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Fig. 1. SDO/HMI and AIA images of the AR NOAA 12268 on 24 Jan 2015 at the time of the flare event. The box in the 304 Å image shows the
Hinode/EIS FOV. The labels indicate: a) the small post-flare loop at the site of the intial eruption; b) the expanding blob driving kink oscillations
in the neighbouring loops; c) a thin “sheet” of hot plasma observed distinctly at 131 and 94 Å; d) overlaying unperturbed loops.

2.4. Evolution of the event

A composite movie in the AIA 304, 171, and 94 Å wavebands is
available online at the following link.

The online movies show the evolution of the event, while Ta-
ble 1 summarises a timeline of the event as observed in the AIA
171 channel. The event is very rich in features and at the begin-
ning it matches the typical magnetic reconnection scenario of the
anemone type jet described by Yokoyama & Shibata (1996). In-
deed, a very bright small post-flare loop appears in different AIA
wavebands (131, 211, 335 and 94 Å, see feature a) in Fig. 1).
This structure is also clearly visible in the EIS Fe XIV–Fe XV
and Fe XVI lines, indicating that the plasma is mostly emitting
at around 2–3 MK. At the footpoint of this small flare loop, we
measure densities of around 1.7 · 1010 cm−3 using the EIS Fe
XIV line ratio (as indicated in the top panel of Fig. 2).

From the region where the small post-flare loop forms, we
observe the eruption of a bright plasma blob, which is clearly
visible in the 304, 171 channels. The bulk of this plasma has
chromospheric / transition region (TR) temperatures, because
it shows strong emission in the EIS He II and other TR lines.
We also note that this event was partially observed by IRIS (De
Pontieu et al. 2014). The IRIS slit-jaw images in the Si IV fil-
ter clearly show the eruption of this filamentary cool (T ≈ 0.08
MK) material. Unfortunately, the oscillating loop under study
was outside the IRIS field-of-view (see Fig. 1 and therefore we
do not include any IRIS data in this work. At the site of the erup-
tion, the EIS Fe XIV lines are very broad with a strong blue-shift
component of around 100 km s−1.

A few minutes later (after the flare peak), at 12:02 (bottom
panels of Fig. 2), this blob becomes visible only in He II. In-
deed, Fig. 2 shows that there is no Fe XIV (2 MK) emission. On
the other hand, the small loop (feature a in Fig. 1) is strongly
emitting in Fe XIV and the plasma density at the top of the loop
is now 1.05 × 1010 cm−3 (as indicated in the bottom panel of
Fig. 2).

The cool plasma expands until it hits some overlaying loops,
triggering kink oscillations, and remaining confined within them
(see b) in Fig. 1). These kink oscillations are only visible in AIA
(they were mostly outside the IRIS and EIS FOV, see Fig. 1). Fi-
nally, this cool plasma is observed to descend back to the chro-
mosphere flowing along several loop threads in the form of coro-
nal rain. This process lasts for about 20 min. The downflow of
this cool plasma on the western side is observed in the IRIS data
and in the EIS He II and TR lines (O V, Fe VIII). A thin “layer”
or “sheet” of possibly hot plasma feature c) is seen in the 131
and 94 Å wavebands, while the larger loops overlaying the active
region (marked by feature d) in Fig. 1) do not show significant
oscillations and are almost unperturbed.

The sequence of the AIA 94 Å images (see online movie)
shows the formation and evolution of a well-defined diffuse hot
loop, apparently nearly co-spatial with the cool filamentary ma-
terial. By combining information from AIA, EIS and XRT we
found out that this loop has an almost isothermal temperature
of 6 MK. This why the loop is clearly visible in the AIA 94 Å
band, which is dominated, at this temperature, by Fe XVIII (Del
Zanna 2013b). The loop does not emit at lower or higher tem-
peratures, otherwise it would have been visible e.g. in EIS Fe
XIV, Fe XXIII. There is no obvious Fe XXI emission in the AIA
131 Å band either. This is confirmed by the temperature analysis
obtained from XRT, shown in Fig. 3.

The evolution of the loop bundle is determined by the tem-
perature and density variations due to the flare and the presence
of the failed erupted plasma blob. In the next sections, we care-
fully show how these variations affect the dynamics of the trans-
verse and longitudinal waves.

3. 3D geometry

In the context of MHD waves and coronal seismology (Nakari-
akov et al. 2016), it is very important to determine the 3D struc-
ture of coronal loops, that is their full (and not projected) length,
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Motivation	
•  Investigation	 of	 the	 dependence	 between	 the	 observed	 MHD	 wave	 properties	 (e.g.	 period,	 phase	

speed)	and	the	local	plasma	parameters	(e.g.	density,	temperature).	
•  Determination	of	the	plasma-β	and	adiabatic	index	γ	[2,3].	

Determination	of	the	loop	length	(SDO/AIA	171	and	94	observations)	

SDO/AIA	171	
Half	footpoint	distance:		~	50	Mm		-		Best	inclination	angle	:				~	-60	deg										
Best	loop	height:	~	0.85	rL																	-		Loop	length:												~	144	Mm	

SDO/AIA	94	
Best	loop	height:	~	0.7	rL																	-		Loop	length:												~	124	Mm	

Analysis	of	the	kink	oscillations	(SDO/AIA	171)	
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Fig. 5. Left: Image from SDO/AIA 171 Å with the slits S1 and S2 used to make TD maps and trace the transverse oscillations. Right: TD maps
from the S1 (top) and S2 (bottom) slits.

Fig. 6. Time series of the oscillations S1 and S2 (left), wavelet power spectra of the time series (centre), and plots of the period vs time (right). The
period is between 3.7–4 min. There is a very small variation of the period from the fitting analysis, however the green lines in the wavelet power
spectra have a null slope.

1. The amplitude is almost half of the total loop length (0.4 L)
and the initial period P0 is about 10 min. The period variation
per unit of time is P′ = 0.05 min min−1, which is smaller than
that estimated from the wavelet power spectrum (Fig. 8-bottom).
Indeed, the power spectrum exhibits a clear increase in the pe-
riod over the time starting from 10 min, with an indicative rate of
P′ = 0.1 min min−1 (continuous green line in the wavelet power
spectrum).

5.2. Coronal seismology with slow waves

The longitudinal oscillation is essentially a slow magnetoacous-
tic wave, with a phase speed that can be determined from the
loop length L and the period PL = 9.7 ± 0.4 min:

CL =
2L

PL
=

2 × 97 Mm
9.7 min

≈ 333 ± 36 km s−1. (6)
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Fig. 3. Top: images (reversed colors) of Hinode/XRT from the Be-thin (left) and the Al-poly (middle) filters and temperature maps obtained
using the ratio of the two filters (right). The entire hot loop bundle has a temperature of about 6 MK. Bottom: temporal evolution of the plasma
temperature at the position indicated by the white box in the top panel (loop apex). Before the flare, the background temperature is around 2 MK,
increasing up to 6 MK at the time of the flare peak.

twisted. Given the 3D orientation, we have verified the polarisa-
tion of the transverse oscillations of the cool loop threads (see for
example the following online movies related to the vertical and
horizontal polarisations). A comparison of the models with the
observation at 171 Å reveals that vertically polarised kink oscil-
lations best match the transverse displacements of the observed
loop threads.

4. Kink oscillations of the cool threads

4.1. Analysis

To analyse the transverse oscillations of the loop threads, we
have selected two slits, S1 and S2, directed as in Fig. 5-left.
From these slits we have extracted the intensity for each frame of
our dataset and constructed time-distance (TD) maps. The loop
strands are clearly visible in the 171 channel of AIA. The TD
maps at this wavelength are given in Fig. 5-right.

In the TD maps the signature of the expanding blob appears
in the form of a very bright and inclined feature or peak. Its slope
provides us with an estimate of the speed (green points in Fig.
5-right). The blob is moving with a velocity of about 180 km
s−1 along the slit S1, while in S2 the speed is lower, 136 km
s−1, since this direction does not exactly match the one of the
expanding blob. After the expansion of the blob, oscillations are
observed in the TD maps (red points). The patterns in the TD

maps are composed of several strands, which are not very easy
to track, and oscillate collectively. The oscillations in Fig. 5-right
are tracked by eye following the upper rim of the oscillating bun-
dle.

The oscillatory patterns have been fitted using the MPFIT
routines (Markwardt 2009) with the following function

y(t) = y0 + A cos
(

2π(t − t0)
P0 + P′(t − t0)

+ φ

)

exp
(

−
t − t0

τ

)

, (1)

which assumes a priori a linear dependence of the period on the
time, with P′ being a variation rate of the period. Before to ap-
plying the fitting routine, the time series was detrended with a
background linear fit. The fittings were weighted by the errors
of each data point, which was taken to be around 2 pixels (∼
1 Mm). The amplitudes of the oscillations (Table 2) are esti-
mated around 4–6 Mm. The initial period P0 of the oscillations
are 3.7–4.0 min. The period rate change P′ is negative in both
cases (even if the standard deviations associated to these esti-
mates make them not very significant), and is consistent with a
decrease of the density, as we will see in more detail in the next
subsection. The wavelet power spectra of the time series in Fig.
6-centre show that the period of the kink oscillations is estimated
around 3.5 min (green line). However, most of the power in the
spectra falls outside of the cone of influence because of edge
effects (limited time series).
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3.3 Determination of coronal magnetic fields

In the low plasma-� limit, the expression for the kink speed (8) reduces to

CK ⇡
✓

2
1 + ⇢e/⇢0

◆1/2

CA0, (30)

and contains two unknown parameters, the Alfvén speed CA0 and the density ratio ⇢e/⇢0. By
observationally measuring CK and considering the density ratio as a parameter, the Alfvén speed
in the loop can be determined. Assuming a density ratio ⇢e/⇢0 = 0.1, we obtain CA = 756 ±
100 km s�1 for the kink speed of 1020 ± 132 km s�1, for the event on the 14 July 1998 (see
Nakariakov and Ofman, 2001, for more details).

The Alfvén speed is defined by the magnetic field strength and the density of the medium.
Consequently, by using Equation (30), we can estimate the value of the magnetic field in the loop:

B0 =
p

µ0⇢0 CA0 ⇡
p

2µ0L

P

p
⇢0(1 + ⇢e/⇢0), (31)

(there is a typo in Equation (6) of Nakariakov and Ofman (2001), corrected, e.g., in Roberts and
Nakariakov (2003)).

A practical formula for the magnetic field determination by the observables is

B0 ⇡ 1.02⇥ 10�12
d
p

µn0

p
1 + ne/n0

P
, (32)

where the magnetic field B0 is in G, the distance between the footpoints d is in m, the number
density in the loop n0 is in m�3, and the oscillation period P is in s; µ is the e↵ective particle mass
with respect to the proton mass. In the solar corona, because of the presence of heavier elements,
µ = 1.27. Applying this formula, Nakariakov and Ofman (2001) estimated the magnetic field in an
oscillating loop observed on the 14 July 1998, as 13±9 G (see Figure 12, where the number density
is measured in cm�3). This error bar can be significantly reduced by improving the determination
of the density in the loop and by better statistics.

A similar estimation for the field strength (about 15 G) was obtained by Roberts et al. (1984)
from the observations of Koutchmy et al. (1983) discussed in Section 3.2. However, in contrast
with the TRACE observations, the lack of the direct observability of the oscillating loop did not
make the interpretation of the oscillations in terms of the kink modes absolutely secure.

Asai et al. (2001) observed microwave quasi-periodic pulsations with a periodicity of 6.6 s, which
are associated with a global kink oscillation. Using Equation (32) and assuming ne/n0 = 0.1, we
find the loop to have a magnetic field strength of 400 G. This value is consistent with a magnetic
field extrapolation (see Asai et al., 2001, which found a magnetic field strength of 300 G). For an
alternative interpretation of this observation in terms of the global fast sausage mode, see Section 4.

3.4 Decay of the oscillations

The physical mechanism responsible for the quick decay of the oscillations is under intensive dis-
cussion. The direct dissipation caused by viscosity or resistivity, considering classical values of the
coronal viscosity and resistivity, cannot explain the observed decay times (see the discussion in
Roberts, 2000). Ofman et al. (1994) numerically established the scaling law

⌧

P
= 16.3 Re0.22

, (33)

which connects the decay time ⌧ of the oscillation, the Reynolds number Re (= LCA0/⌫) associated
with the shear viscosity ⌫, and the oscillation period P of a fundamental mode with wavelength
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Oscillation t0 y0 A P P′ φ τ
[min] [Mm] [Mm] [min] [min min−1] [deg] [min]

S1 11.6 0.3±0.1 7.3±0.5 3.7±0.2 -0.02±0.03 -24±8 3.7±0.5
S2 11.5 -0.1±0.2 4.0±0.5 4.0±0.3 -0.05±0.03 -2±11 7.9±2.0
S3 10.1 0.02±0.01 0.4±0.1⋆ 9.7±0.4 0.05±0.02 -110±8 40.3±14.7

Table 2. List of the fitting parameters. ⋆ The amplitude of the slow MHD wave is not in Mm units but normalised to the loop length.

Fig. 4. 3D reconstruction with a semi-circular coronal loop for different
values of the inclinations angles with respect to the normal to the solar
surface. The red line represent the loop profile sample form the AIA 131
image. The green line shows the loop model for a given inclination an-
gle θ. The loop centre is marked by a red square. The best fit is obtained
for θ = −50 deg.

4.2. Coronal seismology with kink waves

The transverse displacements observed in the loop are inter-
preted in terms of fundamental standing fast magnetoacoustic
kink wave. The phase speed is the kink speed which is deter-
mined by the loop length and the period of the oscillations, that
is,

Ck =
2L

Pk
. (2)

In this case, given the length of 97±9.7 Mm and the period of
3.9±0.3 min, the kink speed is Ck = 829.1±104.6 km s−1. From
theoretical modelling of MHD modes in a plasma cylinder (Ed-
win & Roberts 1983), the kink speed is density-weighed average
of Alfvén speeds inside and outside the oscillating plasma cylin-
der:

Ck =

⎛

⎜

⎜

⎜

⎜

⎝

ρ0C2
A + ρeC

2
Ae

ρ0 + ρe

⎞

⎟

⎟

⎟

⎟

⎠

1/2

. (3)

In the low-β plasma regime, typical of the corona for coronal
active region, the expression above can be approximated as

Ck ≈ CA

(

2
1 + ρe/ρ0

)

(4)

where CA = B/
√

4πρ0 and ρ0 is related to the number density
n0 with the relation ρ = µmpn0. Therefore, changes in the densi-
ties can affect the values of Ck, and consequently the period Pk.
Indeed, using the expressions above it is easy to show that

Pk =
L

B

√

8πρ0(1 + ρe/ρ0). (5)

Figure 7 shows the intensity time series I from the SDO/AIA
171 Å band averaged over a boxcar centred on the cool blob
(left panel). The profile resembles that one of a shock with a
very sharp ramp (at ∼ 9 min), an overshoot (∼ 12 min), and a
weak decaying tail (after ∼15 min). Since I ∝ n2

0, then variations
of the intensity on time-scales larger the kink period can be
expressed as δI/I = 2δn0/n0, assuming that the plasma does
not change drammatically its temperature, as the observations
suggest.

On the other hand, from Eq. 5 the variations of the periods
with respect to the density (considering the inner density ρ0 or
equivalently n0) are δPk/Pk = δn0/2n0. Therefore, Pk changes
with respect to I as δPk/Pk = δI/4I. For δI = −50 DN in a
time interval ∆t = 10 min, and I = 350, δPk/Pk ∼ −0.03.
Therefore, by taking Pk = 3.9 min, it is easy to show that
δPk = −0.03Pk = −0.11 min, then P′ ≈ δPk/∆t = −0.01 min
min−1, which is consistent with the values obtained from the fit-
tings. It is worthy to mention that the oscillations that are seen
in the intensity profile (see the inset plot in Fig. 7-bottom panel)
are in antiphase with the displacement of the loop threads. This
can be explained in terms of vertically polarised oscillations of
a bundle of loop threads. Indeed, at the maxima of the oscilla-
tion the relative distance between the loop threads increase as
much as possible and line-of-sight (LOS) integration effects de-
crease, while at the minima the threads get closer, may overlap,
and contribute to increasing the intensity.

We can infer the values of the Alfvén speed and magnetic
field by inverting Eqs. 4 and 5 with respect to CA and B. We
considered the following values: L = (97± 9.7) Mm, Pk = 3.9±
0.3 min, µ ≈ 1.27, mp = 1.67 × 10−24 g, n0 = 1.15 × 1010 cm−3,
ne = 3 × 109 cm−3. We obtain an Alfvén speed CA = 568.3±83.0
km s−1, and a magnetic field of B = 36 ± 6 G.

5. Longitudinal oscillation in the hot loop

5.1. Analysis

We recall (see Fig. 3) that the hot loop increases its brightness in
the Be_thin and Al_poly filters and has a temperature of about 6
MK. The high-cadence of the AIA instrument allows us to ob-
serve periodic intensity variations along the hot loop in the 94 Å
band. Indeed, after the flare, the brightness of the loop seems
to vary periodically along the loop axis, bouncing between the
footpoints (Kumar et al. 2015). We have considered a curved slit
along the loop (red curve in Fig. 8-top) to extract the intensity
along it from each frame and make a TD map (middle panel in
Fig. 8). An oscillatory pattern is clearly visible. To investigate
the variation of the period we have fitted the time series with Eq.
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along the loop (red curve in Fig. 8-top) to extract the intensity
along it from each frame and make a TD map (middle panel in
Fig. 8). An oscillatory pattern is clearly visible. To investigate
the variation of the period we have fitted the time series with Eq.

Article number, page 6 of 10

A&A proofs: manuscript no. draft3

Oscillation t0 y0 A P P′ φ τ
[min] [Mm] [Mm] [min] [min min−1] [deg] [min]

S1 11.6 0.3±0.1 7.3±0.5 3.7±0.2 -0.02±0.03 -24±8 3.7±0.5
S2 11.5 -0.1±0.2 4.0±0.5 4.0±0.3 -0.05±0.03 -2±11 7.9±2.0
S3 10.1 0.02±0.01 0.4±0.1⋆ 9.7±0.4 0.05±0.02 -110±8 40.3±14.7

Table 2. List of the fitting parameters. ⋆ The amplitude of the slow MHD wave is not in Mm units but normalised to the loop length.

Fig. 4. 3D reconstruction with a semi-circular coronal loop for different
values of the inclinations angles with respect to the normal to the solar
surface. The red line represent the loop profile sample form the AIA 131
image. The green line shows the loop model for a given inclination an-
gle θ. The loop centre is marked by a red square. The best fit is obtained
for θ = −50 deg.

4.2. Coronal seismology with kink waves

The transverse displacements observed in the loop are inter-
preted in terms of fundamental standing fast magnetoacoustic
kink wave. The phase speed is the kink speed which is deter-
mined by the loop length and the period of the oscillations, that
is,

Ck =
2L

Pk
. (2)

In this case, given the length of 97±9.7 Mm and the period of
3.9±0.3 min, the kink speed is Ck = 829.1±104.6 km s−1. From
theoretical modelling of MHD modes in a plasma cylinder (Ed-
win & Roberts 1983), the kink speed is density-weighed average
of Alfvén speeds inside and outside the oscillating plasma cylin-
der:

Ck =
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⎜

⎜
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. (3)

In the low-β plasma regime, typical of the corona for coronal
active region, the expression above can be approximated as

Ck ≈ CA

(

2
1 + ρe/ρ0

)

(4)

where CA = B/
√

4πρ0 and ρ0 is related to the number density
n0 with the relation ρ = µmpn0. Therefore, changes in the densi-
ties can affect the values of Ck, and consequently the period Pk.
Indeed, using the expressions above it is easy to show that

Pk =
L

B

√

8πρ0(1 + ρe/ρ0). (5)

Figure 7 shows the intensity time series I from the SDO/AIA
171 Å band averaged over a boxcar centred on the cool blob
(left panel). The profile resembles that one of a shock with a
very sharp ramp (at ∼ 9 min), an overshoot (∼ 12 min), and a
weak decaying tail (after ∼15 min). Since I ∝ n2

0, then variations
of the intensity on time-scales larger the kink period can be
expressed as δI/I = 2δn0/n0, assuming that the plasma does
not change drammatically its temperature, as the observations
suggest.

On the other hand, from Eq. 5 the variations of the periods
with respect to the density (considering the inner density ρ0 or
equivalently n0) are δPk/Pk = δn0/2n0. Therefore, Pk changes
with respect to I as δPk/Pk = δI/4I. For δI = −50 DN in a
time interval ∆t = 10 min, and I = 350, δPk/Pk ∼ −0.03.
Therefore, by taking Pk = 3.9 min, it is easy to show that
δPk = −0.03Pk = −0.11 min, then P′ ≈ δPk/∆t = −0.01 min
min−1, which is consistent with the values obtained from the fit-
tings. It is worthy to mention that the oscillations that are seen
in the intensity profile (see the inset plot in Fig. 7-bottom panel)
are in antiphase with the displacement of the loop threads. This
can be explained in terms of vertically polarised oscillations of
a bundle of loop threads. Indeed, at the maxima of the oscilla-
tion the relative distance between the loop threads increase as
much as possible and line-of-sight (LOS) integration effects de-
crease, while at the minima the threads get closer, may overlap,
and contribute to increasing the intensity.

We can infer the values of the Alfvén speed and magnetic
field by inverting Eqs. 4 and 5 with respect to CA and B. We
considered the following values: L = (97± 9.7) Mm, Pk = 3.9±
0.3 min, µ ≈ 1.27, mp = 1.67 × 10−24 g, n0 = 1.15 × 1010 cm−3,
ne = 3 × 109 cm−3. We obtain an Alfvén speed CA = 568.3±83.0
km s−1, and a magnetic field of B = 36 ± 6 G.

5. Longitudinal oscillation in the hot loop

5.1. Analysis

We recall (see Fig. 3) that the hot loop increases its brightness in
the Be_thin and Al_poly filters and has a temperature of about 6
MK. The high-cadence of the AIA instrument allows us to ob-
serve periodic intensity variations along the hot loop in the 94 Å
band. Indeed, after the flare, the brightness of the loop seems
to vary periodically along the loop axis, bouncing between the
footpoints (Kumar et al. 2015). We have considered a curved slit
along the loop (red curve in Fig. 8-top) to extract the intensity
along it from each frame and make a TD map (middle panel in
Fig. 8). An oscillatory pattern is clearly visible. To investigate
the variation of the period we have fitted the time series with Eq.
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surface. The red line represent the loop profile sample form the AIA 131
image. The green line shows the loop model for a given inclination an-
gle θ. The loop centre is marked by a red square. The best fit is obtained
for θ = −50 deg.

4.2. Coronal seismology with kink waves

The transverse displacements observed in the loop are inter-
preted in terms of fundamental standing fast magnetoacoustic
kink wave. The phase speed is the kink speed which is deter-
mined by the loop length and the period of the oscillations, that
is,

Ck =
2L

Pk
. (2)

In this case, given the length of 97±9.7 Mm and the period of
3.9±0.3 min, the kink speed is Ck = 829.1±104.6 km s−1. From
theoretical modelling of MHD modes in a plasma cylinder (Ed-
win & Roberts 1983), the kink speed is density-weighed average
of Alfvén speeds inside and outside the oscillating plasma cylin-
der:

Ck =

⎛

⎜

⎜

⎜

⎜

⎝

ρ0C2
A + ρeC

2
Ae

ρ0 + ρe

⎞

⎟

⎟

⎟

⎟

⎠

1/2

. (3)

In the low-β plasma regime, typical of the corona for coronal
active region, the expression above can be approximated as
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where CA = B/
√

4πρ0 and ρ0 is related to the number density
n0 with the relation ρ = µmpn0. Therefore, changes in the densi-
ties can affect the values of Ck, and consequently the period Pk.
Indeed, using the expressions above it is easy to show that
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Figure 7 shows the intensity time series I from the SDO/AIA
171 Å band averaged over a boxcar centred on the cool blob
(left panel). The profile resembles that one of a shock with a
very sharp ramp (at ∼ 9 min), an overshoot (∼ 12 min), and a
weak decaying tail (after ∼15 min). Since I ∝ n2

0, then variations
of the intensity on time-scales larger the kink period can be
expressed as δI/I = 2δn0/n0, assuming that the plasma does
not change drammatically its temperature, as the observations
suggest.

On the other hand, from Eq. 5 the variations of the periods
with respect to the density (considering the inner density ρ0 or
equivalently n0) are δPk/Pk = δn0/2n0. Therefore, Pk changes
with respect to I as δPk/Pk = δI/4I. For δI = −50 DN in a
time interval ∆t = 10 min, and I = 350, δPk/Pk ∼ −0.03.
Therefore, by taking Pk = 3.9 min, it is easy to show that
δPk = −0.03Pk = −0.11 min, then P′ ≈ δPk/∆t = −0.01 min
min−1, which is consistent with the values obtained from the fit-
tings. It is worthy to mention that the oscillations that are seen
in the intensity profile (see the inset plot in Fig. 7-bottom panel)
are in antiphase with the displacement of the loop threads. This
can be explained in terms of vertically polarised oscillations of
a bundle of loop threads. Indeed, at the maxima of the oscilla-
tion the relative distance between the loop threads increase as
much as possible and line-of-sight (LOS) integration effects de-
crease, while at the minima the threads get closer, may overlap,
and contribute to increasing the intensity.

We can infer the values of the Alfvén speed and magnetic
field by inverting Eqs. 4 and 5 with respect to CA and B. We
considered the following values: L = (97± 9.7) Mm, Pk = 3.9±
0.3 min, µ ≈ 1.27, mp = 1.67 × 10−24 g, n0 = 1.15 × 1010 cm−3,
ne = 3 × 109 cm−3. We obtain an Alfvén speed CA = 568.3±83.0
km s−1, and a magnetic field of B = 36 ± 6 G.

5. Longitudinal oscillation in the hot loop

5.1. Analysis

We recall (see Fig. 3) that the hot loop increases its brightness in
the Be_thin and Al_poly filters and has a temperature of about 6
MK. The high-cadence of the AIA instrument allows us to ob-
serve periodic intensity variations along the hot loop in the 94 Å
band. Indeed, after the flare, the brightness of the loop seems
to vary periodically along the loop axis, bouncing between the
footpoints (Kumar et al. 2015). We have considered a curved slit
along the loop (red curve in Fig. 8-top) to extract the intensity
along it from each frame and make a TD map (middle panel in
Fig. 8). An oscillatory pattern is clearly visible. To investigate
the variation of the period we have fitted the time series with Eq.
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			Inputs	
•  L	=	144	+/-	14	Mm		
•  n0	=	1.15	x	1010	cm-3	

•  ne	=	3	x	109	cm-3	

•  P	=	3.9	+/-	0.3	min	
_____________________________	
			Outputs	
	
•  Ck	=	1231	+/-	155	km	s-1	

•  CA	=	977	+/-	123	km	s-1	

•  B	=	54	+/-	7	Gauss
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3.3 Determination of coronal magnetic fields

In the low plasma-� limit, the expression for the kink speed (8) reduces to

CK ⇡
✓

2
1 + ⇢e/⇢0

◆1/2

CA0, (30)

and contains two unknown parameters, the Alfvén speed CA0 and the density ratio ⇢e/⇢0. By
observationally measuring CK and considering the density ratio as a parameter, the Alfvén speed
in the loop can be determined. Assuming a density ratio ⇢e/⇢0 = 0.1, we obtain CA = 756 ±
100 km s�1 for the kink speed of 1020 ± 132 km s�1, for the event on the 14 July 1998 (see
Nakariakov and Ofman, 2001, for more details).

The Alfvén speed is defined by the magnetic field strength and the density of the medium.
Consequently, by using Equation (30), we can estimate the value of the magnetic field in the loop:

B0 =
p

µ0⇢0 CA0 ⇡
p

2µ0L

P

p
⇢0(1 + ⇢e/⇢0), (31)

(there is a typo in Equation (6) of Nakariakov and Ofman (2001), corrected, e.g., in Roberts and
Nakariakov (2003)).

A practical formula for the magnetic field determination by the observables is

B0 ⇡ 1.02⇥ 10�12
d
p

µn0

p
1 + ne/n0

P
, (32)

where the magnetic field B0 is in G, the distance between the footpoints d is in m, the number
density in the loop n0 is in m�3, and the oscillation period P is in s; µ is the e↵ective particle mass
with respect to the proton mass. In the solar corona, because of the presence of heavier elements,
µ = 1.27. Applying this formula, Nakariakov and Ofman (2001) estimated the magnetic field in an
oscillating loop observed on the 14 July 1998, as 13±9 G (see Figure 12, where the number density
is measured in cm�3). This error bar can be significantly reduced by improving the determination
of the density in the loop and by better statistics.

A similar estimation for the field strength (about 15 G) was obtained by Roberts et al. (1984)
from the observations of Koutchmy et al. (1983) discussed in Section 3.2. However, in contrast
with the TRACE observations, the lack of the direct observability of the oscillating loop did not
make the interpretation of the oscillations in terms of the kink modes absolutely secure.

Asai et al. (2001) observed microwave quasi-periodic pulsations with a periodicity of 6.6 s, which
are associated with a global kink oscillation. Using Equation (32) and assuming ne/n0 = 0.1, we
find the loop to have a magnetic field strength of 400 G. This value is consistent with a magnetic
field extrapolation (see Asai et al., 2001, which found a magnetic field strength of 300 G). For an
alternative interpretation of this observation in terms of the global fast sausage mode, see Section 4.

3.4 Decay of the oscillations

The physical mechanism responsible for the quick decay of the oscillations is under intensive dis-
cussion. The direct dissipation caused by viscosity or resistivity, considering classical values of the
coronal viscosity and resistivity, cannot explain the observed decay times (see the discussion in
Roberts, 2000). Ofman et al. (1994) numerically established the scaling law

⌧

P
= 16.3 Re0.22

, (33)

which connects the decay time ⌧ of the oscillation, the Reynolds number Re (= LCA0/⌫) associated
with the shear viscosity ⌫, and the oscillation period P of a fundamental mode with wavelength
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Fig. 7. Intensity time series in the AIA 171 Å band (top) starting at
11:50 UT, obtained from a boxcar centred on the cool plasma blob (bot-
tom). The intensity shows a strong peak at the flare peak time and then
it drops very fast in around 5 min. In the inset plot we show that the
oscillation in the intensity profile (black) are in antiphase with the loop
thread displacement (dashed red line).

The phase speed can be interpreted as the sound speed of a
slow wave, which magnitude depends upon the plasma tempera-
ture:

CS =

(

γp

ρ

)1/2

=

(

2γkBT

µmp

)1/2

≈ 1.29 × 10−1(γT/µ)1/2 km s−1.

(7)

If we consider γ = 5/3, µ = 1.27, and T ∼ 6 ± 0.5 MK as
determined by Hinode/XRT, the corresponding sound speed is
CS = 360.6 ± 15.0 km s−1, which is slightly higher than CL. For
this reason, CL can be considered as the tube speed (Wang et al.
2007):

CL = CT =
CSCA

√

C2
S +C2

A

, (8)

with CA the Alfvén speed. This consideration is helpful for
the determination of the Alfvén speed and the corresponding
value of the magnetic field inside the loop. Indeed, from the
above relation and using the estimates for the sound and tube

Fig. 8. Top: Image of the loop at 94 Å with the curved slit in red. Middle:
TD maps from the curved slit. The red square points track the oscilla-
tion and are determined by eye. The oscillation in green is obtained by
interpolation of the red points. Bottom: Wavelet power spectrum of the
oscillation profile. The green continuous line shows indicatively the rate
at which the period of the slow wave varies (0.1 min min−1), while the
green dot marks the value of the period (13 min) after 30 min from its
excitation.

speed we find that CA = 874.5 ± 101.3 km s−1. Using the rela-
tion

B =
√

4πµmpn0CA (9)
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Oscillation t0 y0 A P P′ φ τ
[min] [Mm] [Mm] [min] [min min−1] [deg] [min]

S1 11.6 0.3±0.1 7.3±0.5 3.7±0.2 -0.02±0.03 -24±8 3.7±0.5
S2 11.5 -0.1±0.2 4.0±0.5 4.0±0.3 -0.05±0.03 -2±11 7.9±2.0
S3 10.1 0.02±0.01 0.4±0.1⋆ 9.7±0.4 0.05±0.02 -110±8 40.3±14.7

Table 2. List of the fitting parameters. ⋆ The amplitude of the slow MHD wave is not in Mm units but normalised to the loop length.

Fig. 4. 3D reconstruction with a semi-circular coronal loop for different
values of the inclinations angles with respect to the normal to the solar
surface. The red line represent the loop profile sample form the AIA 131
image. The green line shows the loop model for a given inclination an-
gle θ. The loop centre is marked by a red square. The best fit is obtained
for θ = −50 deg.

4.2. Coronal seismology with kink waves

The transverse displacements observed in the loop are inter-
preted in terms of fundamental standing fast magnetoacoustic
kink wave. The phase speed is the kink speed which is deter-
mined by the loop length and the period of the oscillations, that
is,

Ck =
2L

Pk
. (2)

In this case, given the length of 97±9.7 Mm and the period of
3.9±0.3 min, the kink speed is Ck = 829.1±104.6 km s−1. From
theoretical modelling of MHD modes in a plasma cylinder (Ed-
win & Roberts 1983), the kink speed is density-weighed average
of Alfvén speeds inside and outside the oscillating plasma cylin-
der:
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In the low-β plasma regime, typical of the corona for coronal
active region, the expression above can be approximated as

Ck ≈ CA

(

2
1 + ρe/ρ0

)

(4)

where CA = B/
√

4πρ0 and ρ0 is related to the number density
n0 with the relation ρ = µmpn0. Therefore, changes in the densi-
ties can affect the values of Ck, and consequently the period Pk.
Indeed, using the expressions above it is easy to show that

Pk =
L
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√

8πρ0(1 + ρe/ρ0). (5)

Figure 7 shows the intensity time series I from the SDO/AIA
171 Å band averaged over a boxcar centred on the cool blob
(left panel). The profile resembles that one of a shock with a
very sharp ramp (at ∼ 9 min), an overshoot (∼ 12 min), and a
weak decaying tail (after ∼15 min). Since I ∝ n2

0, then variations
of the intensity on time-scales larger the kink period can be
expressed as δI/I = 2δn0/n0, assuming that the plasma does
not change drammatically its temperature, as the observations
suggest.

On the other hand, from Eq. 5 the variations of the periods
with respect to the density (considering the inner density ρ0 or
equivalently n0) are δPk/Pk = δn0/2n0. Therefore, Pk changes
with respect to I as δPk/Pk = δI/4I. For δI = −50 DN in a
time interval ∆t = 10 min, and I = 350, δPk/Pk ∼ −0.03.
Therefore, by taking Pk = 3.9 min, it is easy to show that
δPk = −0.03Pk = −0.11 min, then P′ ≈ δPk/∆t = −0.01 min
min−1, which is consistent with the values obtained from the fit-
tings. It is worthy to mention that the oscillations that are seen
in the intensity profile (see the inset plot in Fig. 7-bottom panel)
are in antiphase with the displacement of the loop threads. This
can be explained in terms of vertically polarised oscillations of
a bundle of loop threads. Indeed, at the maxima of the oscilla-
tion the relative distance between the loop threads increase as
much as possible and line-of-sight (LOS) integration effects de-
crease, while at the minima the threads get closer, may overlap,
and contribute to increasing the intensity.

We can infer the values of the Alfvén speed and magnetic
field by inverting Eqs. 4 and 5 with respect to CA and B. We
considered the following values: L = (97± 9.7) Mm, Pk = 3.9±
0.3 min, µ ≈ 1.27, mp = 1.67 × 10−24 g, n0 = 1.15 × 1010 cm−3,
ne = 3 × 109 cm−3. We obtain an Alfvén speed CA = 568.3±83.0
km s−1, and a magnetic field of B = 36 ± 6 G.

5. Longitudinal oscillation in the hot loop

5.1. Analysis

We recall (see Fig. 3) that the hot loop increases its brightness in
the Be_thin and Al_poly filters and has a temperature of about 6
MK. The high-cadence of the AIA instrument allows us to ob-
serve periodic intensity variations along the hot loop in the 94 Å
band. Indeed, after the flare, the brightness of the loop seems
to vary periodically along the loop axis, bouncing between the
footpoints (Kumar et al. 2015). We have considered a curved slit
along the loop (red curve in Fig. 8-top) to extract the intensity
along it from each frame and make a TD map (middle panel in
Fig. 8). An oscillatory pattern is clearly visible. To investigate
the variation of the period we have fitted the time series with Eq.
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4.2. Coronal seismology with kink waves

The transverse displacements observed in the loop are inter-
preted in terms of fundamental standing fast magnetoacoustic
kink wave. The phase speed is the kink speed which is deter-
mined by the loop length and the period of the oscillations, that
is,

Ck =
2L

Pk
. (2)

In this case, given the length of 97±9.7 Mm and the period of
3.9±0.3 min, the kink speed is Ck = 829.1±104.6 km s−1. From
theoretical modelling of MHD modes in a plasma cylinder (Ed-
win & Roberts 1983), the kink speed is density-weighed average
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In the low-β plasma regime, typical of the corona for coronal
active region, the expression above can be approximated as

Ck ≈ CA

(

2
1 + ρe/ρ0

)

(4)

where CA = B/
√

4πρ0 and ρ0 is related to the number density
n0 with the relation ρ = µmpn0. Therefore, changes in the densi-
ties can affect the values of Ck, and consequently the period Pk.
Indeed, using the expressions above it is easy to show that

Pk =
L

B

√

8πρ0(1 + ρe/ρ0). (5)

Figure 7 shows the intensity time series I from the SDO/AIA
171 Å band averaged over a boxcar centred on the cool blob
(left panel). The profile resembles that one of a shock with a
very sharp ramp (at ∼ 9 min), an overshoot (∼ 12 min), and a
weak decaying tail (after ∼15 min). Since I ∝ n2

0, then variations
of the intensity on time-scales larger the kink period can be
expressed as δI/I = 2δn0/n0, assuming that the plasma does
not change drammatically its temperature, as the observations
suggest.

On the other hand, from Eq. 5 the variations of the periods
with respect to the density (considering the inner density ρ0 or
equivalently n0) are δPk/Pk = δn0/2n0. Therefore, Pk changes
with respect to I as δPk/Pk = δI/4I. For δI = −50 DN in a
time interval ∆t = 10 min, and I = 350, δPk/Pk ∼ −0.03.
Therefore, by taking Pk = 3.9 min, it is easy to show that
δPk = −0.03Pk = −0.11 min, then P′ ≈ δPk/∆t = −0.01 min
min−1, which is consistent with the values obtained from the fit-
tings. It is worthy to mention that the oscillations that are seen
in the intensity profile (see the inset plot in Fig. 7-bottom panel)
are in antiphase with the displacement of the loop threads. This
can be explained in terms of vertically polarised oscillations of
a bundle of loop threads. Indeed, at the maxima of the oscilla-
tion the relative distance between the loop threads increase as
much as possible and line-of-sight (LOS) integration effects de-
crease, while at the minima the threads get closer, may overlap,
and contribute to increasing the intensity.

We can infer the values of the Alfvén speed and magnetic
field by inverting Eqs. 4 and 5 with respect to CA and B. We
considered the following values: L = (97± 9.7) Mm, Pk = 3.9±
0.3 min, µ ≈ 1.27, mp = 1.67 × 10−24 g, n0 = 1.15 × 1010 cm−3,
ne = 3 × 109 cm−3. We obtain an Alfvén speed CA = 568.3±83.0
km s−1, and a magnetic field of B = 36 ± 6 G.

5. Longitudinal oscillation in the hot loop

5.1. Analysis

We recall (see Fig. 3) that the hot loop increases its brightness in
the Be_thin and Al_poly filters and has a temperature of about 6
MK. The high-cadence of the AIA instrument allows us to ob-
serve periodic intensity variations along the hot loop in the 94 Å
band. Indeed, after the flare, the brightness of the loop seems
to vary periodically along the loop axis, bouncing between the
footpoints (Kumar et al. 2015). We have considered a curved slit
along the loop (red curve in Fig. 8-top) to extract the intensity
along it from each frame and make a TD map (middle panel in
Fig. 8). An oscillatory pattern is clearly visible. To investigate
the variation of the period we have fitted the time series with Eq.
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Fig. 5. Left: Image from SDO/AIA 171 Å with the slits S1 and S2 used to make TD maps and trace the transverse oscillations. Right: TD maps
from the S1 (top) and S2 (bottom) slits.

Fig. 6. Time series of the oscillations S1 and S2 (left), wavelet power spectra of the time series (centre), and plots of the period vs time (right). The
period is between 3.7–4 min. There is a very small variation of the period from the fitting analysis, however the green lines in the wavelet power
spectra have a null slope.

1. The amplitude is almost half of the total loop length (0.4 L)
and the initial period P0 is about 10 min. The period variation
per unit of time is P′ = 0.05 min min−1, which is smaller than
that estimated from the wavelet power spectrum (Fig. 8-bottom).
Indeed, the power spectrum exhibits a clear increase in the pe-
riod over the time starting from 10 min, with an indicative rate of
P′ = 0.1 min min−1 (continuous green line in the wavelet power
spectrum).

5.2. Coronal seismology with slow waves

The longitudinal oscillation is essentially a slow magnetoacous-
tic wave, with a phase speed that can be determined from the
loop length L and the period PL = 9.7 ± 0.4 min:

CL =
2L

PL
=

2 × 97 Mm
9.7 min

≈ 333 ± 36 km s−1. (6)
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with µ = 1.27 and n = 1.15 × 1010 cm−3, we obtain B =
48±6 G, very close to the value determined using the kink waves.

It is interesting to note that the variations over time of the pe-
riod measured from the TD map and the temperature from Hin-
ode/XRT data are both consistent. Indeed, it is easy to show that

δP

P0
= −
δCL

CL0
and

δCL

CL0
=
δT

2T0
→
δP

P0
= −
δT

2T0
(10)

where δP and δT are the period and temperature variations
in a given time interval, P0 and T0 the initial values. We have not
considered density variations, which may affect the phase speed
via the dependence of the tube speed on the Alfvén speed. In the
range of 30 minutes the period changes from 10 to 13 min (see
the wavelet power spectrum in Fig. 8), while the temperature
drops from ∼6 MK to ∼2.5 MK (Fig. 3). Therefore, having δP =
3 min and δT = 3.5 MK, we find that δP/P0 = 0.30 and δT/2T0 =
0.29.

Furthermore, by knowing the values of the period and plasma
temperature, it is possible to inverse the problem in coronal seis-
mology and estimates for example the length of the loop, as-
suming that CL ≈ CS . For P ∼ 10 min and T ∼ 6 MK, we find
L = 122 Mm. For P ∼ 13 min and T ∼ 2.5 MK, values estimated
30 min after the flare, L = 91 Mm, very close to our estimate in
Section 3. On the other hand, the 3D reconstruction described in
Section 3 has been done for the image at 12:14 UT.

6. Discussion and conclusions

Observations of fast and slow MHD modes in a common mag-
netic structure have a crucial role in coronal seismology. Indeed,
in our analysis we show that the values of the magnetic field
inferred from the observations of the kink oscillations and the
coexisting longitudinal slow wave are in agreement. Therefore,
it is possible to have a better understanding of the local envi-
ronment (Zhang et al. 2015). Indeed, from the knowledge of the
local sound and Alfvén speeds, the values of the local β-plasma
is naturally ensued as,

β =
2
γ

(

CS

CA

)2

. (11)

By taking CS = 361 km s−1, CA = 658 − 875 km s−1, and
γ = 5/3, the β-plasma will range between 0.20–0.36. On the
other hand, the determination of such parameters presumes the
knowledge of some other ones, which values are usually as-
sumed by theory, like the adiabatic index γ and the mean molec-
ular weight µ. While the value of µ has less uncertainties and it
is assumed to the standard values of 1.27 because of the most
abundant ions in corona (hydrogen and helium), the local value
of γ is subject matter for discussion. The adiabatic index enters
in the definition of the sound speed and determines the thermo-
dynamics of plasma. Indeed, local values of γ may differ from
the theoretical value of 5/3 because of partial ionisation, conduc-
tive, radiative cooling, or heating processes active in plasma. In
our case, thermal conduction should not affect the dynamics of
the hot loop since the the conduction time is estimated as (p. 321
in Aschwanden 2004),

τcond = 1.6 × 10−9neT−5/2L2 ≈ 285 min. (12)

In contrast, radiative processes may be important since the tem-
perature of the hot loop decreases from 5.6 to ∼2.7 MK in about

25 min, and the slow wave results to be over damped (the damp-
ing time of the oscillation itself is 40 min as determined by the
fitting analysis). Therefore, values of γ are assumed to vary be-
tween 1.1 and 5/3 (p. 82 in Priest 2014). Van Doorsselaere et al.
(2011b) has provided the first measurement of the effective adi-
abatic index in the solar corona to be γeff = 1.10 ± 0.02, by
analysing the density and temperature perturbations associated
with a slow wave in ideal MHD theory approximation. However,
this approach is valid when β is very small (see eq. (1) in Van
Doorsselaere et al. 2011b) and these perturbations are assumed
to propagate like a pure sound wave, which is not the general
case in corona, as we have shown in our analysis. Indeed, if we
combine Eqs. 7, 8, and11, we can express the tube speed CT in
terms of CS as

CT =
1

√

1 + βγ/2
CS =

(

γ

1 + βγ/2
2kB

µmp

T

)1/2

. (13)

Therefore, interpreting CT as CS can lead to erroneous results
for γ if the condition β ≪ 1 is not satisfied, since it will replaced
by the factor γeff = γ/(1 + βγ/2), which will play the role of an
effective adiabatic index. The relation between β, γ, and γeff can
be written in the following form as,

β = 2
(

1
γeff
−

1
γ

)

. (14)

Assuming a hypothetical value of γ = 5/3 (≈1.67 but in general
it can be different), the corresponding γeff will decrease from 5/3
according to the values assumed by β, which may vary through
different coronal regions. It is trivial to show that for β = 0 it
will be γeff = γ, and hence CT = CS. For β=0.01, a typical value
assumed for active regions, γeff = 1.65 (in practise equal to γ,
this justifies the approximation with sound speeds), but for val-
ues of β ≥ 0.13, the difference becomes remarkable and γeff will
deviate from the real and unknown γ with more than 10 %. If we
use γeff = 1.1 as estimated by Van Doorsselaere et al. (2011b),
we find β ≈ 0.6, which is unrealistic for that case: hence, the
adiabatic index in that analysis is surely much lower than 5/3.

The above discussion applied to our event can be easily il-
lustrated by the plots of Fig. 9, which show how the period of a
slow wave changes with the plasma temperature if we consider
as phase speed the sound (top panel) and the tube speeds (mid-
dle and bottom panels), respectively (the curves are obtained by
combining Eqs. 6–7 and Eqs. 6–13, and by taking as loop length
the value of 97 Mm). For the case of a pure sound wave, we plot
different curves corresponding to indicative different values of
the adiabatic index γ ranging between the theoretical value of
5/3 (lower curve in black) and 1.1 (upper curve in purple; the
other values are indicated on the right of the plot). The intersec-
tion of the horizontal line at P = 10 min, which is the initial
period of our slow wave, with the different curves identifies the
temperature at which the wave exists (for γ = 5/3, 1.5, 1.4, ...
Tγ = 4.8, 6.0, 6.8, ... MK). According to the analysis achieved
with XRT, the maximum temperature reached by the plasma is
∼ 6 MK, and consequently the effective adiabatic index for our
observation falls in the range 5/3 < γ ≤ 1.5. Similarly, we have
also considered the tube speed for γ = 5/3 (middle panel) and
γ = 1.5 (bottom panel) and plotted different curves for different
indicative values of the β-plasma between 0.0 (lower curve in
black) and 1.0 (upper curve in purple). For γ = 5/3, the possi-
ble values of β that fit our observations fall approximately in the
range of 0.10 and 0.25, while for γ = 1.5 the intersection points
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with µ = 1.27 and n = 1.15 × 1010 cm−3, we obtain B =
48±6 G, very close to the value determined using the kink waves.

It is interesting to note that the variations over time of the pe-
riod measured from the TD map and the temperature from Hin-
ode/XRT data are both consistent. Indeed, it is easy to show that

δP

P0
= −
δCL

CL0
and

δCL

CL0
=
δT

2T0
→
δP

P0
= −
δT

2T0
(10)

where δP and δT are the period and temperature variations
in a given time interval, P0 and T0 the initial values. We have not
considered density variations, which may affect the phase speed
via the dependence of the tube speed on the Alfvén speed. In the
range of 30 minutes the period changes from 10 to 13 min (see
the wavelet power spectrum in Fig. 8), while the temperature
drops from ∼6 MK to ∼2.5 MK (Fig. 3). Therefore, having δP =
3 min and δT = 3.5 MK, we find that δP/P0 = 0.30 and δT/2T0 =
0.29.

Furthermore, by knowing the values of the period and plasma
temperature, it is possible to inverse the problem in coronal seis-
mology and estimates for example the length of the loop, as-
suming that CL ≈ CS . For P ∼ 10 min and T ∼ 6 MK, we find
L = 122 Mm. For P ∼ 13 min and T ∼ 2.5 MK, values estimated
30 min after the flare, L = 91 Mm, very close to our estimate in
Section 3. On the other hand, the 3D reconstruction described in
Section 3 has been done for the image at 12:14 UT.

6. Discussion and conclusions

Observations of fast and slow MHD modes in a common mag-
netic structure have a crucial role in coronal seismology. Indeed,
in our analysis we show that the values of the magnetic field
inferred from the observations of the kink oscillations and the
coexisting longitudinal slow wave are in agreement. Therefore,
it is possible to have a better understanding of the local envi-
ronment (Zhang et al. 2015). Indeed, from the knowledge of the
local sound and Alfvén speeds, the values of the local β-plasma
is naturally ensued as,

β =
2
γ

(

CS

CA

)2

. (11)

By taking CS = 361 km s−1, CA = 658 − 875 km s−1, and
γ = 5/3, the β-plasma will range between 0.20–0.36. On the
other hand, the determination of such parameters presumes the
knowledge of some other ones, which values are usually as-
sumed by theory, like the adiabatic index γ and the mean molec-
ular weight µ. While the value of µ has less uncertainties and it
is assumed to the standard values of 1.27 because of the most
abundant ions in corona (hydrogen and helium), the local value
of γ is subject matter for discussion. The adiabatic index enters
in the definition of the sound speed and determines the thermo-
dynamics of plasma. Indeed, local values of γ may differ from
the theoretical value of 5/3 because of partial ionisation, conduc-
tive, radiative cooling, or heating processes active in plasma. In
our case, thermal conduction should not affect the dynamics of
the hot loop since the the conduction time is estimated as (p. 321
in Aschwanden 2004),

τcond = 1.6 × 10−9neT−5/2L2 ≈ 285 min. (12)

In contrast, radiative processes may be important since the tem-
perature of the hot loop decreases from 5.6 to ∼2.7 MK in about

25 min, and the slow wave results to be over damped (the damp-
ing time of the oscillation itself is 40 min as determined by the
fitting analysis). Therefore, values of γ are assumed to vary be-
tween 1.1 and 5/3 (p. 82 in Priest 2014). Van Doorsselaere et al.
(2011b) has provided the first measurement of the effective adi-
abatic index in the solar corona to be γeff = 1.10 ± 0.02, by
analysing the density and temperature perturbations associated
with a slow wave in ideal MHD theory approximation. However,
this approach is valid when β is very small (see eq. (1) in Van
Doorsselaere et al. 2011b) and these perturbations are assumed
to propagate like a pure sound wave, which is not the general
case in corona, as we have shown in our analysis. Indeed, if we
combine Eqs. 7, 8, and11, we can express the tube speed CT in
terms of CS as

CT =
1

√

1 + βγ/2
CS =
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Therefore, interpreting CT as CS can lead to erroneous results
for γ if the condition β ≪ 1 is not satisfied, since it will replaced
by the factor γeff = γ/(1 + βγ/2), which will play the role of an
effective adiabatic index. The relation between β, γ, and γeff can
be written in the following form as,

β = 2
(

1
γeff
−

1
γ

)

. (14)

Assuming a hypothetical value of γ = 5/3 (≈1.67 but in general
it can be different), the corresponding γeff will decrease from 5/3
according to the values assumed by β, which may vary through
different coronal regions. It is trivial to show that for β = 0 it
will be γeff = γ, and hence CT = CS. For β=0.01, a typical value
assumed for active regions, γeff = 1.65 (in practise equal to γ,
this justifies the approximation with sound speeds), but for val-
ues of β ≥ 0.13, the difference becomes remarkable and γeff will
deviate from the real and unknown γ with more than 10 %. If we
use γeff = 1.1 as estimated by Van Doorsselaere et al. (2011b),
we find β ≈ 0.6, which is unrealistic for that case: hence, the
adiabatic index in that analysis is surely much lower than 5/3.

The above discussion applied to our event can be easily il-
lustrated by the plots of Fig. 9, which show how the period of a
slow wave changes with the plasma temperature if we consider
as phase speed the sound (top panel) and the tube speeds (mid-
dle and bottom panels), respectively (the curves are obtained by
combining Eqs. 6–7 and Eqs. 6–13, and by taking as loop length
the value of 97 Mm). For the case of a pure sound wave, we plot
different curves corresponding to indicative different values of
the adiabatic index γ ranging between the theoretical value of
5/3 (lower curve in black) and 1.1 (upper curve in purple; the
other values are indicated on the right of the plot). The intersec-
tion of the horizontal line at P = 10 min, which is the initial
period of our slow wave, with the different curves identifies the
temperature at which the wave exists (for γ = 5/3, 1.5, 1.4, ...
Tγ = 4.8, 6.0, 6.8, ... MK). According to the analysis achieved
with XRT, the maximum temperature reached by the plasma is
∼ 6 MK, and consequently the effective adiabatic index for our
observation falls in the range 5/3 < γ ≤ 1.5. Similarly, we have
also considered the tube speed for γ = 5/3 (middle panel) and
γ = 1.5 (bottom panel) and plotted different curves for different
indicative values of the β-plasma between 0.0 (lower curve in
black) and 1.0 (upper curve in purple). For γ = 5/3, the possi-
ble values of β that fit our observations fall approximately in the
range of 0.10 and 0.25, while for γ = 1.5 the intersection points
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with µ = 1.27 and n = 1.15 × 1010 cm−3, we obtain B =
48±6 G, very close to the value determined using the kink waves.

It is interesting to note that the variations over time of the pe-
riod measured from the TD map and the temperature from Hin-
ode/XRT data are both consistent. Indeed, it is easy to show that
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where δP and δT are the period and temperature variations
in a given time interval, P0 and T0 the initial values. We have not
considered density variations, which may affect the phase speed
via the dependence of the tube speed on the Alfvén speed. In the
range of 30 minutes the period changes from 10 to 13 min (see
the wavelet power spectrum in Fig. 8), while the temperature
drops from ∼6 MK to ∼2.5 MK (Fig. 3). Therefore, having δP =
3 min and δT = 3.5 MK, we find that δP/P0 = 0.30 and δT/2T0 =
0.29.

Furthermore, by knowing the values of the period and plasma
temperature, it is possible to inverse the problem in coronal seis-
mology and estimates for example the length of the loop, as-
suming that CL ≈ CS . For P ∼ 10 min and T ∼ 6 MK, we find
L = 122 Mm. For P ∼ 13 min and T ∼ 2.5 MK, values estimated
30 min after the flare, L = 91 Mm, very close to our estimate in
Section 3. On the other hand, the 3D reconstruction described in
Section 3 has been done for the image at 12:14 UT.
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in our analysis we show that the values of the magnetic field
inferred from the observations of the kink oscillations and the
coexisting longitudinal slow wave are in agreement. Therefore,
it is possible to have a better understanding of the local envi-
ronment (Zhang et al. 2015). Indeed, from the knowledge of the
local sound and Alfvén speeds, the values of the local β-plasma
is naturally ensued as,
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By taking CS = 361 km s−1, CA = 658 − 875 km s−1, and
γ = 5/3, the β-plasma will range between 0.20–0.36. On the
other hand, the determination of such parameters presumes the
knowledge of some other ones, which values are usually as-
sumed by theory, like the adiabatic index γ and the mean molec-
ular weight µ. While the value of µ has less uncertainties and it
is assumed to the standard values of 1.27 because of the most
abundant ions in corona (hydrogen and helium), the local value
of γ is subject matter for discussion. The adiabatic index enters
in the definition of the sound speed and determines the thermo-
dynamics of plasma. Indeed, local values of γ may differ from
the theoretical value of 5/3 because of partial ionisation, conduc-
tive, radiative cooling, or heating processes active in plasma. In
our case, thermal conduction should not affect the dynamics of
the hot loop since the the conduction time is estimated as (p. 321
in Aschwanden 2004),

τcond = 1.6 × 10−9neT−5/2L2 ≈ 285 min. (12)

In contrast, radiative processes may be important since the tem-
perature of the hot loop decreases from 5.6 to ∼2.7 MK in about

25 min, and the slow wave results to be over damped (the damp-
ing time of the oscillation itself is 40 min as determined by the
fitting analysis). Therefore, values of γ are assumed to vary be-
tween 1.1 and 5/3 (p. 82 in Priest 2014). Van Doorsselaere et al.
(2011b) has provided the first measurement of the effective adi-
abatic index in the solar corona to be γeff = 1.10 ± 0.02, by
analysing the density and temperature perturbations associated
with a slow wave in ideal MHD theory approximation. However,
this approach is valid when β is very small (see eq. (1) in Van
Doorsselaere et al. 2011b) and these perturbations are assumed
to propagate like a pure sound wave, which is not the general
case in corona, as we have shown in our analysis. Indeed, if we
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by the factor γeff = γ/(1 + βγ/2), which will play the role of an
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be written in the following form as,
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Assuming a hypothetical value of γ = 5/3 (≈1.67 but in general
it can be different), the corresponding γeff will decrease from 5/3
according to the values assumed by β, which may vary through
different coronal regions. It is trivial to show that for β = 0 it
will be γeff = γ, and hence CT = CS. For β=0.01, a typical value
assumed for active regions, γeff = 1.65 (in practise equal to γ,
this justifies the approximation with sound speeds), but for val-
ues of β ≥ 0.13, the difference becomes remarkable and γeff will
deviate from the real and unknown γ with more than 10 %. If we
use γeff = 1.1 as estimated by Van Doorsselaere et al. (2011b),
we find β ≈ 0.6, which is unrealistic for that case: hence, the
adiabatic index in that analysis is surely much lower than 5/3.

The above discussion applied to our event can be easily il-
lustrated by the plots of Fig. 9, which show how the period of a
slow wave changes with the plasma temperature if we consider
as phase speed the sound (top panel) and the tube speeds (mid-
dle and bottom panels), respectively (the curves are obtained by
combining Eqs. 6–7 and Eqs. 6–13, and by taking as loop length
the value of 97 Mm). For the case of a pure sound wave, we plot
different curves corresponding to indicative different values of
the adiabatic index γ ranging between the theoretical value of
5/3 (lower curve in black) and 1.1 (upper curve in purple; the
other values are indicated on the right of the plot). The intersec-
tion of the horizontal line at P = 10 min, which is the initial
period of our slow wave, with the different curves identifies the
temperature at which the wave exists (for γ = 5/3, 1.5, 1.4, ...
Tγ = 4.8, 6.0, 6.8, ... MK). According to the analysis achieved
with XRT, the maximum temperature reached by the plasma is
∼ 6 MK, and consequently the effective adiabatic index for our
observation falls in the range 5/3 < γ ≤ 1.5. Similarly, we have
also considered the tube speed for γ = 5/3 (middle panel) and
γ = 1.5 (bottom panel) and plotted different curves for different
indicative values of the β-plasma between 0.0 (lower curve in
black) and 1.0 (upper curve in purple). For γ = 5/3, the possi-
ble values of β that fit our observations fall approximately in the
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Fig. 7. Intensity time series in the AIA 171 Å band (top) starting at
11:50 UT, obtained from a boxcar centred on the cool plasma blob (bot-
tom). The intensity shows a strong peak at the flare peak time and then
it drops very fast in around 5 min. In the inset plot we show that the
oscillation in the intensity profile (black) are in antiphase with the loop
thread displacement (dashed red line).

The phase speed can be interpreted as the sound speed of a
slow wave, which magnitude depends upon the plasma tempera-
ture:

CS =

(

γp

ρ

)1/2

=

(

2γkBT

µmp

)1/2

≈ 1.29 × 10−1(γT/µ)1/2 km s−1.

(7)

If we consider γ = 5/3, µ = 1.27, and T ∼ 6 ± 0.5 MK as
determined by Hinode/XRT, the corresponding sound speed is
CS = 360.6 ± 15.0 km s−1, which is slightly higher than CL. For
this reason, CL can be considered as the tube speed (Wang et al.
2007):

CL = CT =
CSCA

√

C2
S +C2

A

, (8)

with CA the Alfvén speed. This consideration is helpful for
the determination of the Alfvén speed and the corresponding
value of the magnetic field inside the loop. Indeed, from the
above relation and using the estimates for the sound and tube

Fig. 8. Top: Image of the loop at 94 Å with the curved slit in red. Middle:
TD maps from the curved slit. The red square points track the oscilla-
tion and are determined by eye. The oscillation in green is obtained by
interpolation of the red points. Bottom: Wavelet power spectrum of the
oscillation profile. The green continuous line shows indicatively the rate
at which the period of the slow wave varies (0.1 min min−1), while the
green dot marks the value of the period (13 min) after 30 min from its
excitation.

speed we find that CA = 874.5 ± 101.3 km s−1. Using the rela-
tion

B =
√

4πµmpn0CA (9)
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with µ = 1.27 and n = 1.15 × 1010 cm−3, we obtain B =
48±6 G, very close to the value determined using the kink waves.

It is interesting to note that the variations over time of the pe-
riod measured from the TD map and the temperature from Hin-
ode/XRT data are both consistent. Indeed, it is easy to show that

δP

P0
= −
δCL

CL0
and

δCL

CL0
=
δT

2T0
→
δP

P0
= −
δT

2T0
(10)

where δP and δT are the period and temperature variations
in a given time interval, P0 and T0 the initial values. We have not
considered density variations, which may affect the phase speed
via the dependence of the tube speed on the Alfvén speed. In the
range of 30 minutes the period changes from 10 to 13 min (see
the wavelet power spectrum in Fig. 8), while the temperature
drops from ∼6 MK to ∼2.5 MK (Fig. 3). Therefore, having δP =
3 min and δT = 3.5 MK, we find that δP/P0 = 0.30 and δT/2T0 =
0.29.

Furthermore, by knowing the values of the period and plasma
temperature, it is possible to inverse the problem in coronal seis-
mology and estimates for example the length of the loop, as-
suming that CL ≈ CS . For P ∼ 10 min and T ∼ 6 MK, we find
L = 122 Mm. For P ∼ 13 min and T ∼ 2.5 MK, values estimated
30 min after the flare, L = 91 Mm, very close to our estimate in
Section 3. On the other hand, the 3D reconstruction described in
Section 3 has been done for the image at 12:14 UT.

6. Discussion and conclusions

Observations of fast and slow MHD modes in a common mag-
netic structure have a crucial role in coronal seismology. Indeed,
in our analysis we show that the values of the magnetic field
inferred from the observations of the kink oscillations and the
coexisting longitudinal slow wave are in agreement. Therefore,
it is possible to have a better understanding of the local envi-
ronment (Zhang et al. 2015). Indeed, from the knowledge of the
local sound and Alfvén speeds, the values of the local β-plasma
is naturally ensued as,

β =
2
γ

(

CS

CA

)2

. (11)

By taking CS = 361 km s−1, CA = 658 − 875 km s−1, and
γ = 5/3, the β-plasma will range between 0.20–0.36. On the
other hand, the determination of such parameters presumes the
knowledge of some other ones, which values are usually as-
sumed by theory, like the adiabatic index γ and the mean molec-
ular weight µ. While the value of µ has less uncertainties and it
is assumed to the standard values of 1.27 because of the most
abundant ions in corona (hydrogen and helium), the local value
of γ is subject matter for discussion. The adiabatic index enters
in the definition of the sound speed and determines the thermo-
dynamics of plasma. Indeed, local values of γ may differ from
the theoretical value of 5/3 because of partial ionisation, conduc-
tive, radiative cooling, or heating processes active in plasma. In
our case, thermal conduction should not affect the dynamics of
the hot loop since the the conduction time is estimated as (p. 321
in Aschwanden 2004),

τcond = 1.6 × 10−9neT−5/2L2 ≈ 285 min. (12)

In contrast, radiative processes may be important since the tem-
perature of the hot loop decreases from 5.6 to ∼2.7 MK in about

25 min, and the slow wave results to be over damped (the damp-
ing time of the oscillation itself is 40 min as determined by the
fitting analysis). Therefore, values of γ are assumed to vary be-
tween 1.1 and 5/3 (p. 82 in Priest 2014). Van Doorsselaere et al.
(2011b) has provided the first measurement of the effective adi-
abatic index in the solar corona to be γeff = 1.10 ± 0.02, by
analysing the density and temperature perturbations associated
with a slow wave in ideal MHD theory approximation. However,
this approach is valid when β is very small (see eq. (1) in Van
Doorsselaere et al. 2011b) and these perturbations are assumed
to propagate like a pure sound wave, which is not the general
case in corona, as we have shown in our analysis. Indeed, if we
combine Eqs. 7, 8, and11, we can express the tube speed CT in
terms of CS as

CT =
1

√

1 + βγ/2
CS =

(

γ

1 + βγ/2
2kB

µmp

T

)1/2

. (13)

Therefore, interpreting CT as CS can lead to erroneous results
for γ if the condition β ≪ 1 is not satisfied, since it will replaced
by the factor γeff = γ/(1 + βγ/2), which will play the role of an
effective adiabatic index. The relation between β, γ, and γeff can
be written in the following form as,

β = 2
(

1
γeff
−

1
γ

)

. (14)

Assuming a hypothetical value of γ = 5/3 (≈1.67 but in general
it can be different), the corresponding γeff will decrease from 5/3
according to the values assumed by β, which may vary through
different coronal regions. It is trivial to show that for β = 0 it
will be γeff = γ, and hence CT = CS. For β=0.01, a typical value
assumed for active regions, γeff = 1.65 (in practise equal to γ,
this justifies the approximation with sound speeds), but for val-
ues of β ≥ 0.13, the difference becomes remarkable and γeff will
deviate from the real and unknown γ with more than 10 %. If we
use γeff = 1.1 as estimated by Van Doorsselaere et al. (2011b),
we find β ≈ 0.6, which is unrealistic for that case: hence, the
adiabatic index in that analysis is surely much lower than 5/3.

The above discussion applied to our event can be easily il-
lustrated by the plots of Fig. 9, which show how the period of a
slow wave changes with the plasma temperature if we consider
as phase speed the sound (top panel) and the tube speeds (mid-
dle and bottom panels), respectively (the curves are obtained by
combining Eqs. 6–7 and Eqs. 6–13, and by taking as loop length
the value of 97 Mm). For the case of a pure sound wave, we plot
different curves corresponding to indicative different values of
the adiabatic index γ ranging between the theoretical value of
5/3 (lower curve in black) and 1.1 (upper curve in purple; the
other values are indicated on the right of the plot). The intersec-
tion of the horizontal line at P = 10 min, which is the initial
period of our slow wave, with the different curves identifies the
temperature at which the wave exists (for γ = 5/3, 1.5, 1.4, ...
Tγ = 4.8, 6.0, 6.8, ... MK). According to the analysis achieved
with XRT, the maximum temperature reached by the plasma is
∼ 6 MK, and consequently the effective adiabatic index for our
observation falls in the range 5/3 < γ ≤ 1.5. Similarly, we have
also considered the tube speed for γ = 5/3 (middle panel) and
γ = 1.5 (bottom panel) and plotted different curves for different
indicative values of the β-plasma between 0.0 (lower curve in
black) and 1.0 (upper curve in purple). For γ = 5/3, the possi-
ble values of β that fit our observations fall approximately in the
range of 0.10 and 0.25, while for γ = 1.5 the intersection points
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with µ = 1.27 and n = 1.15 × 1010 cm−3, we obtain B =
48±6 G, very close to the value determined using the kink waves.

It is interesting to note that the variations over time of the pe-
riod measured from the TD map and the temperature from Hin-
ode/XRT data are both consistent. Indeed, it is easy to show that
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=
δT

2T0
→
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= −
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where δP and δT are the period and temperature variations
in a given time interval, P0 and T0 the initial values. We have not
considered density variations, which may affect the phase speed
via the dependence of the tube speed on the Alfvén speed. In the
range of 30 minutes the period changes from 10 to 13 min (see
the wavelet power spectrum in Fig. 8), while the temperature
drops from ∼6 MK to ∼2.5 MK (Fig. 3). Therefore, having δP =
3 min and δT = 3.5 MK, we find that δP/P0 = 0.30 and δT/2T0 =
0.29.

Furthermore, by knowing the values of the period and plasma
temperature, it is possible to inverse the problem in coronal seis-
mology and estimates for example the length of the loop, as-
suming that CL ≈ CS . For P ∼ 10 min and T ∼ 6 MK, we find
L = 122 Mm. For P ∼ 13 min and T ∼ 2.5 MK, values estimated
30 min after the flare, L = 91 Mm, very close to our estimate in
Section 3. On the other hand, the 3D reconstruction described in
Section 3 has been done for the image at 12:14 UT.

6. Discussion and conclusions

Observations of fast and slow MHD modes in a common mag-
netic structure have a crucial role in coronal seismology. Indeed,
in our analysis we show that the values of the magnetic field
inferred from the observations of the kink oscillations and the
coexisting longitudinal slow wave are in agreement. Therefore,
it is possible to have a better understanding of the local envi-
ronment (Zhang et al. 2015). Indeed, from the knowledge of the
local sound and Alfvén speeds, the values of the local β-plasma
is naturally ensued as,

β =
2
γ

(

CS

CA

)2

. (11)

By taking CS = 361 km s−1, CA = 658 − 875 km s−1, and
γ = 5/3, the β-plasma will range between 0.20–0.36. On the
other hand, the determination of such parameters presumes the
knowledge of some other ones, which values are usually as-
sumed by theory, like the adiabatic index γ and the mean molec-
ular weight µ. While the value of µ has less uncertainties and it
is assumed to the standard values of 1.27 because of the most
abundant ions in corona (hydrogen and helium), the local value
of γ is subject matter for discussion. The adiabatic index enters
in the definition of the sound speed and determines the thermo-
dynamics of plasma. Indeed, local values of γ may differ from
the theoretical value of 5/3 because of partial ionisation, conduc-
tive, radiative cooling, or heating processes active in plasma. In
our case, thermal conduction should not affect the dynamics of
the hot loop since the the conduction time is estimated as (p. 321
in Aschwanden 2004),

τcond = 1.6 × 10−9neT−5/2L2 ≈ 285 min. (12)

In contrast, radiative processes may be important since the tem-
perature of the hot loop decreases from 5.6 to ∼2.7 MK in about

25 min, and the slow wave results to be over damped (the damp-
ing time of the oscillation itself is 40 min as determined by the
fitting analysis). Therefore, values of γ are assumed to vary be-
tween 1.1 and 5/3 (p. 82 in Priest 2014). Van Doorsselaere et al.
(2011b) has provided the first measurement of the effective adi-
abatic index in the solar corona to be γeff = 1.10 ± 0.02, by
analysing the density and temperature perturbations associated
with a slow wave in ideal MHD theory approximation. However,
this approach is valid when β is very small (see eq. (1) in Van
Doorsselaere et al. 2011b) and these perturbations are assumed
to propagate like a pure sound wave, which is not the general
case in corona, as we have shown in our analysis. Indeed, if we
combine Eqs. 7, 8, and11, we can express the tube speed CT in
terms of CS as

CT =
1

√

1 + βγ/2
CS =

(

γ

1 + βγ/2
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µmp
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)1/2

. (13)

Therefore, interpreting CT as CS can lead to erroneous results
for γ if the condition β ≪ 1 is not satisfied, since it will replaced
by the factor γeff = γ/(1 + βγ/2), which will play the role of an
effective adiabatic index. The relation between β, γ, and γeff can
be written in the following form as,

β = 2
(

1
γeff
−

1
γ

)

. (14)

Assuming a hypothetical value of γ = 5/3 (≈1.67 but in general
it can be different), the corresponding γeff will decrease from 5/3
according to the values assumed by β, which may vary through
different coronal regions. It is trivial to show that for β = 0 it
will be γeff = γ, and hence CT = CS. For β=0.01, a typical value
assumed for active regions, γeff = 1.65 (in practise equal to γ,
this justifies the approximation with sound speeds), but for val-
ues of β ≥ 0.13, the difference becomes remarkable and γeff will
deviate from the real and unknown γ with more than 10 %. If we
use γeff = 1.1 as estimated by Van Doorsselaere et al. (2011b),
we find β ≈ 0.6, which is unrealistic for that case: hence, the
adiabatic index in that analysis is surely much lower than 5/3.

The above discussion applied to our event can be easily il-
lustrated by the plots of Fig. 9, which show how the period of a
slow wave changes with the plasma temperature if we consider
as phase speed the sound (top panel) and the tube speeds (mid-
dle and bottom panels), respectively (the curves are obtained by
combining Eqs. 6–7 and Eqs. 6–13, and by taking as loop length
the value of 97 Mm). For the case of a pure sound wave, we plot
different curves corresponding to indicative different values of
the adiabatic index γ ranging between the theoretical value of
5/3 (lower curve in black) and 1.1 (upper curve in purple; the
other values are indicated on the right of the plot). The intersec-
tion of the horizontal line at P = 10 min, which is the initial
period of our slow wave, with the different curves identifies the
temperature at which the wave exists (for γ = 5/3, 1.5, 1.4, ...
Tγ = 4.8, 6.0, 6.8, ... MK). According to the analysis achieved
with XRT, the maximum temperature reached by the plasma is
∼ 6 MK, and consequently the effective adiabatic index for our
observation falls in the range 5/3 < γ ≤ 1.5. Similarly, we have
also considered the tube speed for γ = 5/3 (middle panel) and
γ = 1.5 (bottom panel) and plotted different curves for different
indicative values of the β-plasma between 0.0 (lower curve in
black) and 1.0 (upper curve in purple). For γ = 5/3, the possi-
ble values of β that fit our observations fall approximately in the
range of 0.10 and 0.25, while for γ = 1.5 the intersection points
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with µ = 1.27 and n = 1.15 × 1010 cm−3, we obtain B =
48±6 G, very close to the value determined using the kink waves.

It is interesting to note that the variations over time of the pe-
riod measured from the TD map and the temperature from Hin-
ode/XRT data are both consistent. Indeed, it is easy to show that
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=
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→
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where δP and δT are the period and temperature variations
in a given time interval, P0 and T0 the initial values. We have not
considered density variations, which may affect the phase speed
via the dependence of the tube speed on the Alfvén speed. In the
range of 30 minutes the period changes from 10 to 13 min (see
the wavelet power spectrum in Fig. 8), while the temperature
drops from ∼6 MK to ∼2.5 MK (Fig. 3). Therefore, having δP =
3 min and δT = 3.5 MK, we find that δP/P0 = 0.30 and δT/2T0 =
0.29.

Furthermore, by knowing the values of the period and plasma
temperature, it is possible to inverse the problem in coronal seis-
mology and estimates for example the length of the loop, as-
suming that CL ≈ CS . For P ∼ 10 min and T ∼ 6 MK, we find
L = 122 Mm. For P ∼ 13 min and T ∼ 2.5 MK, values estimated
30 min after the flare, L = 91 Mm, very close to our estimate in
Section 3. On the other hand, the 3D reconstruction described in
Section 3 has been done for the image at 12:14 UT.

6. Discussion and conclusions

Observations of fast and slow MHD modes in a common mag-
netic structure have a crucial role in coronal seismology. Indeed,
in our analysis we show that the values of the magnetic field
inferred from the observations of the kink oscillations and the
coexisting longitudinal slow wave are in agreement. Therefore,
it is possible to have a better understanding of the local envi-
ronment (Zhang et al. 2015). Indeed, from the knowledge of the
local sound and Alfvén speeds, the values of the local β-plasma
is naturally ensued as,

β =
2
γ

(

CS

CA

)2

. (11)

By taking CS = 361 km s−1, CA = 658 − 875 km s−1, and
γ = 5/3, the β-plasma will range between 0.20–0.36. On the
other hand, the determination of such parameters presumes the
knowledge of some other ones, which values are usually as-
sumed by theory, like the adiabatic index γ and the mean molec-
ular weight µ. While the value of µ has less uncertainties and it
is assumed to the standard values of 1.27 because of the most
abundant ions in corona (hydrogen and helium), the local value
of γ is subject matter for discussion. The adiabatic index enters
in the definition of the sound speed and determines the thermo-
dynamics of plasma. Indeed, local values of γ may differ from
the theoretical value of 5/3 because of partial ionisation, conduc-
tive, radiative cooling, or heating processes active in plasma. In
our case, thermal conduction should not affect the dynamics of
the hot loop since the the conduction time is estimated as (p. 321
in Aschwanden 2004),

τcond = 1.6 × 10−9neT−5/2L2 ≈ 285 min. (12)

In contrast, radiative processes may be important since the tem-
perature of the hot loop decreases from 5.6 to ∼2.7 MK in about

25 min, and the slow wave results to be over damped (the damp-
ing time of the oscillation itself is 40 min as determined by the
fitting analysis). Therefore, values of γ are assumed to vary be-
tween 1.1 and 5/3 (p. 82 in Priest 2014). Van Doorsselaere et al.
(2011b) has provided the first measurement of the effective adi-
abatic index in the solar corona to be γeff = 1.10 ± 0.02, by
analysing the density and temperature perturbations associated
with a slow wave in ideal MHD theory approximation. However,
this approach is valid when β is very small (see eq. (1) in Van
Doorsselaere et al. 2011b) and these perturbations are assumed
to propagate like a pure sound wave, which is not the general
case in corona, as we have shown in our analysis. Indeed, if we
combine Eqs. 7, 8, and11, we can express the tube speed CT in
terms of CS as

CT =
1

√

1 + βγ/2
CS =
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Therefore, interpreting CT as CS can lead to erroneous results
for γ if the condition β ≪ 1 is not satisfied, since it will replaced
by the factor γeff = γ/(1 + βγ/2), which will play the role of an
effective adiabatic index. The relation between β, γ, and γeff can
be written in the following form as,

β = 2
(

1
γeff
−

1
γ

)

. (14)

Assuming a hypothetical value of γ = 5/3 (≈1.67 but in general
it can be different), the corresponding γeff will decrease from 5/3
according to the values assumed by β, which may vary through
different coronal regions. It is trivial to show that for β = 0 it
will be γeff = γ, and hence CT = CS. For β=0.01, a typical value
assumed for active regions, γeff = 1.65 (in practise equal to γ,
this justifies the approximation with sound speeds), but for val-
ues of β ≥ 0.13, the difference becomes remarkable and γeff will
deviate from the real and unknown γ with more than 10 %. If we
use γeff = 1.1 as estimated by Van Doorsselaere et al. (2011b),
we find β ≈ 0.6, which is unrealistic for that case: hence, the
adiabatic index in that analysis is surely much lower than 5/3.

The above discussion applied to our event can be easily il-
lustrated by the plots of Fig. 9, which show how the period of a
slow wave changes with the plasma temperature if we consider
as phase speed the sound (top panel) and the tube speeds (mid-
dle and bottom panels), respectively (the curves are obtained by
combining Eqs. 6–7 and Eqs. 6–13, and by taking as loop length
the value of 97 Mm). For the case of a pure sound wave, we plot
different curves corresponding to indicative different values of
the adiabatic index γ ranging between the theoretical value of
5/3 (lower curve in black) and 1.1 (upper curve in purple; the
other values are indicated on the right of the plot). The intersec-
tion of the horizontal line at P = 10 min, which is the initial
period of our slow wave, with the different curves identifies the
temperature at which the wave exists (for γ = 5/3, 1.5, 1.4, ...
Tγ = 4.8, 6.0, 6.8, ... MK). According to the analysis achieved
with XRT, the maximum temperature reached by the plasma is
∼ 6 MK, and consequently the effective adiabatic index for our
observation falls in the range 5/3 < γ ≤ 1.5. Similarly, we have
also considered the tube speed for γ = 5/3 (middle panel) and
γ = 1.5 (bottom panel) and plotted different curves for different
indicative values of the β-plasma between 0.0 (lower curve in
black) and 1.0 (upper curve in purple). For γ = 5/3, the possi-
ble values of β that fit our observations fall approximately in the
range of 0.10 and 0.25, while for γ = 1.5 the intersection points
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with µ = 1.27 and n = 1.15 × 1010 cm−3, we obtain B =
48±6 G, very close to the value determined using the kink waves.

It is interesting to note that the variations over time of the pe-
riod measured from the TD map and the temperature from Hin-
ode/XRT data are both consistent. Indeed, it is easy to show that
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where δP and δT are the period and temperature variations
in a given time interval, P0 and T0 the initial values. We have not
considered density variations, which may affect the phase speed
via the dependence of the tube speed on the Alfvén speed. In the
range of 30 minutes the period changes from 10 to 13 min (see
the wavelet power spectrum in Fig. 8), while the temperature
drops from ∼6 MK to ∼2.5 MK (Fig. 3). Therefore, having δP =
3 min and δT = 3.5 MK, we find that δP/P0 = 0.30 and δT/2T0 =
0.29.

Furthermore, by knowing the values of the period and plasma
temperature, it is possible to inverse the problem in coronal seis-
mology and estimates for example the length of the loop, as-
suming that CL ≈ CS . For P ∼ 10 min and T ∼ 6 MK, we find
L = 122 Mm. For P ∼ 13 min and T ∼ 2.5 MK, values estimated
30 min after the flare, L = 91 Mm, very close to our estimate in
Section 3. On the other hand, the 3D reconstruction described in
Section 3 has been done for the image at 12:14 UT.

6. Discussion and conclusions

Observations of fast and slow MHD modes in a common mag-
netic structure have a crucial role in coronal seismology. Indeed,
in our analysis we show that the values of the magnetic field
inferred from the observations of the kink oscillations and the
coexisting longitudinal slow wave are in agreement. Therefore,
it is possible to have a better understanding of the local envi-
ronment (Zhang et al. 2015). Indeed, from the knowledge of the
local sound and Alfvén speeds, the values of the local β-plasma
is naturally ensued as,

β =
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By taking CS = 361 km s−1, CA = 658 − 875 km s−1, and
γ = 5/3, the β-plasma will range between 0.20–0.36. On the
other hand, the determination of such parameters presumes the
knowledge of some other ones, which values are usually as-
sumed by theory, like the adiabatic index γ and the mean molec-
ular weight µ. While the value of µ has less uncertainties and it
is assumed to the standard values of 1.27 because of the most
abundant ions in corona (hydrogen and helium), the local value
of γ is subject matter for discussion. The adiabatic index enters
in the definition of the sound speed and determines the thermo-
dynamics of plasma. Indeed, local values of γ may differ from
the theoretical value of 5/3 because of partial ionisation, conduc-
tive, radiative cooling, or heating processes active in plasma. In
our case, thermal conduction should not affect the dynamics of
the hot loop since the the conduction time is estimated as (p. 321
in Aschwanden 2004),

τcond = 1.6 × 10−9neT−5/2L2 ≈ 285 min. (12)

In contrast, radiative processes may be important since the tem-
perature of the hot loop decreases from 5.6 to ∼2.7 MK in about

25 min, and the slow wave results to be over damped (the damp-
ing time of the oscillation itself is 40 min as determined by the
fitting analysis). Therefore, values of γ are assumed to vary be-
tween 1.1 and 5/3 (p. 82 in Priest 2014). Van Doorsselaere et al.
(2011b) has provided the first measurement of the effective adi-
abatic index in the solar corona to be γeff = 1.10 ± 0.02, by
analysing the density and temperature perturbations associated
with a slow wave in ideal MHD theory approximation. However,
this approach is valid when β is very small (see eq. (1) in Van
Doorsselaere et al. 2011b) and these perturbations are assumed
to propagate like a pure sound wave, which is not the general
case in corona, as we have shown in our analysis. Indeed, if we
combine Eqs. 7, 8, and11, we can express the tube speed CT in
terms of CS as
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Therefore, interpreting CT as CS can lead to erroneous results
for γ if the condition β ≪ 1 is not satisfied, since it will replaced
by the factor γeff = γ/(1 + βγ/2), which will play the role of an
effective adiabatic index. The relation between β, γ, and γeff can
be written in the following form as,
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Assuming a hypothetical value of γ = 5/3 (≈1.67 but in general
it can be different), the corresponding γeff will decrease from 5/3
according to the values assumed by β, which may vary through
different coronal regions. It is trivial to show that for β = 0 it
will be γeff = γ, and hence CT = CS. For β=0.01, a typical value
assumed for active regions, γeff = 1.65 (in practise equal to γ,
this justifies the approximation with sound speeds), but for val-
ues of β ≥ 0.13, the difference becomes remarkable and γeff will
deviate from the real and unknown γ with more than 10 %. If we
use γeff = 1.1 as estimated by Van Doorsselaere et al. (2011b),
we find β ≈ 0.6, which is unrealistic for that case: hence, the
adiabatic index in that analysis is surely much lower than 5/3.

The above discussion applied to our event can be easily il-
lustrated by the plots of Fig. 9, which show how the period of a
slow wave changes with the plasma temperature if we consider
as phase speed the sound (top panel) and the tube speeds (mid-
dle and bottom panels), respectively (the curves are obtained by
combining Eqs. 6–7 and Eqs. 6–13, and by taking as loop length
the value of 97 Mm). For the case of a pure sound wave, we plot
different curves corresponding to indicative different values of
the adiabatic index γ ranging between the theoretical value of
5/3 (lower curve in black) and 1.1 (upper curve in purple; the
other values are indicated on the right of the plot). The intersec-
tion of the horizontal line at P = 10 min, which is the initial
period of our slow wave, with the different curves identifies the
temperature at which the wave exists (for γ = 5/3, 1.5, 1.4, ...
Tγ = 4.8, 6.0, 6.8, ... MK). According to the analysis achieved
with XRT, the maximum temperature reached by the plasma is
∼ 6 MK, and consequently the effective adiabatic index for our
observation falls in the range 5/3 < γ ≤ 1.5. Similarly, we have
also considered the tube speed for γ = 5/3 (middle panel) and
γ = 1.5 (bottom panel) and plotted different curves for different
indicative values of the β-plasma between 0.0 (lower curve in
black) and 1.0 (upper curve in purple). For γ = 5/3, the possi-
ble values of β that fit our observations fall approximately in the
range of 0.10 and 0.25, while for γ = 1.5 the intersection points
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[2]	estimated	an	effective	adiabatic	index	equal	to	1.1	
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Conclusion	
	
•  We	have	presented	observations	of	simultaneous	fast	kink	and	slow	MHD	waves	in	a	loop	bundle.	

•  The	variations	of	the	wave	properties	look	consistent	with	those	of	the	plasma	parameters.	

•  We	have	shown	that	the	adiabatic	index	estimates	can	be	affected	by	the	low-finite	plasma-beta	value:	it	is	important	to	
distinguish	between	sound	and	tube	speeds.	

Introduction	
We	present	observations	of	a	B7.9-class	flare	occurred	on	the	24th	January,	2015,	using	the	Atmospheric	
Imaging	Assembly	 (AIA)	 of	 the	 Solar	Dynamics	Observatory	 (SDO),	 the	 EUV	 Imaging	 Spectrometer	 (EIS)	
and	 the	X-Ray	Telescope	of	Hinode.	The	 flare	 triggers	 the	eruption	of	a	dense	cool	plasma	blob,	which	
remains	confined	within	the	local	bundle	of	 loops	exhibiting	transverse	oscillations.	At	the	same	time,	a	
larger	diffuse	loop	observed	in	the	hot	EUV/X-ray	wavebands	shows	periodic	intensity	oscillations,	which	
are	interpreted	as	a	longitudinal	slow	MHD	wave	[1].	

Blob:	1.15	x	1010	cm-3									-				Background:	3	x	109	cm-3	

0.05	MK								2	MK	
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Oscillation t0 y0 A P P′ φ τ
[min] [Mm] [Mm] [min] [min min−1] [deg] [min]

S1 11.6 0.3±0.1 7.3±0.5 3.7±0.2 -0.02±0.03 -24±8 3.7±0.5
S2 11.5 -0.1±0.2 4.0±0.5 4.0±0.3 -0.05±0.03 -2±11 7.9±2.0
S3 10.1 0.02±0.01 0.4±0.1⋆ 9.7±0.4 0.05±0.02 -110±8 40.3±14.7

Table 2. List of the fitting parameters. ⋆ The amplitude of the slow MHD wave is not in Mm units but normalised to the loop length.

Fig. 4. 3D reconstruction with a semi-circular coronal loop for different
values of the inclinations angles with respect to the normal to the solar
surface. The red line represent the loop profile sample form the AIA 131
image. The green line shows the loop model for a given inclination an-
gle θ. The loop centre is marked by a red square. The best fit is obtained
for θ = −50 deg.

4.2. Coronal seismology with kink waves

The transverse displacements observed in the loop are inter-
preted in terms of fundamental standing fast magnetoacoustic
kink wave. The phase speed is the kink speed which is deter-
mined by the loop length and the period of the oscillations, that
is,

Ck =
2L

Pk
. (2)

In this case, given the length of 97±9.7 Mm and the period of
3.9±0.3 min, the kink speed is Ck = 829.1±104.6 km s−1. From
theoretical modelling of MHD modes in a plasma cylinder (Ed-
win & Roberts 1983), the kink speed is density-weighed average
of Alfvén speeds inside and outside the oscillating plasma cylin-
der:

Ck =

⎛

⎜

⎜

⎜

⎜

⎝

ρ0C2
A + ρeC

2
Ae

ρ0 + ρe

⎞

⎟

⎟

⎟

⎟

⎠

1/2

. (3)

In the low-β plasma regime, typical of the corona for coronal
active region, the expression above can be approximated as

Ck ≈ CA

(

2
1 + ρe/ρ0

)

(4)

where CA = B/
√

4πρ0 and ρ0 is related to the number density
n0 with the relation ρ = µmpn0. Therefore, changes in the densi-
ties can affect the values of Ck, and consequently the period Pk.
Indeed, using the expressions above it is easy to show that

Pk =
L

B

√

8πρ0(1 + ρe/ρ0). (5)

Figure 7 shows the intensity time series I from the SDO/AIA
171 Å band averaged over a boxcar centred on the cool blob
(left panel). The profile resembles that one of a shock with a
very sharp ramp (at ∼ 9 min), an overshoot (∼ 12 min), and a
weak decaying tail (after ∼15 min). Since I ∝ n2

0, then variations
of the intensity on time-scales larger the kink period can be
expressed as δI/I = 2δn0/n0, assuming that the plasma does
not change drammatically its temperature, as the observations
suggest.

On the other hand, from Eq. 5 the variations of the periods
with respect to the density (considering the inner density ρ0 or
equivalently n0) are δPk/Pk = δn0/2n0. Therefore, Pk changes
with respect to I as δPk/Pk = δI/4I. For δI = −50 DN in a
time interval ∆t = 10 min, and I = 350, δPk/Pk ∼ −0.03.
Therefore, by taking Pk = 3.9 min, it is easy to show that
δPk = −0.03Pk = −0.11 min, then P′ ≈ δPk/∆t = −0.01 min
min−1, which is consistent with the values obtained from the fit-
tings. It is worthy to mention that the oscillations that are seen
in the intensity profile (see the inset plot in Fig. 7-bottom panel)
are in antiphase with the displacement of the loop threads. This
can be explained in terms of vertically polarised oscillations of
a bundle of loop threads. Indeed, at the maxima of the oscilla-
tion the relative distance between the loop threads increase as
much as possible and line-of-sight (LOS) integration effects de-
crease, while at the minima the threads get closer, may overlap,
and contribute to increasing the intensity.

We can infer the values of the Alfvén speed and magnetic
field by inverting Eqs. 4 and 5 with respect to CA and B. We
considered the following values: L = (97± 9.7) Mm, Pk = 3.9±
0.3 min, µ ≈ 1.27, mp = 1.67 × 10−24 g, n0 = 1.15 × 1010 cm−3,
ne = 3 × 109 cm−3. We obtain an Alfvén speed CA = 568.3±83.0
km s−1, and a magnetic field of B = 36 ± 6 G.

5. Longitudinal oscillation in the hot loop

5.1. Analysis

We recall (see Fig. 3) that the hot loop increases its brightness in
the Be_thin and Al_poly filters and has a temperature of about 6
MK. The high-cadence of the AIA instrument allows us to ob-
serve periodic intensity variations along the hot loop in the 94 Å
band. Indeed, after the flare, the brightness of the loop seems
to vary periodically along the loop axis, bouncing between the
footpoints (Kumar et al. 2015). We have considered a curved slit
along the loop (red curve in Fig. 8-top) to extract the intensity
along it from each frame and make a TD map (middle panel in
Fig. 8). An oscillatory pattern is clearly visible. To investigate
the variation of the period we have fitted the time series with Eq.
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with µ = 1.27 and n = 1.15 × 1010 cm−3, we obtain B =
48±6 G, very close to the value determined using the kink waves.

It is interesting to note that the variations over time of the pe-
riod measured from the TD map and the temperature from Hin-
ode/XRT data are both consistent. Indeed, it is easy to show that

δP

P0
= −
δCL

CL0
and

δCL

CL0
=
δT

2T0
→
δP

P0
= −
δT

2T0
(10)

where δP and δT are the period and temperature variations
in a given time interval, P0 and T0 the initial values. We have not
considered density variations, which may affect the phase speed
via the dependence of the tube speed on the Alfvén speed. In the
range of 30 minutes the period changes from 10 to 13 min (see
the wavelet power spectrum in Fig. 8), while the temperature
drops from ∼6 MK to ∼2.5 MK (Fig. 3). Therefore, having δP =
3 min and δT = 3.5 MK, we find that δP/P0 = 0.30 and δT/2T0 =
0.29.

Furthermore, by knowing the values of the period and plasma
temperature, it is possible to inverse the problem in coronal seis-
mology and estimates for example the length of the loop, as-
suming that CL ≈ CS . For P ∼ 10 min and T ∼ 6 MK, we find
L = 122 Mm. For P ∼ 13 min and T ∼ 2.5 MK, values estimated
30 min after the flare, L = 91 Mm, very close to our estimate in
Section 3. On the other hand, the 3D reconstruction described in
Section 3 has been done for the image at 12:14 UT.

6. Discussion and conclusions

Observations of fast and slow MHD modes in a common mag-
netic structure have a crucial role in coronal seismology. Indeed,
in our analysis we show that the values of the magnetic field
inferred from the observations of the kink oscillations and the
coexisting longitudinal slow wave are in agreement. Therefore,
it is possible to have a better understanding of the local envi-
ronment (Zhang et al. 2015). Indeed, from the knowledge of the
local sound and Alfvén speeds, the values of the local β-plasma
is naturally ensued as,

β =
2
γ

(

CS

CA

)2

. (11)

By taking CS = 361 km s−1, CA = 658 − 875 km s−1, and
γ = 5/3, the β-plasma will range between 0.20–0.36. On the
other hand, the determination of such parameters presumes the
knowledge of some other ones, which values are usually as-
sumed by theory, like the adiabatic index γ and the mean molec-
ular weight µ. While the value of µ has less uncertainties and it
is assumed to the standard values of 1.27 because of the most
abundant ions in corona (hydrogen and helium), the local value
of γ is subject matter for discussion. The adiabatic index enters
in the definition of the sound speed and determines the thermo-
dynamics of plasma. Indeed, local values of γ may differ from
the theoretical value of 5/3 because of partial ionisation, conduc-
tive, radiative cooling, or heating processes active in plasma. In
our case, thermal conduction should not affect the dynamics of
the hot loop since the the conduction time is estimated as (p. 321
in Aschwanden 2004),

τcond = 1.6 × 10−9neT−5/2L2 ≈ 285 min. (12)

In contrast, radiative processes may be important since the tem-
perature of the hot loop decreases from 5.6 to ∼2.7 MK in about

25 min, and the slow wave results to be over damped (the damp-
ing time of the oscillation itself is 40 min as determined by the
fitting analysis). Therefore, values of γ are assumed to vary be-
tween 1.1 and 5/3 (p. 82 in Priest 2014). Van Doorsselaere et al.
(2011b) has provided the first measurement of the effective adi-
abatic index in the solar corona to be γeff = 1.10 ± 0.02, by
analysing the density and temperature perturbations associated
with a slow wave in ideal MHD theory approximation. However,
this approach is valid when β is very small (see eq. (1) in Van
Doorsselaere et al. 2011b) and these perturbations are assumed
to propagate like a pure sound wave, which is not the general
case in corona, as we have shown in our analysis. Indeed, if we
combine Eqs. 7, 8, and11, we can express the tube speed CT in
terms of CS as

CT =
1

√

1 + βγ/2
CS =

(

γ

1 + βγ/2
2kB

µmp

T

)1/2

. (13)

Therefore, interpreting CT as CS can lead to erroneous results
for γ if the condition β ≪ 1 is not satisfied, since it will replaced
by the factor γeff = γ/(1 + βγ/2), which will play the role of an
effective adiabatic index. The relation between β, γ, and γeff can
be written in the following form as,

β = 2
(

1
γeff
−

1
γ

)

. (14)

Assuming a hypothetical value of γ = 5/3 (≈1.67 but in general
it can be different), the corresponding γeff will decrease from 5/3
according to the values assumed by β, which may vary through
different coronal regions. It is trivial to show that for β = 0 it
will be γeff = γ, and hence CT = CS. For β=0.01, a typical value
assumed for active regions, γeff = 1.65 (in practise equal to γ,
this justifies the approximation with sound speeds), but for val-
ues of β ≥ 0.13, the difference becomes remarkable and γeff will
deviate from the real and unknown γ with more than 10 %. If we
use γeff = 1.1 as estimated by Van Doorsselaere et al. (2011b),
we find β ≈ 0.6, which is unrealistic for that case: hence, the
adiabatic index in that analysis is surely much lower than 5/3.

The above discussion applied to our event can be easily il-
lustrated by the plots of Fig. 9, which show how the period of a
slow wave changes with the plasma temperature if we consider
as phase speed the sound (top panel) and the tube speeds (mid-
dle and bottom panels), respectively (the curves are obtained by
combining Eqs. 6–7 and Eqs. 6–13, and by taking as loop length
the value of 97 Mm). For the case of a pure sound wave, we plot
different curves corresponding to indicative different values of
the adiabatic index γ ranging between the theoretical value of
5/3 (lower curve in black) and 1.1 (upper curve in purple; the
other values are indicated on the right of the plot). The intersec-
tion of the horizontal line at P = 10 min, which is the initial
period of our slow wave, with the different curves identifies the
temperature at which the wave exists (for γ = 5/3, 1.5, 1.4, ...
Tγ = 4.8, 6.0, 6.8, ... MK). According to the analysis achieved
with XRT, the maximum temperature reached by the plasma is
∼ 6 MK, and consequently the effective adiabatic index for our
observation falls in the range 5/3 < γ ≤ 1.5. Similarly, we have
also considered the tube speed for γ = 5/3 (middle panel) and
γ = 1.5 (bottom panel) and plotted different curves for different
indicative values of the β-plasma between 0.0 (lower curve in
black) and 1.0 (upper curve in purple). For γ = 5/3, the possi-
ble values of β that fit our observations fall approximately in the
range of 0.10 and 0.25, while for γ = 1.5 the intersection points
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Fig. 7. Intensity time series in the AIA 171 Å band (top) starting at
11:50 UT, obtained from a boxcar centred on the cool plasma blob (bot-
tom). The intensity shows a strong peak at the flare peak time and then
it drops very fast in around 5 min. In the inset plot we show that the
oscillation in the intensity profile (black) are in antiphase with the loop
thread displacement (dashed red line).

The phase speed can be interpreted as the sound speed of a
slow wave, which magnitude depends upon the plasma tempera-
ture:

CS =

(

γp

ρ

)1/2

=

(

2γkBT

µmp

)1/2

≈ 1.29 × 10−1(γT/µ)1/2 km s−1.

(7)

If we consider γ = 5/3, µ = 1.27, and T ∼ 6 ± 0.5 MK as
determined by Hinode/XRT, the corresponding sound speed is
CS = 360.6 ± 15.0 km s−1, which is slightly higher than CL. For
this reason, CL can be considered as the tube speed (Wang et al.
2007):

CL = CT =
CSCA

√

C2
S +C2

A

, (8)

with CA the Alfvén speed. This consideration is helpful for
the determination of the Alfvén speed and the corresponding
value of the magnetic field inside the loop. Indeed, from the
above relation and using the estimates for the sound and tube

Fig. 8. Top: Image of the loop at 94 Å with the curved slit in red. Middle:
TD maps from the curved slit. The red square points track the oscilla-
tion and are determined by eye. The oscillation in green is obtained by
interpolation of the red points. Bottom: Wavelet power spectrum of the
oscillation profile. The green continuous line shows indicatively the rate
at which the period of the slow wave varies (0.1 min min−1), while the
green dot marks the value of the period (13 min) after 30 min from its
excitation.

speed we find that CA = 874.5 ± 101.3 km s−1. Using the rela-
tion

B =
√

4πµmpn0CA (9)
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CS	=		465+/-	34	km	s-1	
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We	consider	that	values	γ=5/3	and	0.1<β<0.3	can	describe	the	dynamics	of	the	slow	MHD	wave	in	the	hot	loop.	
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We present multi-instrument observations of a B7.9-class flare occurred on January 24th, 2015, using
SDO/AIA, Hinode/EIS and XRT. The flare heats the local plasma up to temperatures of ⇠ 8 MK,
and triggers the eruption of a dense blob, which is unable to expands completely, and remains confined
within the local bundle of active region loops. During this process, vertically polarised kink oscillations
of the loop threads with a period of 3.5–4 min and an amplitude of 5 Mm are driven by the blob, which
di↵uses and descends along each loop strand causing variations in density. In addition, a co-existing
longitudinal slow MHD wave propagates along the hot loop bundle with a period of 10 min, and a phase
speed of ⇠ 430 km s�1. We show that the evolution of these waves are determined by the temporal
variations of the local plasma parameters (e.g. density, temperature), caused by the flare heating and
the consequent cooling. Furthermore, the correct interpretation of the nature of both the observed fast
and slow magneto-acoustic waves is exploited to determine better the plasma-� and the adiabatic index
� of the coronal plasma.
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