

# IRIS TR lines with wings: non-Maxwellian analysis

Jaroslav Dudík, Vanessa Polito,

Elena Dzifčáková, Giulio Del Zanna, and Paola Testa



Astronomical Institute of the Czech Academy of Sciences





IRIS-9, Göttingen, Germany 2018 June 26

#### IRIS-9, Göttingen, 25-29 June 2018

Contributed Talk

1. Fundamental physical processes and modeling

#### Transition-Region lines with strong wings: Non-Maxwellian analysis of line profiles and intensities

J. Dudík<sup>1</sup>, V. Polito<sup>2</sup>, E. Dzifčáková<sup>1</sup>, G. Del Zanna<sup>3</sup>, and P. Testa<sup>2</sup>

 <sup>1</sup> Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 25165 Ondřejov, Czech Republic
 <sup>2</sup> Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138, USA
 <sup>3</sup> Department of Applied Mathematics and Theoretical Physics, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

We analyze the IRIS observation of an active region containing bright transition-region (TR) loops. Locations showing symmetric profiles of the Si IV and O IV lines are selected. In nearly all of these locations, the Si IV line at 1402.8 Å is much stronger than the neighboring O IV lines. Furthermore, all TR lines show strong (S/N > 10) and extended wings, i.e., a non-Gaussian profile. We found that the non-Maxwellian  $\kappa$ -distributions approximate these profiles better or at least equally well as double-Gaussian fits. The values of  $\kappa$  found are typically very low, in the range of 1.7 - 2.5. Similar  $\kappa$  values are obtained from fitting the intensities of the O IV lines relative to Si IV. Furthermore, all TR lines have the same  $\kappa$  and width, irrespective of whether the line is an allowed or intercombination transition. However, we also found a single location showing very strong but Gaussian Si IV line, indicating that instrumental effects can be ruled out.



# IRIS TR lines with wings: non-Maxwellian analysis

Jaroslav Dudík, Vanessa Polito,

Elena Dzifčáková, Giulio Del Zanna, and Paola Testa



Astronomical Institute of the Czech Academy of Sciences





IRIS-9, Göttingen, Germany 2018 June 26

#### Synthetic IRIS TR spectrum



Dudík et al. (2014), ApJ 780, L12

- Predicted IRIS FUV2 spectrum for a typical quiet Sun DEM:
   O IV 1401.2 Å line stronger than the Si IV 1402.8 Å
- For AR, with steeper DEM slope, O IV > Si IV also

#### **TR Lines: Challenges**



#### **TR Lines: Challenges**



## **OIV > SiIV ?:** Single Solar Case



#### **Non-Gaussian Line Profiles**



counts per pixel in 115 s

#### α Centauri A+B



Ayres (2015), Astron. J., 149, 58

#### **Non-Gaussian Line Profiles:** *IRIS*



#### The *k*-distributions



#### *k***-Distributions:** Line Profiles



#### *k***-distributions:** Line intensities



Dzifčáková & Dudík (2013), ApJS, 206, 6 Dudík et al. (2014), ApJL, 780, L12 Dzifčáková et al. (2017), A&A, 603, A14

- For TR lines, ion abundance peaks are shifted to lower T
- High-energy tail: ionization rate enhanced by orders of magnitude
- Recombination enhanced by a factor of < 2</p>

#### **IRIS Example Spectrum**



#### **IRIS** Example Spectrum: Fitting



#### **IRIS Example Spectrum: Fitting**



## **IRIS Example Spectrum: Fitting**

| Line                     | $\lambda_0 \; [{ m \AA}]$ | $I_0$ [DN]    | $w_{\kappa}$ [Å]  | $\kappa$        | $\mathrm{FWHM}_{\kappa}$ [Å] | $T_{\rm i}$ [MK] |
|--------------------------|---------------------------|---------------|-------------------|-----------------|------------------------------|------------------|
| O IV 1399.78 Å           | $1399.831 \pm 0.001$      | $385 \pm 6$   | $0.143 \pm 0.010$ | $2.16 \pm 0.17$ | $0.20\pm0.08$                | $1.81 \pm 0.26$  |
| O IV 1401.16 Å           | $1401.218 \pm 0.000$      | $1399\pm10$   | $0.127 \pm 0.003$ | $2.35\pm0.08$   | $0.20\pm0.05$                | $1.43 \pm 0.06$  |
| Si IV 1402.77 Å          | $1402.820 \pm 0.000$      | $4598 \pm 18$ | $0.136 \pm 0.001$ | $2.16 \pm 0.03$ | $0.19\pm0.02$                | $2.86\pm0.06$    |
| O IV 1404.82 Å (bl S IV) | $1404.855 \pm 0.001$      | $383 \pm 6$   | $0.163 \pm 0.018$ | $1.90\pm0.13$   | $0.19\pm0.13$                | $2.35\pm0.52$    |
| S IV 1406.06 Å           | $1406.103 \pm 0.001$      | $282\pm5$     | $0.144 \pm 0.021$ | $1.91\pm0.18$   | $0.17\pm0.17$                | $3.64 \pm 1.08$  |

- (Almost) consistent κ values derived from all five TR lines
- All five lines have the same FWHM
- Significant non-thermal widths

$$w_{\kappa}^{2} = \frac{1}{2} \frac{\lambda_{0}^{2}}{c^{2}} (\theta^{2} + (\theta^{(\mathrm{nth})})^{2}) = (w_{\kappa}^{(\mathrm{th})})^{2} + (w_{\kappa}^{(\mathrm{nth})})^{2}$$

| Line                                                          | $w_{\kappa}$ [Å]                                            | $\log(T_{\max, Maxw} [K])$ | $w_{ m Maxw}^{ m (th)}$ | $w_{ m Maxw}^{ m (nth)}$  | $\log(T_{\max,\kappa=2} [K])$ | $w_{\kappa=2}^{(\mathrm{th})}$ | $w_{\kappa=2}^{(\mathrm{nth})}$ |
|---------------------------------------------------------------|-------------------------------------------------------------|----------------------------|-------------------------|---------------------------|-------------------------------|--------------------------------|---------------------------------|
| O IV 1399.78 Å                                                | $0.143 \pm 0.010$                                           | 5.15                       | 0.040                   | 0.137                     | 4.45                          | 0.018                          | 0.141                           |
| O IV 1401.16 Å                                                | $0.127 \pm 0.003$                                           | 5.15                       | 0.040                   | 0.121                     | 4.45                          | 0.018                          | 0.126                           |
| Si IV 1402.77 Å                                               | $0.136 \pm 0.001$                                           | 4.90                       | 0.023                   | 0.134                     | 4.10                          | 0.009                          | 0.136                           |
| O IV 1404.82 Å (bl S IV)                                      | $0.163 \pm 0.018$                                           | 5.15                       | 0.040                   | 0.158                     | 4.45                          | 0.018                          | 0.162                           |
| S IV 1406.06 Å                                                | $0.144 \pm 0.021$                                           | 5.05                       | 0.025                   | 0.141                     | 4.20                          | 0.009                          | 0.143                           |
| Si IV 1402.77 A<br>O IV 1404.82 Å (bl S IV)<br>S IV 1406.06 Å | $0.136 \pm 0.001$<br>$0.163 \pm 0.018$<br>$0.144 \pm 0.021$ | $4.90 \\ 5.15 \\ 5.05$     | 0.023<br>0.040<br>0.025 | $0.134 \\ 0.158 \\ 0.141$ | 4.10<br>4.45<br>4.20          | 0.009<br>0.018<br>0.009        | 0.13<br>0.16<br>0.14            |





#### More cases...



### Si IV: Case of a Gaussian Profile



- Detection of a single, very bright Gaussian pixel
- Third brightest pixel with symmetric profiles
- The non- Gaussian profiles are not caused by instrumental effects
- Larger / asymmetric residuals: Possibly 2 Gaussian components

#### Interpretation

Residuals



- Similar profiles seen in the X8.3-flare of 2017 Sept 10
- EIS Fe XXIV with  $\kappa \approx 2$
- only in RHESSI and EOVSA sources
- Ion acceleration ( $T > 10^8 K$ )
- Turbulence (v<sub>nth</sub> > 200 km/s)



Polito, Dudík, et al. (2018), to be submitted to ApJ

#### Tails too strong? : κ + NEI



#### Summary

- Detected non-Gaussian, highly symmetric profiles of TR lines in 120 pixels
- Typical κ values found from profiles are κ ≈ 1.7 – 2.5
- This is not an instrumental effect
   we detected a Gaussian pixel
- Typical κ values found from fitting of relative intensities are κ ≈ 2 3 (but sensitive to abundances)
- The Si IV 1402.8 Å line is optically thin



Dudík et al. (2017), ApJ, 842, 19

Review on non-Maxwellians and non-equilibrium ionization: Dudík et al. (2017), Solar Phys., 292, 100

### Is the SI IV optically thick?

The optical thickness is given by (e.g., Buchlin & Vial 2009, A&A, 503, 559):

$$\tau(\lambda) = \tau_0(\lambda_0) \Phi(\lambda) = \frac{\lambda_0^4 A_{ij} \Phi(\lambda)}{4\pi^{3/2} c \Delta \lambda_{\rm D}} \frac{N({\rm Si}^{+3})}{N({\rm Si})} A({\rm Si}) \frac{N_{\rm H}}{N_{\rm e}} \langle N_{\rm e} \rangle \Delta s$$

For Maxwellian and thermal width, we get

$$\tau_0 \approx 0.26 f \frac{\langle N_{\rm e} \rangle}{10^{10} \,\mathrm{cm}^{-3}}$$

- For κ = 2, the numerical factor is about 1.5 (due to lower thermal width and higher N(Si<sup>+3</sup>) / N(Si)
- For the *observed* width and a Maxwellian, we get

$$\tau_0 \approx 0.02 f \frac{\langle N_{\rm e} \rangle}{10^{10} \,\mathrm{cm}^{-3}}$$

For κ = 2, the numerical factor is about 0.06

#### Is the SI IV optically thick?

• If the line is optically thick, then the profile should be (for *S* = const.)  $I^*(\lambda) = \int_{0}^{\tau(\lambda)} S_{\lambda} \exp(-t_{\lambda}) dt_{\lambda} = S_{\lambda} \left[1 - \exp(-\tau(\lambda))\right]$ 



#### **Multi-Component Si IV?**

The FWHM changes as

FWHM<sub>$$\kappa$$</sub><sup>\*</sup>( $\tau_0$ )<sup>2</sup> = 8( $\kappa - 3/2$ ) $w_{\kappa}^2 \left[ \left( \frac{\tau_0}{\ln(2) - \ln(\exp(-\tau_0) + 1)} \right)^{\frac{1}{\kappa}} - 1 \right]$ 

- Recall that the FWHM of the Si IV line is the same as for the O IV and S IV
- For solar conditions,
   O IV lines are always optically thin because of their small A<sub>ii</sub>
- ⇒ the Si IV is optically *thin*

