Rosseland Centre for Solar Physics

An IRIS Optically Thin View of the Dynamics of the Solar Chromosphere

Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo IRIS-9, Göttingen June 27 2018 IRIS-9, Göttingen, 25-29 June 2018

Contributed Talk

2. Chromospheric heating and dynamics

An IRIS Optically Thin View of the Dynamics of the Solar Chromosphere

 $\underline{\mathrm{Mats}\ \mathrm{Carlsson}}^{1,2}$

¹Rosseland Centre for Solar Physics, University of Oslo ²Institute of Theoretical Astrophysics, University of Oslo

We analyze the formation of the O I 1356 and Cl I 1351 lines and show that they are formed in the mid-chromosphere and are optically thin. Their non-thermal line-widths are thus a direct measure of the velocity field along the line of sight. We use this insight to analyze a large set of observations from the Interface Region Imaging Spectrograph (IRIS) to study the dynamics of the Solar Chromosphere.

Rosseland Centre for Solar Physics

An IRIS Optically Thin View of the Dynamics of the Solar Chromosphere

Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo IRIS-9, Göttingen June 27 2018

T(z) vs V_{turb}

R

C S

Carlsson, Leenaarts & De Pontieu, 2015, ApJ 809, L30

СS R

OII356

R C S

Lin & Carlsson 2015

OI 1356: Optically thin formation

R

CIII351.7

R 🛑 C S

СS

R

1 20150513_114734_3890172096 λ =2800

QS

Solar y ["]

C S

R

Conclusions

- OI 1356 optically thin
- CI I 1352 mostly thin at disk centre, not at limb
- Plage: V_{turb}=6 km/s, narrow distribution
- QS, internetwork: V_{turb} close to zero in darkest areas

