

Super-Earths Explorer

J. Schneider, P.Riaud, G. Tinetti et al.

ULg / CSL / LESIA / LUAN / ETH-Zurich / U. Vienna LUTH / IAP / Obs. Geneva / U. Amsterdam / U. Torun LAOG / U. Nantes / Obs. Tautenburg

Mission philosophy

The utlimate goal of exoplanetology is the search for life on exoplanets.

For a better characterization of exo-lifes, it is necessary to have a good knowledge of their environmental conditions.

1/ Physical characterisation of planets already detected (in 2016!) by radial velocity (and astrometry).

2/ Compare characteristics of different planets in different systems

===> comparative exoplanetology

3/ Compare reflected light to thermal emission (Darwin) approach

Physical characterization - understand how planets work:

- Atmospheric gas: composition, density, ..
- Clouds: opacity
- Surface: reflectivity, inhomogeneities
- Environment: rings? (==> satellites)

Present experience:

- diversity of Solar System bodies
- diversity and surprises on orbits (radius, eccentricities)
- diversity of masses

==><u>anticipate diversity</u> of other characteristics and

<u>new surprises</u> ==> stimulation for Darwin

- Other science:
 - Exo-zodi
 - Debris disks
 - UV imaging (parent star characteristics, AGNs etc)
 - Follow-up of planetary transits (ground, CoRoT, Kepler, ...)
 - Reflected light of hot Jupiters (5 x better than CoRoT)

How to make the physical characterization ?

Stellar flux reflected by the planet:

==> very rich information content.

Science goal

Jupiter to Super-Earth like planets

First detection of cold giant planets (> 1 AU and < 5AU) around nearby stars

Science goal

Atmosphere's transparency and clouds

Science goal

Atmosphere transparency and clouds

Science goal

 $F_{pl}(t)$

« Climat » variation: example of Neptune

Europlanet N2 - Helsinki Aug. 06

50 % of orbits have an eccentricity > 0.35

$$F_{pl}(t)$$

Surroundings Example: rings

Relevance:

indicative of presence

of satellites

6 june: a ring around 2M12072 ?

Science goal

Sensitivity to viewing geometry

- For Rayleigh scattering by molecules or haze particles
- => Strong phase dependence expected: inclination = 0° p=constant & high pos. angle rotates inclination = 70° p=high for large separation
- Scattering by clouds produces only little polarization

Science goal

Jupiter at 1 AU (orbital phase 90°)

Some open questions:

- Ambiguity on planet radius: from Si to C dominated planet, radius increases by a factor 1.3 (Grasset et al 2006)
 - ==> ambiguity on Albedo 1.7
 - ==> need Darwin to know the planet radius
- Large planets without or tenuous atmosphere ? Possible scenario: gas in protoplanetary disk blown off by strong stellar wind: ==> bare giant planet cores = Super-Earths with teneous atmosphere

Type of planets.

Controlled by telescope size (1.5 m)

Flux limit: $R_{pl} > 3 R_{\oplus}$

super-Earths

Ang. Resol. limit: orbits 1 – 5 UA « cold » planets

Europlanet N2 - Helsinki Aug. 06

Payload Concept: Coronagraphic Off-Axis Telescope SEE-COAST

Extra-solar planet detection map computed on data simulated with the CAOS software (*Carbillet et al., MNRAS 2005*). The colors correspond to detections with different probabilities of false alarm (*Ferrari et al., IAUC 200*). The lens is at the location of the simulated planet.

Spacecraft philosophy

UV-Visible off-axis Telescope

1,5 m in diameter (minimum)

Optimized for High contrast imaging (Coronagraphy)

Ultra-smooth mirror (WFE λ/100 rms @ 633 nm)

Low resolution spectroscopy

for planet N2 - Helsinki Aug. 06 22

Instruments

Phase-Mask coronagraphs: FQPM / AGPM / PKC / Apodized ...

Europlanet N2 - Helsinki Aug. 06 The HRCC camera possesses three wavelength bands

Targets of SEE-COAST

Planets known from RV (2006)

Constraints on mass, *inclination*, *eccentricity*, Albedo in visible and presence of CH_4 and CO2 compounds

Science with COAST

Super-Earths?

Science with SEE-COAST

Super-Earths?

Science with SEE-COAST

> High contrast UV imaging Giant planet characterization ?

Mission strategy

Two extreme options: Exhaustive monitoring of a few (10-30) planets Systematic survey of 100-150 targets

Mission duration: >5 years

Instruments (I)

	HRCC	WFCC	HRI-SUV	HRI-LUV
	(High Resolution Coronagraphic Camera)	(Wide Field Coronagraphic Camera)	(High resolution Imager – Short UV)	(High resolution Imager – Long UV)
Spectral Coverage	500 – 1000 nm	400 – 1000 nm	92 – 200 nm	200 – 400 nm
Detector Size	1 – 2048 x 2048	1 – 4096 x 4096	4 – 2048 x 2048	4 – 2048 × 2048
Туре	CCD (red – 16 bis)	CCD (broadband – 16 bits)	MCP (CsRbTe – 12 / 16 bits)	MCP (CsRbTe – 12 / 16 bits)
Dynamic	10 ⁵	10 ⁵	10 ⁵	10 ⁵
Qe	~ 85%	~ 70%	~ 40%	~ 40%
FOV	17" x 17"	1,8' × 1,8'	4 x 13" x 13"	4 x 30" x 30"
IFOV	34 mas	27 mas	6 mas	13 mas
Angular resolution	68 mas	55 mas	12 mas	27 mas
	Phase-mask coronagraphy	Coronagraphy	Coronagraphy	Coronagraphy
Readout noise	1 e- / Photon counting	2 e-	Photon counting	Photon counting
Dark current	10 e-/h	10 e-/h	9 10 ⁴ cnts/s/pixel	8 10 ⁶ cnts/s/pixel

Two cameras in the visible wavelengths Two UV-camera (parallele mode with the HRCC camera)

The priority is the HRCC^E Capher N²(PHelsinki-Mask coronagraphy) ³¹

Instruments (II)

All cameras have various coronagraphic devices

The HRCC camera allows simultanous imaging of three different bands (650-760 nm / 750-860 nm / 850-960 nm)

Each bands can provide three different images for low spectral resolution capabilities and spectral differential imaging (R ~30)

Three calibration frames (one per band) can be added on the CCD

32

The CCD 2048 x 2048 ---- 9 to 12 simultanous images

One of the two HRI cameras can be exploited simultanously in the four extended felloplaget N2 w Helsinki Aug. 06

Instruments (IV)

Polarimetric channel

En cours (Zimpol-Zurich)

Phase-Mask Coronagraphy

Ex: Coronagraphic results in K band (VLT-PF prototyping)

- WFE of λ/70 rms
- both polarizations (vectorial analysis)
- Residual chromatism
- Amplitude mismatches

Filters	lc (R=5)	K (R=5.5)	N (R=4.86)
Null Depth	3.5×10⁻⁵	1.7×10-5	4×10 ⁻⁵
Contrast at 3 /d	2.9×10 ⁻⁷	1.4×10 ⁻⁷	3.3×10 ⁻⁷
Grating period (C	305 nm	740 nm	3.3 m

SEE performances

Detection simulation:

SNR for $3R_{\oplus}$

Expected Performances

Results of CoastSim

36

Expected Performances

Results of CoastSim

<u>CoastSim is ready but :</u>

Add the telescope DSP Add powerfull subtraction analysis Add planetary UV flux

This first signal to noise simulation shows good opportunities to detect Exo-Zodiacal dust down to 1-10 Zod and Jupiter-like planets.

Jupiter-like planets

- JWST/MIRI in thermal IR only allows detection of hot giant planets with T>350-400K
- VLT-PF complementarity: characterisation in the visible with SEE-COAST

Giant planets detection around DARWIN targets allows quantifying the contamination effect of these planets in the beam of the interferometer in thermal infrared

Targets of SEE-COAST

Super-Earths

TPF/DARWIN catalog for nearby stars

200 potential targets Europlanet N2 - Hels for rocky planets

Habitable Zone for various stars depending the spectral type

Present status

- To be submitted to ESA « Cosmic Vision » call for mission
- Launch forseen for 2016

Super-Earths Explorer will open a new era in « exo-geophysics »

Participation from Europlanet atmosphere modellization experts is welcome