DWG 8: Science case 1: Compositional gradient in the solar system

DWG 3/5: Science case: Surface characteristics of planetary bodies

What can be done with the icy moons?

Three bodies of interest:

Europa
Titan
Europa des (m)

Enceladus (maybe too new)?

State of the Art-what do we have?

Visible images (low/high resolution)

*****Hyperspectral analysis of the surfaces (low resolution)

Geophysical data (poor but it exists)

*Laboratory experiments on ices (rheology, spectroscopy, chemistry of ices, ...)

Where are we now?

*****Surface Composition are still unknown (even for Europa)

Interior-surface exchanges not really understood

The case of Europa: Surface composition

1) Constraining the composition of Europa's ices

Blue surface: pure ice

Red lines and spots: material from the deep interior

Europa tectonics: need of analogs?

2) The tectonics of Europa (exchange between the surface and the interior...)

EUROPA — Surface-feature examples

Description of data is easy BUT INTERPRETATION of data is very difficult

Comparison with planetary analogs is difficult:

- ***** « New » features (triples bands, chaos,...)
- ***** Known features (craters, faults)
- Need for analogic models ...

Europa tectonics: need of analogs?

3) The use of Earth analogs – example of compressional features

Tectonics and Volcanism: Research of analogs?

3) The use of Earth analogs – example of compressional features

Compressional features on Earth require topography

Melting under pressure a new process which does not imply topography

Fusion sous pression

dans des zones d'anomalies thermiques Tectonics and Volcanism: Research of analogs?

4) A review of the data requirements

Implications:

- Morphology description
- *****Description of tectonic activity
- *****Surface datation (craters)
- ***...**

Requirements:

- *Analogic models are missing for icy materials...
- Topography measurements
- *Data system providing detailed mapping of icy surfaces on Earth, Mars, icy moons
- **Classification of tectonic features in the solar system (maybe it exists???)**

The case of Titan – do we have volcanoes?

1) VIMS data showing a cryovolcano

The case of Titan – Volcanic processes

2) Constraining the composition of Titan ices - cryolcanism

3) A review of the data requirements (experimental)

Pure ices:

thermodynamic properties (EOS, thermal conductivity, heat capacity, ...)

Rheology

Melting curves at very high pressures (exoplanets)

*****Spectral signatures (IR + Raman)

Hydrates and clathrates under pressure Stability phase diagrams

*rheology

*****Densities compared to ices (cryovolcanism)

*****Spectral signatures (IR + Raman)

DWG 8: Science case 1: Compositional gradient in the solar system

DWG 3/5: Science case: Surface characteristics of planetary bodies

What is required for going further? *New laboratory experiments (no interest here) *Catalog(?) of existing laboratory experiments on ices and silicates (IR-Raman) (DWG 3/5/9/8/ any other?) *Catalog(?) of observed tectonic and volcanic features