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Probing the magnetic coupling through the solar atmosphere is central to deciphering a wide range
of plasma dynamics observed above the visible surface of the Sun. The Interface Region Imaging
Spectrograph in coordination with the current fleet of ground- and space-based telescopes provides
unprecedented details of the magnetic processes and magnetic-field-regulated mass and energy transport
through the solar atmosphere. In this talk, we will review some recent studies that highlight the
complex nature of magnetic coupling at the chromospheric interface of coronal loops. The role of
apparent chromospheric magnetic reconnection at the base of coronal loops in the heating of discrete
hot structures in active region cores will be discussed.



***

Horizon 2020 MSCA

No. 707837

Magnetic coupling through /

the solar atmosphere

Lakshmi Pradeep Chitta , Ak

chitta@mps.mpg.de

Max Planck Institute for Solar System Research

IRIS-9 — Gottingen
27 June 2018



Magnetic coupling and solar structures

Magnetic coupling
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Magnetic coupling and solar structures

Magnetic coupling
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Magnetic coupling and solar structures

2017-07-12702:35:08 HMI magnetogram



Magnetic coupling and solar structures
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Magnetic coupling and solar structures
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Magnetic coupling and solar structures

AC - wave models DC - braiding models

Reale et al. (2016) ApJ, 830, 21

van Ballegooijen et al. (2011) ApJ, 736, 3

Time: 2000 s

Magnetic coupling through footpoint motions



Magnetic coupling and solar structures

Parker (1983) ApJ, 264, GZN

Current space and ground based telescopes
provide valuable observations to probe the
magnetic coupling through the solar atmosphere



Context

Structures rooted '
in sunspot umbra i

: Structures rooted
outside sunspot umbra

Image credits: NASA/Goddard Space Flight Center Scientific Visualization Studio



Sunspot loops
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Sunspot loops
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Chitta, Peter & Young (2016) A&A, 587, A20

Clear identification of footpoints due
to weak emission from the umbra



Sunspot loops
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Sunspot loops
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Sunspot loops

Supersonic downflows in sunspot loops

- Suppressed convection and Poynting flux

- Signatures of cooling

- Known since 1980s

- IRIS is able to provide spatial connection
of flows to the loops and footp
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Dere (1982) SoPh, 77, 77



Structures rooted outside sunspot umbrae



UV bursts: Diamonds in the rough
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Form over flux cancellation — magnetic reconnection

Confined to low heights — Lack of coronal emission —
but...

—

Photosphere




What if the UV bursts are triggered at the
feet of coronal loops?



Hidden bursts underlying loops

bursts underlying
coronal loops

Chitta et al. (2017b) A&A, 605, A49




Hidden bursts underlying loops

bursts underlying
coronal loops

Chitta et al. (2017b) A&A, 605, A49




Magnetic coupling

Chitta et al. (2017b) A&A, 605, A49

100"’

3D magnetic topology surrounding the burst



Magnetic coupling

Chitta et al. (2017b) A&A, 605, A49

Magnetic reconnection due to null-point shear



Magnetic coupling

Intensity (10’ DN) Doppler shift (km s")
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Chitta et al. (2017b) A&A, 605, A49

Reconnection outflows




20:14UT 20:37UT 21:00 UT 21:22 UT

Magnetic coupling . oW g g
. o

Normalized iftensity

20:20 20:40 21:00 21:20 21:40 22:00
2 Start Timg|(27-Jul-14 20:00:11)

Chitta et al. (2017b) A&A, 605, A49

100" 3

Coronal connection of hidden bhrsts°
through magnetic coupling



Bursts along (Hi-C) braided loops

Cirtain et al. (2013) Nature, 493, 503

AlA 304

Tiwari et al. (2014) ApJL, 795, 24
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Magnetic roots of coronal loops



Where are coronal loop rooted?

Plasma at ~ 1 MK
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IMaX observed an emerging active region



Where are coronal loop rooted?

Plasma at ~ 1 MK
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Chitta, Peter, Solanki et al. (2017a) ApJS, 229, 4

IMaX revealed a rich structure of the magnetic field
in the photosphere which is not detected by HMI



Where are coronal loop rooted?

Chitta, Peter, Solanki et al. (2017a) ApJS, 229, 4

Plasma at ~ 1 MK
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Where are coronal loop rooted?

Chitta, Peter, Solanki et al. (2017a) ApJS, 229, 4
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Magnetic flux cancellation at coronal loop footpoints
— similar to the case of UV bursts



Flux cancellation in action



Flux cancellation in active region cores

Highly variable emission from the footpoint of a
nanoflare driven coronal loop

Testa et al. (2014) Science, 346, 1255724



Flux cancellation In active region cores

Chitta, Peter & Solanki (2018; to appear in A&A Letters; ArXiv e-prints 1806.11045),
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Flux cancellation In active region cores

Chitta, Peter & Solanki (2018; to appear in A&A Letters; ArXiv e-prints 1806.11045)
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Flux cancellation In active region cores

Chitta, Peter & Solanki (2018; to appear in A&A Letters; ArXiv e-prints 1806.11045)
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Flux cancellation In active region cores

Chitta, Peter & Solanki (2018; to appear in A&A Letters; ArXiv e-prints 1806.11045)
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Magnetic coupling and solar structures

log10 T (K)

2017-07-12T02:35:35 AIA 94



Flux cancellation and reconnection

- a process discrete in space and time
In contrast to braiding and waves

- can explain the spatial structuring and
temporal evolution of the atmosphere

generate high heat input to
power the loops In active region cores



Summary

Bursts and coronal loops are governed by the
underlying magnetic landscape

Sunspot loops — supersonic downflows —
cooling due to suppressed energy input

Flux cancellation and signatures of reconnection
(EUV bursts and jets) at the feet of coronal loops

Towards a unified picture of bursts and loops —
driven by magnetic reconnection



