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Mass vs. semi-major axisMass vs. semi-major axis

0.02 AU [1 day]

?
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[Vidal-Madjar et al. 2003]

- Hydrogen-cloud observed around HD209458 b with HST
- Expanded atmosphere
- Estimated lower mass loss rate ≥ 1010 g s-1

Observation

Full hydrodynamic blow-off model results for HD209458 b
- Atmosphere expansion ≈ 3 planetary radii
- Estimated maximal mass loss rate ≈ 7 × 1010 g s-1

[e.g., Lammer et al., 2003; Yelle 2004; Tian et al. 
2005; Munoz 2007; Penz et al. 2007]

BUT !
Did they really observe the

atmospheric hydrogen?

Evaporation of close & H-rich gas giantsEvaporation of close & H-rich gas giants
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Hydrogen ENAs → form the observed cloudHydrogen ENAs → form the observed cloud

[Holmstroem et al., Nature under review, 2007]

Stellar wind plasma interaction with an extended hydrogen 
atmosphere can explain the observations 
→ information of the stellar wind around an other star at   

0.045 AU!

A parameter study can give information about the   
magnetosphere and planetary exosphere

Very good example for solar system and exoplanet science 
synergies!
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Evaporation of close-in H-rich gas giantsEvaporation of close-in H-rich gas giants

Penz et al 2007
Penz et al 2007

[Penz et al. from revised version, submitted, PSS, 2007]
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Evaporation of close-in H-rich gas giants in 
orbits around solar-like stars
Evaporation of close-in H-rich gas giants in 
orbits around solar-like stars

Includes the X-ray/EUV evolution history from 
Ribas et al., ApJ, 2005 EGP I: → 1026 kg;   EGP II: → 1027 kg
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CME induced H+ ion pick up loss at different 
orbital distances
CME induced H+ ion pick up loss at different 
orbital distances

[Lammer et al. 2007]
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Early Titan: N2 Hydrodynamic modelling
→ EUV 15, 20, 30 and 100 times higher

Early Titan: N2 Hydrodynamic modelling
→ EUV 15, 20, 30 and 100 times higher

[preliminary model results by Penz]

E
xo

ba
se
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No solar analogy for habitable zones of lower mass 
stars (K and M-types)
No solar analogy for habitable zones of lower mass 
stars (K and M-types)
Atmospheric effects and
habitability of Earth-like
exoplanets within close-in 
habitable zones

- Enhanced EUV and X-rays

- Neutron fluxes

- Coronal mass ejections 
(CMEs)

- Intense solar proton/electron   
fluxes (e.g., SPEs)

Solar – stellar analogy
- Data from Sun + Stars

Space and ground-based data
- Correlated analysis of events
- Establishing an extreme event data-base

(Venus, Earth, Mars, exoplanets)
- Input for models
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X-ray/EUV activity of low mass starsX-ray/EUV activity of low mass stars

[Scalo et al, Astrobiology,  2007]

Early 
Venus, Earth, Mars,
Titan, gas giants, 

comets Exoplanets

0.1 Gyr

0.3 Gyr 1.0 Gyr

3.16 Gyr 10 Gyr
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Time evolution of the exobase temperature based 
on Earth's present atmospheric composition 
Time evolution of the exobase temperature based 
on Earth's present atmospheric composition 

The blow-off temperature for atomic hydrogen of about 5000 K would 
be exceded during the first Gyr

For XUV fluxes more than 10 times the present flux (> 3.8 Gyr ago) one 
would expect extremely high exospheric temperatures

Therefore, the CO2 abundance in the Earth's atmosphere during the 
first 500 Myr should be much higher than ~ 3.5 Gyr ago to survive

[Kulikov et al., SpSciRev, 2007]

? Hydrostatic equilibrium is assumed 
→no hydrodynamic flow and   

adiabatic cooling 

CO2? 5000 K (H atoms)
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[Tian et al., JGR Planets, submitted, 2007]

× EUV

Coupled thermosphere – dynamic model yields 
interesting results

Kasting private communications, ISSI, Bern,
comparative Aeronomy Workshop, June 2007

Thermosphere model coupled with hydrodynamic flow model up to the exobase; above 
the exobase level kinetic Jeans approach

For XUV fluxes more than 6 times the present flux (> 3.8 Gyr ago) one can expect 
extremely expanded upper atmospheres if not huge amounts of additional IR coolers like
CO2 are present → extreme nonthermal loss rates can be expected (no magnetic 
protection)

Therefore, the CO2 abundance in the Earth's atmosphere during the first 500 Myr should 
be much higher than ~ 3.5 Gyr ago → in agreement with Kulikov et al. SpSciRev, 2007

Hydrostatic equilibrium is 
only valid until 5.3 EUV
(~ 3.5 Ga ago) for higher 
EUV fluxes the O and N 
start to flow 
hydrodynamically and 
adiabatic cooling occurs 
with related atmospheric 
expansion
→ extreme non-thermal 

loss rates can be   
expected

→ EUV >> 20 during the
first 500 Ga 

present Earth composition
(low CO2 content)

12.5 REarth

Present Earth’s magnetopause10 REarth

Hydrostatic equilibrium → Texo < 8000 K

1.4 REarth
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Soft X-ray and EUV induced expansion of the upper 
atmospheres can lead to high non-thermal loss rates
Soft X-ray and EUV induced expansion of the upper 
atmospheres can lead to high non-thermal loss rates

[Lammer et al. 2007]

present Earth
Present Venus,
Mars

Early Earth ?
terrestrial
exoplanets



14

IW
F 

G
ra

z 
…

IW
F 

G
ra

z 
…

XUV response of the exobase temperature on a 
Venus-like thermosphere (dry case) 
XUV response of the exobase temperature on a 
Venus-like thermosphere (dry case) 

[Kulikov et al. 2006]

Far from hydrodynamic “blow-off”
Texo < 8000 K – hydrostatic 
equilibrium is valid

Exobase for 
moderate 

solar activity
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Hot and background O atoms as function of XUV 
flux for a ”dry” Venus atmosphere
Hot and background O atoms as function of XUV 
flux for a ”dry” Venus atmosphere

Extreme plasma interaction with extended atmosphere ?

[Kulikov et al. 2006]

IP

IP
O2

+ + e → O* + O* + ΔE

IP
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Plasma environment within close-in habitable zones Plasma environment within close-in habitable zones 

Versatile Advection Code (VAC): simulation
of stellar CME propagation



17

IW
F 

G
ra

z 
…

IW
F 

G
ra

z 
…

Plasma environment within close-in habitable zones Plasma environment within close-in habitable zones 
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3D MHD simulation of Venus solar wind interaction 
with present & extreme conditions → N. Terada et al.

3D MHD simulation of Venus solar wind interaction 
with present & extreme conditions → N. Terada et al.
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O+ pick up loss rates of present Venus at 0.7 AUO+ pick up loss rates of present Venus at 0.7 AU
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O+ pick up loss rates of Venus 4.25 Gyr ago; 30 XUV; 
nsw=1000 cm-3 or M-star Exo-Venus at 0.3 AU
O+ pick up loss rates of Venus 4.25 Gyr ago; 30 XUV; 
nsw=1000 cm-3 or M-star Exo-Venus at 0.3 AU

700 times 
larger O+

pick up
loss rate
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O+ pick up loss rates of Venus 4.5 Gyr ago 100 XUV; 
nsw=1000 cm-3 or (M-star) Exo-Venus at 0.3 AU
O+ pick up loss rates of Venus 4.5 Gyr ago 100 XUV; 
nsw=1000 cm-3 or (M-star) Exo-Venus at 0.3 AU

8000 times 
larger O+

pick up
loss rate

~ 2 bar 
→ 150 Myr

Obstacle 
~ 2000 km
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3D MHD simulation of a Venus-like planet under  
extreme solar/stellar wind conditions → 0.05 AU
3D MHD simulation of a Venus-like planet under  
extreme solar/stellar wind conditions → 0.05 AU

200000 times 
larger O+

pick up
loss rate

~ 50 bar 
→ 150 Myr
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Water inventories and atmospheres are strongly   
effected due to non-thermal loss processes
Water inventories and atmospheres are strongly   
effected due to non-thermal loss processes

Atmospheres will
most likely evolve 

different compared 
to that of the Earth 

Mercury

Due to its larger expansion for 
an Earth-like atmosphere 
composition, non-thermal

loss rates would be much higher
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CME plasma pressure in the upper atmosphere are necessary! 

Ion pick up is only one of several non-thermal loss processes.  
Inclusion of ionospheric-plasma bubbles, which may be triggered by 
instabilities, sputtering, cool-in outflow

Applications of 3D hybrid-codes (ion pick up & viscous processes including loss 
due to plasma instabilities) + 3D sputtering codes  

Weak magnetic planets may be eroded down to their core-mass/size 
→ CoRoT should discover such cores and there exists an evaporation 

boundary beyond gas giants should keep their mass over evolutionary 
time scales 

Conclusions Conclusions 
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Ongoing activities and future outlook Ongoing activities and future outlook 
Solar/stellar drivers for thermal and non-thermal escape processes

Thermosphere - ionosphere – exosphere → escape  

Recent and preliminary modelling efforts for extreme solar/stellar conditions 

1D diffusive-gravitational equilibrium and thermal balance modelling
of Venus and Martian-type CO2 atmospheres under extreme XUV   
conditions → early Venus, early Mars & CO2-rich terrestrial  
exoplanets

ionosphere and 1D and 3D hot particle and exosphere modelling

application of test particle and 3D MHD and 3D hybrid models

for upper atmosphere – solar wind interaction under extreme

radiation/plasma conditions → early Venus, Mars, etc.
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