Observations of Large Penumbral Jets from IRIS and Hinode

Sanjiv K. Tiwari^{1,2}

(Ron Moore^{3,4}, Bart De Pontieu¹, Ted Tarbell¹, Navdeep Panesar³, Amy Winebarger³, Alphonse Sterling³)

¹Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA ²Bay Area Environmental Research Institute, Petaluma, CA 94952, USA ³NASA Marshall Space Flight Center, Huntsville, AL 35805, USA ⁴CSPAR, Univ. of Alabama in Huntsville, AL 35805, USA

June 27, 2018

IRIS-9, Gottingen

tiwari@lmsal.com/baeri.org

IRIS-9, Göttingen, 25-29 June 2018

Contributed Talk

2. Chromospheric heating and dynamics

Observations of Large Penumbral Jets from IRIS and Hinode

Sanjiv K. Tiwari^{1,2}, Ronald L. Moore^{3,4}, Bart De Pontieu¹, Theodore D. Tarbell¹, Navdeep K. Panesar³, Amy R. Winebarger³, and Alphonse C. Sterling³

¹Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Bldg. 252, Palo Alto, CA 94304, USA

²Bay Area Environmental Research Institute, NASA Research Park, Moffett Field, CA 94035, USA ³NASA Marshall Space Flight Center, ST 13, Huntsville, AL 35812, USA

⁴Center for Space and Aeronomic Research, University of Alabama-Huntsville, 320 Sparkman Drive, Huntsville, AL 35805, USA

Recent studies using *Hinode* (SOT/FG) data revealed the presence of large penumbral jets (widths \geq 500 km; larger than normal penumbral microjets, which have widths < 400 km) repeatedly occurring at the same locations in a sunspot penumbra, at the tail of a penumbral filament or where the tails of several penumbral filaments apparently converge (Tiwari et al. 2016, ApJ). These locations were observed to have obvious mixed-polarity flux in Stokes-V images from SOT/FG, whereas no obvious mixed-polarity field could be detected at the ostensible base of microjets. Large penumbral jets displayed direct signatures in AIA 1600, 304, 171, and 193 channels; thus they were heated to at least transition region temperatures. Because large jets could not be detected in AIA 94 Å, whether they had any coronal-temperature plasma remains unclear. In the present work, for two other sunspots, we use IRIS Mg II k 2796 slit jaw images and spectra and magnetograms from Hinode SOT/FG and SOT/SP to examine: whether penumbral jets spin, similar to spicules and coronal jets in the quiet Sun and coronal holes; whether they stem from mixed-polarity flux; and whether they produce discernible coronal emission, especially in AIA 94 Å images.

Observations of Large Penumbral Jets from IRIS and Hinode

Sanjiv K. Tiwari^{1,2}

(Ron Moore^{3,4}, Bart De Pontieu¹, Ted Tarbell¹, Navdeep Panesar³, Amy Winebarger³, Alphonse Sterling³)

¹Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA ²Bay Area Environmental Research Institute, Petaluma, CA 94952, USA ³NASA Marshall Space Flight Center, Huntsville, AL 35805, USA ⁴CSPAR, Univ. of Alabama in Huntsville, AL 35805, USA

June 27, 2018

IRIS-9, Gottingen

tiwari@lmsal.com/baeri.org

Introduction:

14-Nov-2006 09:58:53

Hinode (SOT/FG) Observations

Jet's characteristics

- ≻ Length 1000 4000 km
- ≻ Width 300 400 km
- Lifetime < 1 minute</p>
- Apparent velocity 50-100 km/s

Katsukawa et al., 2007, Science

For opposite polarity field at sides of penumbral filaments, see also: Rempel 2012; Ruiz Cobo & Asensio Ramos, 2013; Scharmer et al 2013

This is partly in agreement with the MHD simulations of Magara, 2010, ApJ!

Transition-region/coronal signatures

Hi-C 193 Å

SOT/FG Ca II H-line

Hi-C and Hinode (SOT/FG): 0.2 arcsec \approx 145 km

Ca II H-line movie for one hour

Running difference: CaII H-line 3968 Å

Widths of a normal jet and a larger jet using a Gaussian function fitting

- Width of the widest jet:
- 600 km
- Speed of fastest jet found:
- 250 km/s
- Length:
- 420 km (subject to projection)

Tiwari et al., 2016, ApJ

Example of a large penumbral jet

Stokes-V images (equivalent to LOS magnetograms)

Tiwari et al., 2013, A&A

Coronal Jets are Twisted and have Mixed-polarity Field

IRIS and Hinode (SOT/FG) Observations of the leading sunspot of NOAA AR 12394

Mg II k-line 2796 Å SJ movie Dopplergram movie

Movies for the example jet

A frame from the movie (an example jet)

Mg II k 2796 line profiles for the example jet

IRIS and Hinode (SOT/SP) Observations of the leading sunspot of NOAA AR 12680

IRIS Slit-jaw Image 16-Sep-2017 00:18:11 UT

An example jet from the 2nd sunspot

Hinode SOT/SP Stokes-V: equivalent to LOS magnetogram

2017-09-16T03:00 2017-09-16T03:08

Mg II k 2796 line profiles for the example jet

Another example jet

Another example jet

Summary

- Large penumbral jets often repeatedly occur at the same locations; show direct transition-region signatures; no 94 Å coronal signatures are detected.
- Opposite polarity field patches are found at the base of large penumbral jets; they apparently form at tails of penumbral filaments (Tiwari et al. 2016).
- > We found evidence of twisting in large penumbral jets.
- Because they have mixed-polarity field at the base and they spin, penumbral jets might form the same way as other coronal jets (in CHs, QRs, ARs) do! Thanks!