# Update on research related to (exo)planets under extreme conditions

## Helmut Lammer et al. (DWG7) Space Research Institute, Austrian Academy of Science, Schmiedlstr. 6, A-8042, Graz, Austria [helmut.lammer@oeaw.ac.at]

Europlanet N2 Meeting, FMI, Helsinki, 29 – 31, 10. 2007



## Mass vs. semi-major axis



exoplanet.eu (23/09/07)

## INF Evaporation of close & H-rich gas giants

### Observation

- Hydrogen-cloud observed around HD209458 b with HST
- Expanded atmosphere
- Estimated lower mass loss rate  $\geq 10^{10}$  g s<sup>-1</sup> [Vidal-Madjar *et al.* 2003]

### Full hydrodynamic blow-off model results for HD209458 b

- Atmosphere expansion  $\approx 3$  planetary radii
- Estimated maximal mass loss rate  $\approx 7 \times 10^{10}$  g s<sup>-1</sup> [e.g., Lammer *et al.*, 2003; Yelle 2004; Tian *et al.* 2005; Munoz 2007; Penz *et al.* 2007]

**BUT !** Did they really observe the atmospheric hydrogen?



## **WF** Hydrogen ENAs $\rightarrow$ form the observed cloud

Stellar wind plasma interaction with an extended hydrogen atmosphere can explain the observations
→ information of the stellar wind around an other star at 0.045 AU!

A parameter study can give information about the magnetosphere and planetary exosphere

Very good example for solar system and exoplanet science synergies!

[Holmstroem et al., Nature under review, 2007]



## **WF** Evaporation of close-in H-rich gas giants





[Penz et al. from revised version, submitted, PSS, 2007]



# **Evaporation of close-in H-rich gas giants in orbits around solar-like stars**

| t <sub>exo-form</sub> [Myr] | d [AU] | <i>P</i> [d] | EGP I: <i>L</i> <sub>th</sub> [%] | EGP II: <i>L</i> th [%] |
|-----------------------------|--------|--------------|-----------------------------------|-------------------------|
| 50                          | 0.02   | 1            | 100 %                             | ~19 %                   |
| 50                          | 0.05   | 4            | ~19 %                             | ~2 %                    |
| 50                          | 0.13   | 16           | ~3 %                              | <1 %                    |
| 100                         | 0.02   | 1            | 100 %                             | ~13 %                   |
| 100                         | 0.05   | 4            | ~13 %                             | ~1 %                    |
| 100                         | 0.13   | 16           | ~2 %                              | <1 %                    |
| 200                         | 0.02   | 1            | ~89 %                             | ~9 %                    |
| 200                         | 0.05   | 4            | ~9 %                              | ~1 %                    |
| 200                         | 0.13   | 16           | ~1 %                              | < 1 %                   |
| 300                         | 0.02   | 1            | ~73 %                             | ~7 %                    |
| 300                         | 0.05   | 4            | ~7 %                              | < 1 %                   |
| 300                         | 0.13   | 16           | < 1 %                             | < 1 %                   |

Includes the X-ray/EUV evolution history from Ribas *et al.*, ApJ, 2005 EGP I:  $\rightarrow 10^{26}$  kg; EGP II:  $\rightarrow 10^{27}$  kg





## **CME induced H<sup>+</sup> ion pick up loss at different orbital distances**









# Early Titan: N<sub>2</sub> Hydrodynamic modelling $\rightarrow$ EUV 15, 20, 30 and 100 times higher

#### [preliminary model results by Penz]





## No solar analogy for habitable zones of lower mass stars (K and M-types)

Atmospheric effects and habitability of Earth-like exoplanets within close-in habitable zones

- Enhanced EUV and X-rays
- Neutron fluxes
- Coronal mass ejections (CMEs)
- Intense solar proton/electron fluxes (e.g., SPEs)



#### Solar – stellar analogy

- Data from Sun + Stars

### Space and ground-based data

- Correlated analysis of events
- Establishing an extreme event data-base (Venus, Earth, Mars, exoplanets)
- Input for models

## WF X-ray/EUV activity of low mass stars





[Scalo et al, Astrobiology, 2007]

## Time evolution of the exobase temperature based on Earth's present atmospheric composition



- The blow-off temperature for atomic hydrogen of about 5000 K would be exceded during the first Gyr
- For XUV fluxes more than 10 times the present flux (> 3.8 Gyr ago) one would expect extremely high exospheric temperatures
- Therefore, the  $CO_2$  abundance in the Earth's atmosphere during the first 500 Myr should be much higher than ~ 3.5 Gyr ago to survive



# **WF** Coupled thermosphere – dynamic model yields interesting results



Hydrostatic equilibrium is only valid until 5.3 EUV (~ 3.5 Ga ago) for higher EUV fluxes the O and N start to flow hydrodynamically and adiabatic cooling occurs with related atmospheric expansion

- → extreme non-thermal loss rates can be expected
- → EUV >> 20 during the first 500 Ga

- Thermosphere model coupled with hydrodynamic flow model up to the exobase; above the exobase level kinetic Jeans approach
- For XUV fluxes more than 6 times the present flux (> 3.8 Gyr ago) one can expect extremely expanded upper atmospheres if not huge amounts of additional IR coolers like CO<sub>2</sub> are present → extreme nonthermal loss rates can be expected (no magnetic protection)
  - Therefore, the CO<sub>2</sub> abundance in the Earth's atmosphere during the first 500 Myr should be much higher than ~ 3.5 Gyr ago  $\rightarrow$  in agreement with Kulikov *et al.* SpSciRev, 2007 <sub>12</sub>

# **Soft X-ray and EUV induced expansion of the upper atmospheres can lead to high non-thermal loss rates**



[Lammer et al. 2007]



Early Earth ? terrestrial exoplanets



## **WF** XUV response of the exobase temperature on a Venus-like thermosphere (dry case)



<sup>[</sup>Kulikov et al. 2006]

# **WF** Hot and background O atoms as function of XUV flux for a "dry" Venus atmosphere

![](_page_14_Figure_1.jpeg)

### **Extreme plasma interaction with extended atmosphere ?**

## **WF** Plasma environment within close-in habitable zones

![](_page_15_Figure_1.jpeg)

## INF Plasma environment within close-in habitable zones

![](_page_16_Figure_1.jpeg)

## **3D** MHD simulation of Venus solar wind interaction with present & extreme conditions $\rightarrow N$ . Terada *et al.*

| Table 1. Ion-Neutral Reaction Rates (continued) |                                             |                                                               |         |  |  |  |
|-------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|---------|--|--|--|
| Reaction No.                                    | Reaction                                    | Rate Constant, [cm <sup>3</sup> s <sup>-1</sup> ]             | Me, V,  |  |  |  |
| (R69 <sup>3</sup> )                             | $H^+ + CO_2 \rightarrow HCO^+ + O$          | $3.8 \times 10^{-9}$                                          | V, M    |  |  |  |
| (R70 <sup>3</sup> )                             | $H^+ + O_2 \rightarrow O_2^+ + H$           | $1.17 \times 10^{-9}$                                         | Me?     |  |  |  |
| (R71)                                           | $H^+ + NO \rightarrow NO^+ + H$             | $1.9 \times 10^{-9}$                                          |         |  |  |  |
| (R72)                                           | $H^+ + O \rightarrow O^+ + H$               | $(*)$ 2.2 × 10 <sup>-11</sup> $T_i^{1/2}$                     | V, E, M |  |  |  |
| (R73 <sup>**</sup> )                            | $H^+ + H_2 (v \ge 4) \rightarrow H_2^+ + H$ | (**) 4.0 × 10 <sup>-9</sup> (est.)                            |         |  |  |  |
| _                                               |                                             |                                                               |         |  |  |  |
| (R74')                                          | $Ar^+ + CO_2 \rightarrow CO_2^+ + Ar$       | $5.0 \times 10^{-10}$ $T_i \le 700 \text{K}$                  |         |  |  |  |
|                                                 |                                             | $5.0 \times 10^{-10} (700/T_i)$ $T_i > 700 K$                 |         |  |  |  |
| (R75 <sup>3</sup> )                             | $Ar^+ + O_2 \rightarrow O_2^+ + Ar$         | $4.9 \times 10^{-11} (300/T_i)^{0.78}$ $T_i \le 900 \text{K}$ |         |  |  |  |
|                                                 |                                             | $2.08 \times 10^{-11} (T_i/900)^{1.65}$ $T_i > 900 K$         |         |  |  |  |
| (R76')                                          | $Ar^+ + NO \rightarrow NO^+ + Ar$           | $3.1 \times 10^{-10}$                                         |         |  |  |  |
| (R77 <sup>2</sup> )                             | $Ar^+ + CO \rightarrow CO^+ + Ar$           | $3.7 \times 10^{-11} (300/T_i)^{0.43}$ $T_i \le 900 \text{K}$ |         |  |  |  |
|                                                 |                                             | $2.3 \times 10^{-11} (T_i/900)$ $T_i > 900 \text{K}$          |         |  |  |  |
| (R78')                                          | $Ar^+ + N_2 \rightarrow N_2^+ + Ar$         | $1.1 \times 10^{-11} (T_i/300)^{1.13}$                        |         |  |  |  |
| (R79')                                          | $Ar^+ + H_2 \rightarrow ArH^+ + H$          | $8.72 \times 10^{-10}$                                        |         |  |  |  |
| (R80 <sup>'</sup> )                             | $Ar^+ + H_2 \rightarrow H_2^+ + Ar$         | $1.78 \times 10^{-11}$                                        |         |  |  |  |
| _                                               |                                             |                                                               |         |  |  |  |
| (R81"')                                         | $Ne^+ + CO_2 \rightarrow CO^+ + O + Ne$     | $6.0 \times 10^{-11}$                                         |         |  |  |  |
| (R82"')                                         | $Ne^+ + O_2 \rightarrow O^+ + O + Ne$       | $6.0 \times 10^{-11}$                                         |         |  |  |  |
| (R83"')                                         | $Ne^+ + NO \rightarrow N^+ + O + Ne$        | $1.32 \times 10^{-10}$                                        |         |  |  |  |
| (R84"')                                         | $Ne^+ + N_2 \rightarrow N_2^+ + Ne$         | $1.1 \times 10^{-13}$                                         |         |  |  |  |
| _                                               |                                             |                                                               |         |  |  |  |
| (R85"')                                         | $Na^+ + O_2 \rightarrow products$           | $< 1.0 \times 10^{-13}$                                       |         |  |  |  |
| (R86"')                                         | $Na^+ + N_2 \rightarrow products$           | $< 1.0 \times 10^{-13}$                                       |         |  |  |  |
| (R87"')                                         | $Na^+ + H_2 \rightarrow products$           | $< 1.0 \times 10^{-13}$                                       |         |  |  |  |

v: vibrational state, (\*) charge exchange, see Table 3, (\*\*) not included

#### 1.2 Dissociative recombination rates

| Table 2. Dissociative Recombination Rates |                                 |                                                               |             |  |  |  |
|-------------------------------------------|---------------------------------|---------------------------------------------------------------|-------------|--|--|--|
| Reaction No.                              | Reaction                        | Rate Constant, [cm <sup>3</sup> s <sup>-1</sup> ]             | Me, V, E, M |  |  |  |
| (R101')                                   | $CO_2^+ + e \rightarrow CO + O$ | $3.5 \times 10^{-7} (300/T_e)^{0.5}$                          | V, E, M     |  |  |  |
| (R102')                                   | $O_2^+ + e \rightarrow O + O$   | $2.0 \times 10^{-7} (300/T_e)^{0.70}$ $T_e \le 1200 \text{K}$ |             |  |  |  |
|                                           |                                 | $7.4 \times 10^{-8} (1200/T_e)^{0.56}$ $T_e > 1200 \text{K}$  | V, E, M     |  |  |  |
| (R103')                                   | $NO^+ + e \rightarrow N + O$    | $4.0 \times 10^{-7} (300/T_e)^{0.5}$                          | V, E, M     |  |  |  |
| (R104')                                   | $CO^+ + e \rightarrow C + O$    | $2.75 \times 10^{-7} (300/T_e)^{0.55}$                        | V, E, M     |  |  |  |
| (R105')                                   | $N_2^+ + e \rightarrow N + N$   | $2.2 \times 10^{-7} (300/T_e)^{0.39}$                         | V, E, M     |  |  |  |
| (R106")                                   | $H_2^+ + e \rightarrow H + H$   | $1.6 \times 10^{-8} (300/T_e)^{0.43}$ for $v = 0$             | Me, M       |  |  |  |
| (R107")                                   | $H_3^+ + e \rightarrow H_2 + H$ | uncertain, not included                                       | Me          |  |  |  |
|                                           |                                 | v: vibrational state                                          |             |  |  |  |

#### 1.3 Photoionization

Photoionization rates are calculated with a solar flux model, photoabsorption cross sections, photoionization cross sections in Schunk and Nagy [2000] for EUV flux, CO<sub>2</sub>, O<sub>2</sub>, CO, N<sub>2</sub>, O, N, He, H<sub>2</sub>, and H, in Verner et al. [1996] for C, Ar, Ne, and Na, and in Samson et al. [1985] and Cole and Dexter [1978] for NO.

#### 1.4 Electron impact ionization

Photoelectron impact ionization rates for ionospheric  $N_2$  and O are taken from Richards and Torr [1988].

(Solar wind) electron impact ionization rates for exospheric O and H are taken from Cravens et al. [1987].

#### 2 Collisions

Data are taken from Schunk and Nagy [1980], Banks [1966], and Banks and Kockarts [1973].

#### 2.1 Ion-neutral collision frequencies

Ion-neutral collision frequency is given as

$$\nu_{in} = 4.0 \times 10^{-10} n_n [s^{-1}].$$
 (1)

#### 2.2 Electron-neutral collision frequencies

Electron-neutral collision frequency is calculated as

$$\begin{array}{rcl} \nu_{en} &=& 3.68 \times 10^{-8} \{1+4.1 \times 10^{-11} | 4500 - T_e |^{2.93} \} [{\rm CO}_2] \\ &+& 1.82 \times 10^{-10} \{1+3.6 \times 10^{-2} \sqrt{T_e} \} \sqrt{T_e} [{\rm O}_2] \\ &+& 2.33 \times 10^{-11} \{1-1.21 \times 10^{-4} T_e \} T_e [{\rm N}_2] \\ &+& 8.9 \times 10^{-11} \{1+5.7 \times 10^{-4} T_e \} \sqrt{T_e} [{\rm O}] ~ [{\rm s}^{-1}]. \end{array}$$

(Memo) collisions with N<sub>2</sub> and O<sub>2</sub> are for the Earth and Mercury.

#### 2.3 Electron-ion collision frequencies

Electron-ion collision frequencies are

$$\nu_{ei} = 54.5 n_i / T_e^{3/2} [s^{-1}],$$
 (3)

where subscript i denotes ion species CO\_2^+, O\_2^+, NO^+, CO^+, N\_2^+, O^+, N^+, C^+, He^+, H\_2^+, H^+, Ar^+, and Ne^+.

$$\begin{array}{ll} ({\rm R67^{**}}) & {\rm H}_2^+ + {\rm H} \to {\rm H}^+ + {\rm H}_2 & 6.4 \times 10^{-10} \\ ({\rm R68^{**}}) & {\rm H}_2^+ + {\rm Na} \to {\rm Na}^+ + {\rm H}_2 & 1.6 \times 10^{-9} \end{array}$$

![](_page_17_Picture_25.jpeg)

(2)

## **WF** O<sup>+</sup> pick up loss rates of present Venus at 0.7 AU

![](_page_18_Figure_1.jpeg)

### O<sup>+</sup> pick up loss rates of Venus 4.25 Gyr ago; 30 XUV; IWF n<sub>sw</sub>=1000 cm-3 or M-star Exo-Venus at 0.3 AU

![](_page_19_Figure_1.jpeg)

### O<sup>+</sup> pick up loss rates of Venus 4.5 Gyr ago 100 XUV; IWF n<sub>cw</sub>=1000 cm<sup>-3</sup> or (M-star) Exo-Venus at 0.3 AU

![](_page_20_Figure_1.jpeg)

![](_page_21_Picture_0.jpeg)

## **3D MHD simulation of a Venus-like planet under** extreme solar/stellar wind conditions $\rightarrow 0.05 \text{ AU}$

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_0.jpeg)

## Water inventories and atmospheres are strongly effected due to non-thermal loss processes

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_0.jpeg)

- Intrinsic or induced magnetic fields which are strong enough to balance the dense CME plasma pressure in the upper atmosphere are necessary!
- Ion pick up is only one of several non-thermal loss processes.
  - → Inclusion of ionospheric-plasma bubbles, which may be triggered by instabilities, sputtering, cool-in outflow
- Applications of 3D hybrid-codes (ion pick up & viscous processes including loss due to plasma instabilities) + 3D sputtering codes
- Weak magnetic planets may be eroded down to their core-mass/size
  - → CoRoT should discover such cores and there exists an evaporation boundary beyond gas giants should keep their mass over evolutionary time scales

![](_page_23_Picture_7.jpeg)

## **WF** Ongoing activities and future outlook

- Solar/stellar drivers for thermal and non-thermal escape processes
- Thermosphere ionosphere exosphere  $\rightarrow$  escape
- Recent and preliminary modelling efforts for extreme solar/stellar conditions
  - ID diffusive-gravitational equilibrium and thermal balance modelling of Venus and Martian-type CO<sub>2</sub> atmospheres under extreme XUV conditions → early Venus, early Mars & CO<sub>2</sub>-rich terrestrial exoplanets
  - ionosphere and 1D and 3D hot particle and exosphere modelling
  - application of test particle and 3D MHD and 3D hybrid models
  - for upper atmosphere solar wind interaction under extreme
  - radiation/plasma conditions → early Venus, Mars, etc.

![](_page_24_Picture_9.jpeg)

IWF/ÖAW