IRIS-9, Göttingen, 25-29 June 2018

Poster

4. Eruptions in the solar atmosphere

Rare Solar Radio Burst and Falling EUV Blob

<u>A. Zemanová¹</u>, M. Karlický¹, J. Dudík¹ and K. Radziszewski²

¹Astronomical Institute of the Academy of Sciences of the Czech Republic, CZ-25165 Ondřejov, Czech Republic ²Astronomical Institute, University of Wrocław, 51-622 Wrocław, ul. Kopernika 11, Poland

At the beginning of the M3.7 flare that occurred on November, 4th, 2015, we observed a rare burst drifting with the frequency drift of 115 MHz.s⁻¹ from 1300 to 2000 MHz. We analyzed the multispectral imaging data of the flare from H_{α} , EUV (IRIS, SDO/AIA) and soft X-rays (Hinode/XRT) and found that this slowly positively drifting burst was associated with a falling blob of plasma observed in EUV and soft X-rays. The blob moved with velocity of about 280 km.s⁻¹ along a dark loop visible also in H_{α} . The H_{α} profile taken from the same position in the dark loop showed a change from absorption to a weak emission profile. Considering different possibilities, we propose that this slowly positively drifting burst was generated by the thermal conduction front formed in front of the falling hot EUV blob.