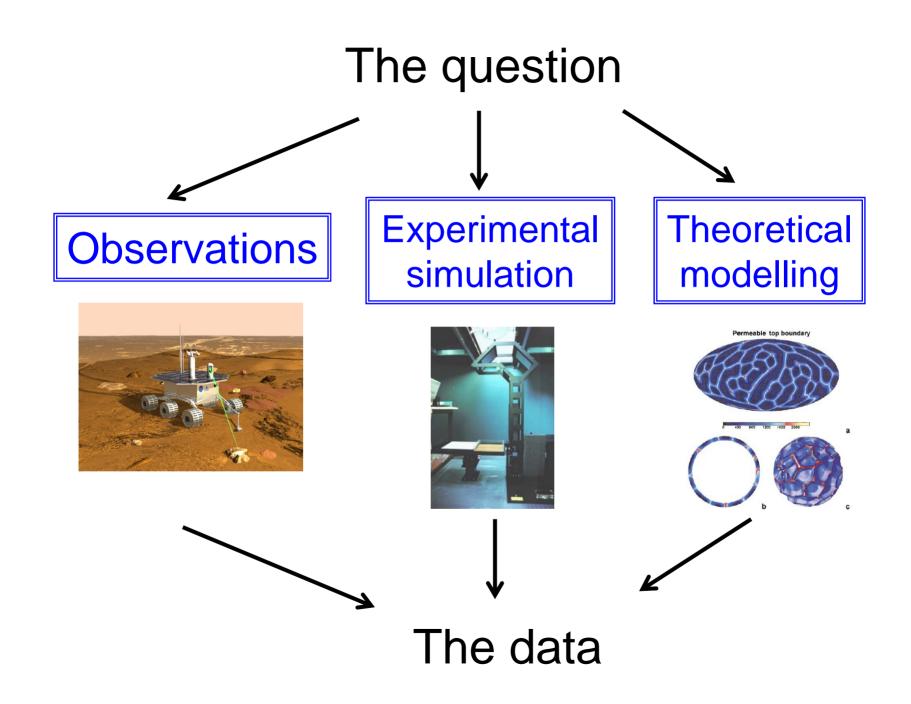


N2-N7 Workshop: Villafranca; April 2006

Science cases for an IDIS proto-type

Michael Toplis

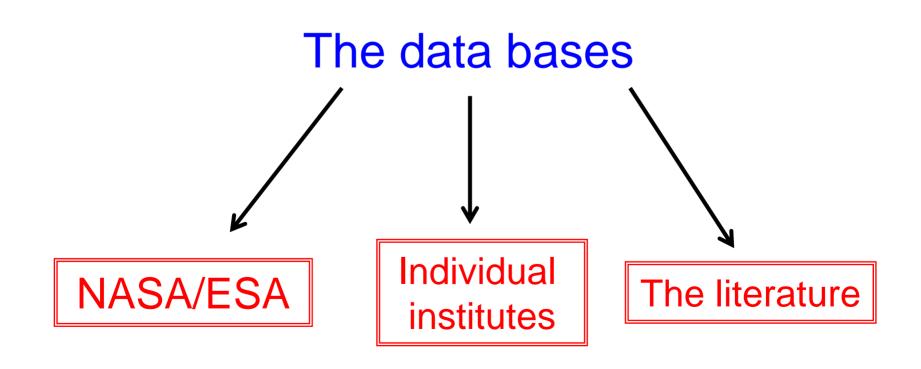
Observatoire Midi-Pyrénées, Toulouse, France


The evolution of planetology

The astrophysical approach

The Earth science approach

21st century planetology


This evolution could be reflected in the choice of IDIS 'showcase'

The data

To what extent should one distinguish 'raw' data sets from 'treated' or 'derived' data sets?

e.g. OMEGA data vs. derived mineralogy....? gravity + topography = crustal thickness....

DWG8 Planetary Interior and Composition

Science cases

•Large scale compositional gradients

•Planetary volcanism and tectonics

Internally produced magnetism

DWG8 Planetary Interior and Composition

Science cases

•Large scale compositional gradients

•Planetary volcanism and tectonics

Science case 1) Compositional gradients in the solar system

Questions	Requirements and suggestions	Target	Interactions
Are there systematic gradients of Fe/Si; volatile/refractory; (ice)/silicate/metal; oxidation states: at the scale of the solar system ? at the scale of Jovian moons ?	 Sample return Internal structure: crust(icy or silicate)/mantle (solid or liquid) / core: seismology; radar; geodesy Comparison with meteorites Process of core formation 	Mercury Mars Asteroids Europa	•DWG3+5 •DWG4+9
•If there are large scale compositional gradients, what does that tell us about formation mechanisms?	•Models of solar system formation		
•How do surface rocks compare in composition to the (deep) interior? (Vertical compositional gradients)	 Surface mineralogy and composition Models of differentiation and large scale movement. 	Mars Moon Titan	•DWG3+5 •DWG4+9
•What is the role of surface alteration? (composition of the atmosphere, volatiles etc)	 Surface mineralogy and composition (Remote sensing and in-situ measurements) Effect of atmosphere on signal and mechanisms 	Mars Moon Titan	•DWG3+5 •DWG4+9
•Role of distribution of dust through global "weather systems".	•Circulation models and observations	Mars	•DWG1 •DWG3+5
•Giant planets - Is there a silicate (rocky) core? If so, how big?	•Equations of state at very high pressure (ab-initio calculations and shock experiments) •Seismology	Jupiter Exoplanets	•DWG6+7 •DWG2

Science case 2) Planetary volcanism and tectonics

Questions	Requirements and suggestions	Target	Interactions
•Why is there plate tectonics on Earth, but not other planets?	 Phase relations and partial melting reactions (P, T, composition) with particular accent on cryovolcanism Determine nature of heat sources 	Venus Mars	
 How can we explain the spatial and temporal evolution of volcanism? 	 (internal radioactive decay/tidal) and quantify rate of heat loss. Quantify role and dynamics of solid (and maybe liquid) state convection. 	lo Mars Moon Titan	
•What are the implications for the chemical differentiation of the planetary system (mantle - crust -atmosphere)?	 Geochemical constraints (including meteorite collections) Numerical modelling 	Mars Moon Titan	•DWG3+5 •DWG4+9
•Resurfacing of planetary surfaces through volcanism	 Surface mineralogy, composition, craters, Internal structure (seismometers) Direct evidence for deep liquid layers on icy planets 	Europa Io Venus	•DWG3+5
•Link to tectonic features observed at the surface	 Morphology of surface volcanoes Experimental constraints on rheological properties 	Mars Titan Venus	•DWG3+5 •DWG6+7

N2-N7 Workshop: Villafranca; April 2006

A science case for the IDIS prototype?

Chemical distribution in the solar system

..... too vast a subject?

N2-N7 Workshop: Villafranca; April 2006

A science case for the IDIS prototype?

Focus on a well defined part of the solar system?

..... Mars, the moon

Not forgetting that from a scientific perspective what we are interested in are processes, which are not 'object specific'

Nor forgetting that IDIS should support but not try and anticipate initiatives by individual scientists

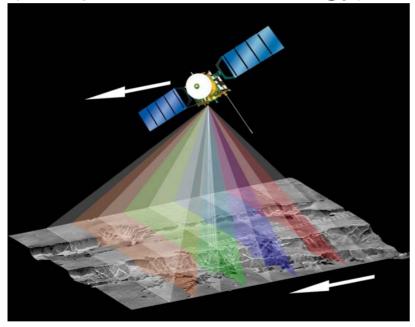
A science case for the IDIS prototype?

Objective: Quantifying the Martian geochemical reservoirs

- Lots of data (old/new/to come)
- European scientists heavily involved
- At the meeting point of astrophysical and Earth science approaches

N2-N7 Workshop: Villafranca; April 2006

A science case for the IDIS prototype?


Objective: Quantifying the Martian geochemical reservoirs

a) Surface-atmosphere interaction/surface composition

- b) Tectonics/volcanism/internal composition
- c) The bulk composition

Needed data and data sets

a) Geological mapping of the surface (composition/mineralogy)

PDS/PSA data archives Ground-based observations

Needed data and data sets

b) Some understanding of the primary (magmatic) and secondary (alteration) processes:

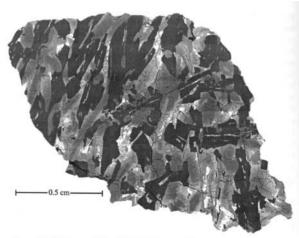


Figure 4.6: This image of the QUE94201 (Antarctica) basaltic shergottite illustrates its igneous texture. Many features in meteorites are more readily viewed in backscattered electron images taken with an electron microprobe, and this is one example. The dark grains are maskelynite (a glass formed from plagioclase by shock), the gray grains are pigeonite and augite, and the white grains are oxides and sulfides. Chemical zoning in the pyroxenes is indicated by changes in the gray scale, with darker gray interiors of the crystals being richer in magnesium.

Geoscience-type data bases (geochemical characterization, experimental data)

Needed data and data sets

c) Constraints on the internal structure

Primary data:

Gravity data

Topography (as map or spherical harmonic models)

Derived data:

Crustal thickness models

Profiles of density, compressibility, shear modulus, T

Convection models

Diverse data bases

Current solutions (geoscience data bases)

0	EarthRef.org Databases Home Page												
	🕨 🖒 🕂 🚱 http://d	earthref.org/index.h	📀 • 🔍 Google										
m	ISI Web of Kledge [v3.0]	Bibliothèque OMP	Apple France	.Mac	Amazon France	eBay France	Yahoo!	Informations (425) v	Apple (56) 🔻	>>			
	EarthRef.org GERM	MagIC SBN	ERESE	- 10			log-	in register feedba	ck contact c	opyright			
	Earth Refe	erence Da		in (Digital Archive	•							
	Datab	ases Events	Tools P	ublic	ations Links								
										-			

EarthRef Digital Archive (ERDA)

The **EarthRef Digital Archive (ERDA)** contains any type of digital data object associated with the Earth Sciences. Data objects may be part of non-published Earth Sciences projects ranging from data tables to diagrams to reports to geological maps to videos. Users may make contributions to the database, which may then be viewed and downloaded by using any of the search options listed below.

keywords | location | time scale | advanced | reference online help | register | upload your file

Reference Database

Search for relevant references to find your way into all searchable **EarthRef.org** databases. From this database you can also download digitized data files for their abstracts, data tables, appendices and technical notes. Registered users may also add references to the database.

keywords | advanced | reference online help | register | add your reference

GERM Reservoir Database

The **GERM Reservoir Database** contains summary data on the geochemistry of all reservoirs in the Earth. All GERM search results are customizable, allowing the user to **sort**and **convert units**. All GERM search results are also available to **download**in the format of your choice with one click. This relational database only includes peer-reviewed data. For non-reviewed data, please visit the **EarthRef Digital Archive**.

> reservoir | elements | advanced | reference availability | online help | register | add your reference

Geochemical Earth Reference Model

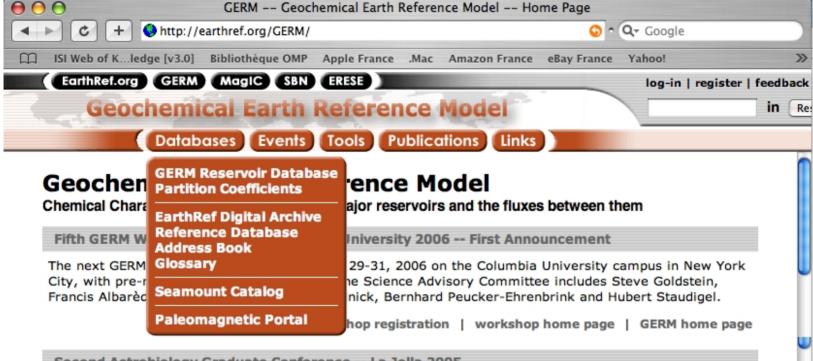
Chemical Characterization of the Earth, its major reservoirs and the fluxes between them

Fifth GERM Workshop Lamont, Columbia University 2006 -- First Announcement

The next GERM workshop will be held on May 29-31, 2006 on the Columbia University campus in New York City, with pre-meeting sessions on May 28. The Science Advisory Committee includes Steve Goldstein, Francis Albarède, Louise Kellogg, Roberta Rudnick, Bernhard Peucker-Ehrenbrink and Hubert Staudigel.

workshop registration | workshop home page | GERM home page

Second Astrobiology Graduate Conference -- La Jolla 2005


Since the birth of the Astrobiology discipline, there has been a need for a forum where graduate students and young researchers can present their research and discuss the field of astrobiology among peers. This conference hopes to provide that forum where graduate students can give scientific lectures to their peers, introduce students to astrobiology science in disciplines other than their own, train the next leaders in astrobiology research, provide a situation where a student can enhance their own network of possible collaborators, contacts and resources, and finally provide the opportunity for graduate students to come together and create/foster new interdisciplinary collaborative research and friendships. All graduate students and postdocs who study topics related to the origin of life on Earth and the distribution of life in the Universe should attend this conference.

workshop registration | workshop announcement page

¥

Second ERESE Teachers Workshop La Jolla 2005

The second annual ERESE workshop will be held at the Scripps Institution of Oceanography on 17-30 July, 2005. This workshop will be devoted to professional development in the pedagogy of plate tectonics for middle and high school teachers. Participants will explore and apply inquiry-based teaching techniques using authentic data and other materials from science archives at the Scripps Institution of Oceanography (SIO), one of the major institutions involved in the development of the plate tectonics paradigm. Workshop participants will work side-by-side with Earth and computer scientists, educators and library/data archive professionals to develop inquiry lessons in plate tectonics of their choice, in accordance with their

Second Astrobiology Graduate Conference -- La Jolla 2005

Since the birth of the Astrobiology discipline, there has been a need for a forum where graduate students and young researchers can present their research and discuss the field of astrobiology among peers. This conference hopes to provide that forum where graduate students can give scientific lectures to their peers, introduce students to astrobiology science in disciplines other than their own, train the next leaders in astrobiology research, provide a situation where a student can enhance their own network of possible collaborators, contacts and resources, and finally provide the opportunity for graduate students to come together and create/foster new interdisciplinary collaborative research and friendships. All graduate students and postdocs who study topics related to the origin of life on Earth and the distribution of life in the Universe should attend this conference.

workshop registration | workshop announcement page

¥

Second ERESE Teachers Workshop La Jolla 2005

The second annual ERESE workshop will be held at the Scripps Institution of Oceanography on 17-30 July, 2005. This workshop will be devoted to professional development in the pedagogy of plate tectonics for middle and high school teachers. Participants will explore and apply inquiry-based teaching techniques using authentic data and other materials from science archives at the Scripps Institution of Oceanography (SIO), one of the major institutions involved in the development of the plate tectonics paradigm. Workshop participants will work side-by-side with Earth and computer scientists, educators and library/data archive professionals to develop inquiry lessons in plate tectonics of their choice, in accordance with their

GERM Reservoir Database

The GERM Reservoir Database contains summary data on the geochemistry of all reservoirs in the Earth. All GERM search results are customizable, allowing the user to sort and convert units. All GERM search results are also available to download in the format of your choice with one click. This relational database only includes peer-reviewed data. For non-reviewed data, please visit the EarthRef Digital Archive.

Your Own References

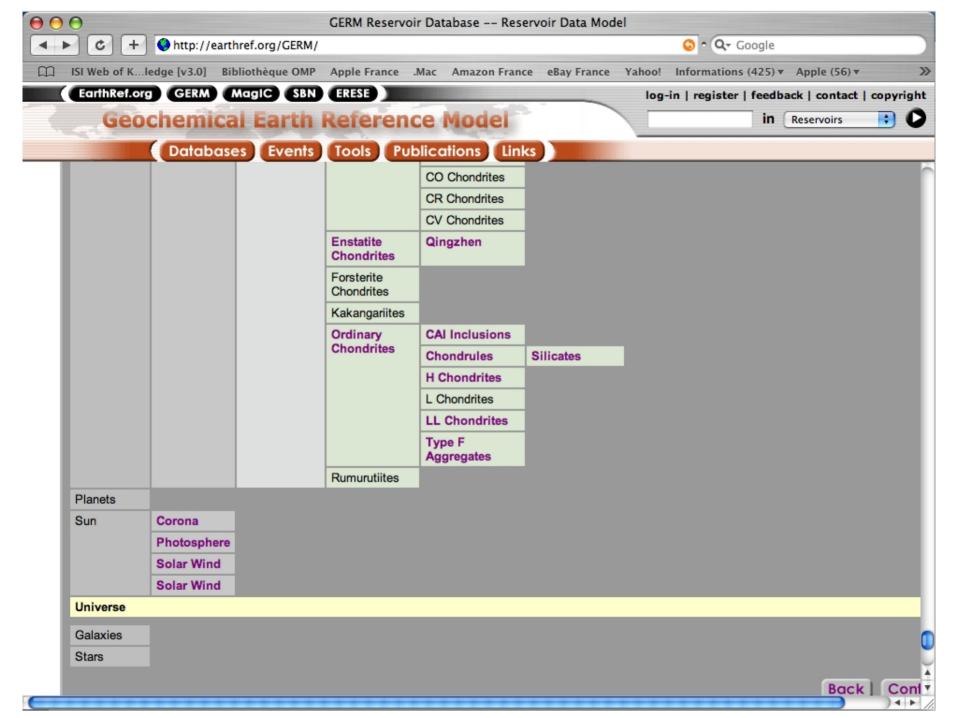
To upload one of your publications, please select an option and continue by clicking the **Upload** button. If you already are an EarthRef.org user you don't have to register again, otherwise click the **Register** button.

Register

Upload

Upload your publication reference

Update an existing reference


Search the Periodic Table

P/G	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H															1 H	2 H	
2	3 Li	4 Be													7 N	8 0	9 F	1 N
3	11 Na	12 Mg											13 AI	14 Si	15 P	16 S	17 Cl	1 A
4	19 K	20 Ca	21 Sc	22 Ti	23 V		25 Mn	26 Fe	27 Co		29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	3 K
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag		49 In	50 Sn	51 Sb	52 Te	53 1	5 X
6	55 Cs	56 Ba	* Lan	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir		79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	8 R
7	87 Fr	88 Ra	** Act															
Lant	* hani	ides	57 La	58 Ce	59 Pr	60 Nd	61 Pm					66 Dy		68 Er	69 Tm	70 Yb		
** A	ctini	des	89 Ac	90 Th	91 Pa	92 U												

News

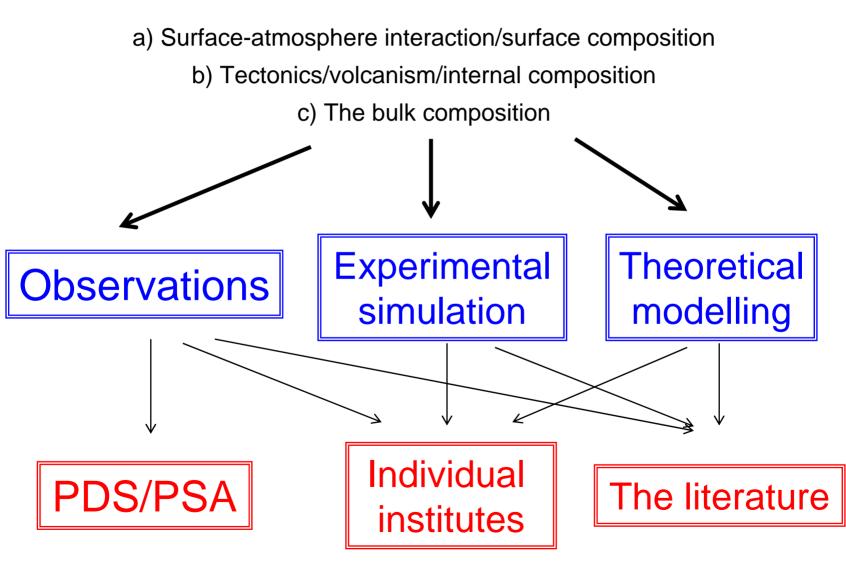
0			GERM Reserve	oir Database Reserv	oir Data Mod	lel			
- C +	😣 http://eart	href.org/GERM/					🛇 ^ 🔍 Google		
ISI Web of K	ledge [v3.0] Bil	bliothèque OMP	Apple France	.Mac Amazon France	eBay France	Yahoo!	Informations (425)	Apple (56) ▼	
EarthRef.or	g GERM	MagIC SBN	ERESE			log	-in register feedb	ack contact	copyrigl
Geo	chemica	i Earth	Referen	ce Model			in	Reservoirs	
-	Database	es Events	Tools Pu	blications Links		_			
				Troodos					
Moon									
Apollo 11	Anorthosites								
	Breccias								
	Crystalline	Group 1							
	Rocks	Group 2							
	Soil								
Solar System	n								
Comets	Halley								
Meteorites	Iron Meteorites	Chemical	IAB Meteorites						
	weleontes		IC Meteorites						
			IIAB Meteorites						
			IIC Meteorites						
			IID Meteorites						
			IIE Meteorites						
			IIF Meteorites						
			IIG Meteorites						
			Meteorites						
			IIICD Meteorites						
			IIIE Meteorites						
			IIIF Meteorites	-					
			IVA Meteorites	i)4

$\Theta \Theta \Theta$				GER	M Reservo	ir Da	tabase	Sear	rch	Results						
< > C	+ 😣 http://e	arthref	.org/GERM/									📀 ^ Q-	Google			
ISI Web o	of Kledge [v3.0]	Biblio	thèque OMP	Apple F	rance .Ma	c Ai	mazon F	rance	eBa	y France	Ya	hoo! Information	ns (425) 🔻	Apple (56	5) v	»
EarthR	ef.org GERM	Mag	GIC SBN	ERESE				- B-6-	,			log-in registe	r feedba	ack conta	ict cop	yright
G	eochemi	cal	Earth	Refe	rence	M	ode	1					in (Reservoirs	•	0
	Datab	ases	Events	Tools	Public	catio	ons	Links								
					4 Res							_				
			Database	develo	pment a	ndn	nainte	nance	by	the P/	ACE	RTeam				
	Home Sear	ch	Register													
	GERM Da	ataba	se Search	Results	Sa	ve as .				÷ s	ort by	/	Jnits			
	Reservoir	z	Element	Value	Median	SD	Low	High	N	Unit	I	Reference	Source	e(s)		
	Zagami Shergottite	47	Ag	37						ppb		Laul et al. 1972				
	Zagami Shergottite	79	Au	2.1						ppb	I	Laul et al. 1972				
	Zagami Shergottite	83	Bi	1.1						ppb	I	Laul et al. 1972				
	Zagami Shergottite	48	Cd	71						ppb	I	Laul et al. 1972				
	Zagami Shergottite	55	Cs	336						ppb	I	Laul et al. 1972				
	Zagami Shergottite	49	In	22.2						ppb	I	Laul et al. 1972				
	Zagami Shergottite	77	Ir	0.1						ppb		Laul et al. 1972				
	Zagami Shergottite	37	Rb	6						ppm	I	Laul et al. 1972				
	Zagami Shergottite	34	Se	330						ppb		Laul et al. 1972				
	Zagami Shergottite	81	TI	11						ppb	I	Laul et al. 1972				
	Zagami Shergottite	30	Zn	55						ppm	I	Laul et al. 1972				A
													B	ack]		•

EarthRef Who's Who Listing

EarthRef and PACER

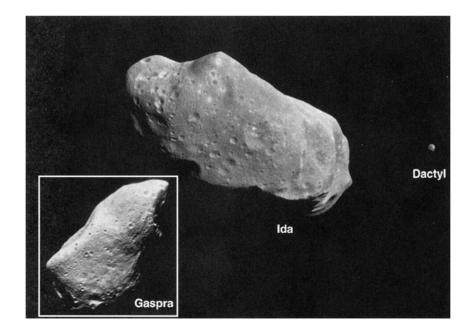
- · Coordination -- Hubert Staudigel, Scripps Institution of Oceanography, UCSD
- WWW site and Database Management -- Anthony Koppers, Scripps Institution of Oceanography, UCSD


GERM Steering Committee

- Francis Albarede, Ecole Nationale Superieure de Lyon, France
- Don Anderson, California Institute of Technology
- Louis Derry, Cornell University
- William McDonough, University of Maryland
- Henry Shaw, Lawrence Livermore National Laboratory
- Hubert Staudigel (Chair), Scripps Institution of Oceanography, UCSD
- William White, Cornell University
- Alan Zindler, Florida State University

GERM Editors

- Reservoir Composition and Fluxes -- William McDonough, University of Maryland
- Core -- William McDonough
- Early Earth -- Stein Jacobsen, Harvard University
- Mantle Reservoirs -- Alan Zindler, Florida State University
- · Oceanic Crust and MORB Melting -- Charles Langmuir, Lamont-Doherty Geological Observatory
- Subduction Zones -- Gray Bebout, Lehigh University, and Tim Elliott, Bristol University
- Continental Crust -- Roberta Rudnick, Harvard University
- Near Surface Reservoirs -- John Edmond, Massachusetts Institute of Technology
- Atmosphere -- Ralph Keeling, University of California, San Diego
- The Geochemical Record -- Jan Veizer, University of Ottawa
- Partition Coefficients and Modeling Tools -- Roger Nielsen, Oregon State University


Quantifying the Martian geochemical reservoirs

Other ideas for science cases (ISSI)

Chemical variability and planet building processes in the early solar system.

