main variable, which leads to:

$$pT\left(rac{\partial s}{\partial t} + ec{u} \cdot ec{
abla}s
ight) = ec{
abla} \cdot (Kec{
abla}T) + \Phi_{
u} + \lambda \left(ec{
abla} imes ec{B}
ight)^2,$$
⁽³⁾

where $\Phi_{
u}$ corresponds to the viscous heating expressed by

The Spherical MHD Code MagIC

MPS 2015

Equation of motion

Navier-Stokes equation:

described changes of momentum density at a given position due to forces

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \, \boldsymbol{u} \right) = -\boldsymbol{\nabla} p + \frac{1}{\mu_0} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} + \rho \boldsymbol{g}$$
$$- 2\rho \boldsymbol{\Omega} \times \boldsymbol{u} + \boldsymbol{\nabla} \cdot \boldsymbol{S}$$

rate of strain tensor for Newtonian viscosity:

$$S_{ij} = 2\nu\rho \left[e_{ij} - \frac{1}{3}\delta_{ij} \,\boldsymbol{\nabla} \cdot \boldsymbol{u} \right],$$
$$e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).$$

The Spherical MHD Code MagIC

Density Variations

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} = 0$$

Equation of state:

$$\frac{1}{\rho}\partial\rho = -\alpha\partial T + \beta\partial p + \delta\partial\chi$$

with thermodynamical properties

thermal expansivity
$$\alpha = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p$$

compressibility $\beta = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T$

Density Variations

Energy equation:

$$\rho T\left(\frac{\partial s}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} s\right) = \boldsymbol{\nabla} \cdot \left(k\boldsymbol{\nabla} T\right) + \Phi_{\nu} + \lambda \left(\boldsymbol{\nabla} \times \boldsymbol{B}\right)^{2} + \epsilon$$

with viscous heating

$$\Phi_{\nu} = 2\rho \left[e_{ij} e_{ji} - \frac{1}{3} \left(\boldsymbol{\nabla} \cdot \boldsymbol{u} \right)^2 \right]$$

If compositional changes are considered another equivalent respective evolution equation is required.

Dynamo equation

Non-relativistic Maxwell equations provide

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B} - \lambda \, \boldsymbol{\nabla} \times \boldsymbol{B})$$

And if the magnetic diffusivity λ is homogeneous

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) + \lambda \, \boldsymbol{\Delta} \boldsymbol{B}$$

Disturbance Around a Background State

Small disturbance (prime) around a reference state (tilde)

$$\epsilon \sim \frac{T'}{\tilde{T}} \sim \frac{p'}{\tilde{p}} \sim \frac{\rho'}{\tilde{\rho}} \sim \dots \ll 1$$

The reference state is hydrostatic, adiabatic, and non magnetic:

$$\begin{aligned} \nabla \tilde{p} &= \tilde{\rho} \tilde{\boldsymbol{g}} \\ \frac{\nabla \tilde{T}}{\tilde{T}} &= \frac{1}{\tilde{T}} \left(\frac{\partial T}{\partial p} \right)_s \nabla p = \frac{\alpha}{c_p} \tilde{\boldsymbol{g}} \\ \frac{\nabla \tilde{\rho}}{\tilde{\rho}} &= \frac{1}{\tilde{\rho}} \left(\frac{\partial \rho}{\partial p} \right)_s \nabla p = \beta \tilde{\rho} \tilde{\boldsymbol{g}} \end{aligned}$$

It can be characterized by the two numbers Di

$$= \frac{\alpha d}{c_p} \tilde{g} \ Co = d\beta \tilde{\rho} \tilde{g}$$

Simplified Continuity Equation

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} = 0$$

Plug in $\rho = \tilde{\rho} + \rho'$ leads to:

$$\frac{\partial \tilde{\rho}}{\partial t} + \frac{\partial \rho'}{\partial t} = -\boldsymbol{\nabla} \cdot (\tilde{\rho}\boldsymbol{u}) - \boldsymbol{\nabla} \cdot (\rho'\boldsymbol{u})$$

Estimate of ratio:

$$\frac{[\partial \rho / \partial t]}{[\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}]} \approx \frac{\rho'}{\tilde{\rho}} \approx \epsilon$$

First order equation thus reads (used for anelastic approximation):

$$\boldsymbol{\nabla} \cdot (\tilde{\rho} \boldsymbol{u}) = 0$$

Boussinesq Approximation

Appropriate for terrestrial planets where Di and Co are small. For example for Earth Di~Co~0.2. Formal limit Di \rightarrow 0, Co \rightarrow 0

Further simplification of Boussinesq approximation for $Co \rightarrow 0$

$$\frac{1}{\tilde{\rho}}\boldsymbol{\nabla}\cdot\tilde{\rho}\boldsymbol{u}=\frac{\boldsymbol{u}}{\tilde{\rho}}\cdot\nabla\tilde{\rho}+\nabla\cdot\boldsymbol{u}\approx\nabla\cdot\boldsymbol{u}=0$$

Vanishing viscous and Ohmic heating.

Boussinesq Navier-Stokes Equations

$$\tilde{\rho}\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \,\boldsymbol{u}\right) = -\boldsymbol{\nabla} p' - 2\rho \boldsymbol{\Omega} \times \boldsymbol{u} + \alpha g_o T' \frac{\boldsymbol{r}}{r_o} \\ + \frac{1}{\mu_0} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} + \tilde{\rho} \nu \Delta \boldsymbol{u}$$

Rescaling to dimensionless form:

$$r \to r \ d, t \to (d^2/\nu) \ t, T \to \Delta T \ T, B \to (\mu \lambda \tilde{\rho} \Omega)^{1/2} \ B$$

$$\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \,\boldsymbol{u}\right) = -\boldsymbol{\nabla} \boldsymbol{p}' - \frac{2}{E} \boldsymbol{e_z} \times \boldsymbol{u} + \frac{Ra}{Pr} T' \frac{\boldsymbol{r}}{r_o} + \frac{1}{EPm} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} + \Delta \boldsymbol{u}$$

Remaining Equations

$$\boldsymbol{\nabla}\cdot\boldsymbol{u}=0,$$

 $\boldsymbol{\nabla}\cdot\boldsymbol{B}=0,$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) + \frac{1}{Pm} \Delta \boldsymbol{B}.$$

$$\frac{\partial T'}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} T' = \frac{1}{Pr} \Delta T'.$$

The Spherical MHD Code MagIC

From Physical Properties to Dimensionless Numbers

From 11 properties to **five dimensionless control parameter**!

1) Ekman number $E = \frac{\nu}{\Omega d^2},$ 2) Rayleigh number $Ra = \frac{\alpha_o g_o T_o d^3 \Delta s}{c_p \kappa_o \nu_o}$ 3) Prandtl number $Pr = \frac{\nu_o}{\kappa_o},$ 4) magnetic Prandtl $Pm = \frac{\nu_o}{\lambda_i}$ 5) aspect ratio $\eta = \frac{r_i}{r_o}$

Poloidal/Toroidal Decomposition

From 9 equations for 8 unknown to 6 unknowns and equations!

Fulfill continuity equations by using

$$\boldsymbol{u} = \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times W \, \boldsymbol{e}_{\boldsymbol{r}}) + \boldsymbol{\nabla} \times Z \, \boldsymbol{e}_{\boldsymbol{r}}$$

$$\boldsymbol{B} = \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times g \, \boldsymbol{e_r}) + \boldsymbol{\nabla} \times h \, \boldsymbol{e_r}$$

W and g are called the poloidal potentials.

Z and h are called the toroidal potentials.

NOTE:
$$\boldsymbol{u} = -\Delta_H \boldsymbol{e}_r W + \boldsymbol{\nabla}_H \frac{\partial}{\partial r} W + \boldsymbol{\nabla}_H \times \boldsymbol{e}_r Z$$

Radial component is purely poloidal.

Horizontal poloidal component depends on radial derivative.

From 9 equations for 8 unknown to 6 unknowns and equations!

To solve for the 6 unknowns $W g_Z$, h, T' and p'we use poloidal and toroidal Navier-Stokes equation, poloidal and toroidal dynamo equation, heat equation, 'pressure' equation derived from Navier-Stokes equation.

NOTE: other people get rid of pressure by taking an addition curl.

Poloidal/Toroidal Equations

From vectorial to toroidal and poloidal equations via operators $e_{r} \cdot \tilde{\rho} u = -\Delta_{H} W,$ $e_{r} \cdot (\nabla \times u) = -\Delta_{H} Z,$ with $\Delta_{H} = \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial^{2} \phi}$ so that $\tilde{\rho} e_{r} \cdot \left(\frac{\partial u}{\partial t} \right) = \frac{\partial}{\partial t} (e_{r} \cdot \tilde{\rho} u) = -\Delta_{H} \frac{\partial W}{\partial t}$

$$\boldsymbol{e_r} \cdot \boldsymbol{\nabla} \times \left(\frac{\partial \tilde{\rho} \boldsymbol{u}}{\partial t}\right) = \frac{\partial}{\partial t} (\boldsymbol{e_r} \cdot \boldsymbol{\nabla} \times \tilde{\rho} \boldsymbol{u}) = -\frac{\partial}{\partial t} (\Delta_H Z) = -\Delta_H \frac{\partial Z}{\partial t}$$

'pressure' equation:

$$\boldsymbol{\nabla}_{H} \cdot \left(\tilde{\rho} \frac{\partial \boldsymbol{u}}{\partial t} \right) = \Delta_{H} \frac{\partial}{\partial t} \left(\frac{\partial W}{\partial r} \right)$$

Flow Boundary Conditions

Radial flow vanishes when W=0

a) rigid boundaries: horizontal flow vanishes when

$$\frac{\partial W}{\partial r} = 0 \quad \text{and} \quad Z = 0$$

b) stress-free: radial derivative of U/r vanishes when

$$\left(\frac{\partial^2}{\partial r^2} - \frac{2}{r}\frac{\partial}{\partial r}\right)W = 0$$
 and $\left(\frac{\partial}{\partial r} - \frac{2}{r}\right)Z = 0$

Temperature and Magnetic Conditions

1) Temperature:

- a) fixed temperature T = const.
- b) fixed flux

$$\frac{\partial}{\partial r}T = \text{const.}$$

c) patterns in terms of spherical hamonics

2) Matching condition to potential magnetic field $B^{I} = -\nabla V$:

$$h = 0$$
$$\frac{\nabla_H^2}{r^2}g = \frac{\partial}{\partial r}V^I$$
$$\nabla_H \frac{\partial}{\partial r}g = -\nabla_H V^I$$

The latter two conditions are combined to eliminate V^{I}

MagIC Structure

MagIC flow chart DIN 66001

MagIC Rampup

Parameter input via **namelists**

Initial condition via **rst-file** containing all fields from previous run plus respective explicit

Alternatively the fields can be initialized with an **analytical guess or noise**.

MagIC Nonlinear Terms

Initial fields in (r,l,m) space: x(r,l,m) horizontal derivatives calculated transform to grid via Gauss-Legendre and Fourier transforms: x(r, θ , Φ)

Output of any desired quantities on grid $x(r,\theta,\Phi)$ in G- or mov-files.

Nonlinear term calculated NL(r,θ,Φ)= $x_1(r,\theta,\Phi)x_2(r,\theta,\Phi)$ transformed back: NL(r,l,m) Additional horiz. derivatives

MagIC Time Step

Mixed implicit/explicit time step in (r,l,m) space.

Updated fields given in (n,l,m) space: x(n,l,m)

Radial derivative calculated in (n,l,m) space. Cheb-transform to (r,l,m)

MagIC Finale

Volume averages calculated in spectral space for output: e_kin, e_mag..

rst-file stored in (r,l,m) space

MagIC finishes with storing some diagnostics in the **log-file**.

Input

🗅 Geoma: 🗙 🕜 Home 🗙 🏠	Search × 🍘 Dynam × 💭 Underst × 💭 GitHub × 🕒 Installin × 💭 sphinx-I × 🍘 Content					
← → C Attps://magic-sph.github.io/contents.html#contents						
G Google / 🔬 Welcome JUICE / S	🕕 Brooklyn Locomotiv 🔞 N Scale Supply New 🛞 Dr. Santiago Andres Ġ Google-Ergebnis für G					
Table Of Contents	 Boundary conditions and inner core 					
Contents Indices and tables	 Contributing to the code Checking the consistency of the code Advices when contributing to the code 					
Next topic	 Building the documentation and contributing to it 					
Introduction	Input parameters					
This Page	Grid namelist Control namelist					
Show Source	Physical parameters namelist External Magnetic Field Namelist					
Quick search	Start field namelist Output control namelist					
Go	 Mantle and Inner Core Namelists 					
Enter search terms or a module,	 Interactive communication with the code using signal.TAG 					
class or function name.	Output files					
	 LOG THE: log.TAG Default time, series outputs 					
	 Additional optional time-series outputs 					
	 Time-averaged radial profiles 					
	 Transport properties of the reference state 					
	 Nonlinear mapping of the Chebyshev grid 					
	 Spectra Graphic files c + mac and c mac 					
	• Movie files * movi Tag					
	 Destart files and theme 					

Grid-Namelists

input.nml

&grid

```
n_r_max =33,
n_cheb_max =31,
n_phi_tot =48,
n_r_ic_max =17,
n_cheb_ic_max=15,
minc =1,
```

manual explanation

 n_r_max (default n_r_max=33) is an integer which gives the number of grid points in the radial direction in the outer core ([r_i, r_o]). It must be of the form 4*n+1, where n is an integer.

Note: The possible values for <u>n_r_max</u> are thus: 17, 21, 25, 33, 37, 41, 49, 61, 65, 73? 81, 97, 101, 121, 129, 145, 161, 257, 401, 513, ...

 n_cheb_max (default n_cheb_max=31) is an integer which is the number of terms in the Chebyshev polynomial expansion to be used in the radial direction - the highest degree of Chebyshev polynomial used being n_cheb_max-1. Note that n_cheb_max <= n_r_max.

Note: Adopting n_cheb_max=n_r_max-2 is usually a good choice

- n_phi_tot (default n_phi_tot=192) is an integer which gives the number of longitudinal/azimuthal grid points. It has the following contraints:
 - n_phi_tot` must be a multiple of minc (see below)
 - n_phi_tot/minc must be a multiple of 4
 - n_phi_tot must be a multiple of 16

Note: The possible values for <u>n_phi_max</u> are thus: 16, 32, 48, 64, 96, 128, 192, 256, 288? 320, 384, 400, 512, 576, 640, 768, 864, 1024, 1280, 1536, 1792, 2048, ...

Control-Namelist

input.nml

manual explanation

This namelist defines the numerical parameters of the problem plus the variables that control and organize the run.

 mode (default mode=0) is an integer which controls the type of calculation performed.

Self-consistent dynamo
Convection
Kinematic dynamo
Magnetic decay modes
Magneto convection
Linear onset of convection
Self-consistent dynamo, but with no Lorentz force
Super-rotating inner core or mantle, no convection and no magnetic field
Super-rotating inner core or mantle, no convection
Super-rotating inner core or mantle, no convection and no Lorentz force
Super-rotating inner core or mantle, no convection, no magnetic field, no Lorentz force and no advection

- tag (default tag="default") is a character string, used as an extension for all output files.
- n_time_steps (default n_time_steps=100) is an integer, the number of time steps to be performed.

Physical Parameter-Namelist

input.nml

&phys_param ra =1.1D5, ek =1.0D-3, pr =1.0D0, prmag =5.0D0, radratio =0.35D0, ktops =1, kbots =1, kbots =1, kbotv =2, kbotv =2, kbotb =3

manual explanation

 ktops (default ktops=1) is an integer to specify the outer boundary entropy (or temperature) boundary condition:

ktops=1Fixed entropy at outer boundary: $s(r_o) = s_{top}$ ktops=2Fixed entropy flux at outer boundary: $\partial s(r_o) / \partial r = s_{top}$

• **ktopv** (default ktopv=2) is an integer, which corresponds to the mechanical boundary condition for $r = r_o$.

ktopv=1 Stress-free outer boundary for $r = r_o$: ktopv=2 Rigid outer boundary for $r = r_o$:

• **ktopb** (default ktopb=1) is an integer, which corresponds to the magnetic boundary condition for $r = r_o$.

ktopb=1 Insulating outer boundary:

ktopb=3 Finitely conducting mantle

ktopb=4 Pseudo-vacuum outer boundary:

Start Field Namelist

input.nml

&start_field I_start_file=.FALSE., start_file ="NONE", init_b1 =3, amp_b1 =5, init_s1 =0404, amp_s1 =0.1,

manual explanation

Reading an input file of start fields

- I_start_file (default 1_start_file=.false.) is a logical that controls whether the code should to read a file named start_file or not.
- **start_file** (default start_file="no_start_file") is a character
 string. This is the name of the restart file.

Initialisation of magnetic field

- init_b1 (default init_b1=0) is an integer that controls the initial magnetic field. The following values are possible:
 - init_b1=3: $(\ell = 1, m = 0)$ poloidal field whose field strength is amp_b1 at $r = r_i$. The radial dependence is chosen such that the current density j is independent of r:, i.e. $\partial j/\partial r = 0$. $(\ell = 2, m = 0)$ toroidal field with maximum strength amp_b1.

The log-file

Provides all important information about the run

- 1) MagIC version
- 2) all parameters and other inputs including default ones
- 3) information on parallelization, run time etc.
- 4) log of important events: important output files, changing time step,
- 5) important time averaged quantities, measures

Output-Namelist

input.nml

&output_control n log step =1,

- n_{109} stop 1
- n_graphs =1,
- n_rsts =1, n stores =0,
- runid ="Benchmark 2"
- I movie =.FALSE.,
- I RMS =.FALSE.,

manual explanation

 n_log_step (default n_log_step=50) is an integer. This is the number of timesteps between two log outputs.

Warning: Be careful: when using too small <u>n_log_step</u>, the disk access will dramatically increases, thus decreasing the code performance.

- n_logs (default n_logs=0) is an integer. This is the number of log-information sets to be written.
- **t_log** (default t_log=-1.0 -1.0 ...) is real array, which contains the times when log outputs are requested.
- dt_log (default dt_log=0.0) is a real, which defines the time interval between log outputs.
- t_log_start (default t_log_start=0.0) is a real, which defines the time to start writing log outputs.
- t_log_stop (default t_log_stop=0.0) is a real, which defines the time to stop writing log outputs.

Time series files

e_kin.TAG

This file contains the kinetic energy of the outer core, defined by

$$E_k = rac{1}{2} \int_V ilde{
ho} u^2 \, \mathrm{d} V = E_{pol} + E_{tor}$$

No. of column	Contents	
1	time	
2	poloidal energy	
3	toroidal energy	
4	axisymmetric poloidal energy	
5	axisymmetric toroidal energy	
6	equatorial symmetric poloidal energy	
7	equatorial symmetric toroidal energy	
8	equatorial symmetric and axisymmetric poloidal energy	
9	equatorial symmetric and axisymmetric toroidal energy	

This file can be read using MagicTs with the following options:

Other Output Files

Graphic files G_#.TAG and G_ave.TAG

All fields in single precission for graphic visualization (except pressure).

Movie files * mov.TAG

Pre-defined (derived) fields in pre-defined cuts (or full 3d) for several time steps. Examples: z-vorticity, dynamo action, ...

Restart files rst_*.TAG

All fields plus explicit time step vector in full precision. Used for continuing an integration of as safety backup.

Conclusion

Its publicly available.

All the neccessary (and more) documentation in online.

Have fun doing the first MagIC runs!

MagIC Structure

MagIC flow chart DIN 66001