Machine Learning and Inversions of Mg II h&k spectra

A. Sainz Dalda^{1,2},

J. de la Cruz³, M. Gošic^{1,2}, & B. De Pontieu¹

with the special guests

L. E. Fagernæs & M. Cheung

1. LMSAL 2. BAERI 3. University of Stockholm

Bay Area Environmental Research Institute

IRIS-9, Göttingen, 25-29 June 2018

Invited Talk

5. Opportunities and challenges

Machine learning and inversions of Mg II h/k spectra

A. Sainz Dalda¹, J. de la Cruz Rodríguez², M. Gošić¹, and B. De Pontieu³

¹Bay Area Environmental Research Institute - LMSAL ²University of Stockholm ³Lockheed-Martin Solar and Astrophysics Laboratory

Up to date, IRIS has obtained roughly 16500 datasets containing the Mg II h/k spectra. The variety of targets observed, the different set-ups used, and the large number of pixels involved in any of these datasets make their inversion a computationally expensive task. We present a new method to invert the Mg II h/k spectra observed by IRIS. This new approach is based on the STiC inversion of Representative Profiles (RPs). STiC takes into account non-LTE lines and continua including the effects of partial redistribution. The RPs are calculated using an easy-to-understand, easy-to-implement machine learning technique. Thus, a massive number of Mg II h/k profiles can be easily inverted and interpreted in a feasible, meaningful way. As a consequence of this new framework, we are able to recover in a few minutes the thermodynamics at the chromosphere from most of the IRIS Mg II h/k observations.

Machine Learning and Inversions of Mg II h&k spectra

A. Sainz Dalda^{1,2},

J. de la Cruz³, M. Gošic^{1,2}, & B. De Pontieu¹

with the special guests

L. E. Fagernæs & M. Cheung

1. LMSAL 2. BAERI 3. University of Stockholm

Bay Area Environmental Research Institute

Scientist's Happiness Plot

IRIS team *non-scientific* goal: to make you feel (very) happy!

To provide the tools that allow you to earn valuable knowledge about the solar chromosphere in an affordable, easy way, and in a sort time

Mg II h&k IRIS Observations

17192 data sets from 2013-06-27 to 2018-06-27

Sit & Stare

Small raster

Large Sparse 4-step raster

Medium dense 16/32-step raster

Very Large Sparse 64-step raster

Very large dense 320-step raster

Proxies based on Mg II h&k Profile Features

Correlation between Mg II Features and Atmospheric Properties

Spectral Observable	Atmospheric Property
$\Delta v_{\rm k3}$ or $\Delta v_{\rm h3}$	Upper chromospheric velocity
$\Delta v_{\rm k2}$ or $\Delta v_{\rm h2}$	Mid chromospheric velocity
$\Delta v_{k3} - \Delta v_{h3}$	Upper chromospheric velocity gradient
k or h peak separation	Mid chromospheric velocity gradient
k_2 or h_2 peak intensities	Chromospheric temperature
$(I_{k2v} - I_{k2r})/(I_{k2v} + I_{k2r})$	Sign of velocity above $z(\tau = 1)$ of k_2^a

Notes. This is a simplified view and all correlations above have scatter. ^a Likewise for the h_2 peaks.

Pereira et al., 2013, ApJ, 778, 143

Recovering physical from IRIS Mg II h&k lines

Proxies based on Mg II h&k Profile Features

IRIS Large Dense 320-Step Raster

-1.0

0.8

 $Intensity [\times 10^3 DNs]$

-0.2

0.0

-0.2

2016-01-14 23:04:09

Data Information

- Location: $(X,Y) = (559", 121"), \mu = 0.81$
- Spatial scale in X, Y: 0".35, 0".16
- Spectral scale: 0.025 mÅ
- Analyzed spectral range: Mg II k&h
- Exposure Time: 8s
- FoV size: 112" x 119"
- Pixels in the FoV: 228941

Inversion of the Full data by STiC

de la Cruz Rodríguez et al. 2016, ApJ, 830, 30D

Inversion performance: 1 px / 2 CPU-hour (non-LTE PRD) Setup:inversions of only-Intensity profiles with 473 spectral points, model atmosphere in **39 optical depth heights**, 2 cycles, 7 nodes in T,

and 4 nodes both in v_{los} and v_{turb} .

Estimated time: 228941px / (1px/2 CPU-hours) ~ 460000 CPU-hours

Estimated time ALL IRIS data 17192 x 50000 px/(1px/2 CPU-hours) ~ 1.7 10⁹ CPU-hours

Recovering physical from IRIS Mg II h&k lines

Knowledge

How can we reduce the representation of our data without losing their significance?

We want to reduce the number of profiles that we need to analyze while we keep most of the information of our data

k-mean Clustering Technique

- Technique introduced by MacQueen, 1967; Steinhaus, 1957; Lloyd, 1982
- In Solar Physics has been used by: Pietarila et al. 2007, ApJ, 663 (Ca II IR 8542) Viticchié and Sánchez Almeida 2011, A&A, 530 (Fe I 6302) Xu et al. 2016, ApJ, 819 (Mg II k)

From 22894 profiles...

...to 60 Mg II h&k Representative Profiles (RPs)

Spatial Distribution of the Representative Profiles

IRIS Mg k

- The RPs are *clustered* in a similar way that the solar features are in the solar atmosphere.
- The RPs are the signature of different, spatially coherent conditions in the solar atmosphere, i.e., of Representative Model Atmospheres (RMAs)

RPs Inverted by STiC

Temperature recovered from STiC inversion on 60 Mg II h&k RPs

V_{los} recovered from STiC inversion on 60 Mg II h&k RPs

Recovering physical from IRIS Mg II h&k lines

IRIS Inversion based on the RPs Inverted by STiC

Building IRIS² database

Frequency of Spatial Scale in X

Frequency of the Exposure Time in IRIS DB

Position of the Observations in IRIS DB

IRIS Inversion based on the RPs Inverted by STiC

INVERSION of RPs by IRIS²

Recovering physical from IRIS Mg II h&k lines

IRIS Inversion based on the RPs Inverted by STiC

INVERSION FULL FoV "PIXEL by PIXEL" by IRIS²

INVERSION FULL FoV "PIXEL by PIXEL" by IRIS²

Performance of Full STiC (1px every 100px) vs IRIS² 2280 (original) px inverted by STiC and IRIS²

Relative Error with respect Full STiC, $\mathcal{E}_T = |T_{Full STiC} - T_{IRIS}^2 |_{TFull STiC}$

Difference in VLOS, ΔV LOS = VLOS Full STIC - VLOS IRIS²px

Performance in Temperature

Performance in Velocity

-3

-2

 $^{-1}$

Ω

No. of Pixels with $\Delta v_{los} = v_{los Full STiC} - v_{los IRIS^2 px} < 5 \text{ km/s } \& 2 \text{ km/s}$

Recovering physical from IRIS Mg II h&k lines

MOSAIC Mg k 2015-08-23

~4,000,000 pixels

~8,000,000 CPU-hours or... ...10 CPU-hours using IRIS²

INVERSION FULL FoV "PIXEL by PIXEL" by IRIS² & deepIRIS²

INVERSION FULL FoV "PIXEL by PIXEL" by IRIS² & deepIRIS²

Performance of Full STiC (1px every 100px) vs deepIRIS²

2280 (original) px inverted bSTiC and IRIS²

Relative Error with respect Full STiC, $\mathcal{E}_T = |T_{Full STiC} - T_{deepIRIS2}|/T_{Full STiC}$

Difference in VLOS, ΔV LOS = VLOS Full STIC - VLOS IRIS²px

Performance in Temperature

Performance in Velocity

No. of Pixels with $\Delta v_{los} = v_{los Full STiC} - v_{los deepIRIS^2px} < 5$ km/s & 2 km/s

Performance of Full STiC (1px every 100px) vs IRIS² 2280 (original) px inverted by STiC and IRIS²

Relative Error with respect Full STiC, $\mathcal{E}_T = |T_{Full STiC} - T_{IRIS}^2 |_{TFull STiC}$

Difference in VLOS, ΔV LOS = VLOS Full STIC - VLOS IRIS²px

Performance in Temperature

Performance in Velocity

-3

-2

 $^{-1}$

Ω

No. of Pixels with $\Delta v_{los} = v_{los Full STiC} - v_{los IRIS^2 px} < 5 \text{ km/s } \& 2 \text{ km/s}$

Conclusions

Machine Learning and Inversions of Mg II h&k Spectra

- IRIS² allows to invert a man in a 10-CPU desktop machine in **3 min.**
- **deepIRIS**² allows to invert a map in a desktop machine in < **1 min.**
- Inversion of ALL IRIS Mg II h&k data sets with deepIRIS² < 15 (+75) days
- Currently, the bottleneck is reading (accessing a disk through the local network) and preparing (radiation calibration, cropping, interpolate (for only-Mg-II-k or only Mg-h-only) the data ~ 5min.
- Open question: How many profiles does IRIS² need to represent the solar chromosphere?
- Is the IRIS² database good enough? Yes, it is. It can be improved, though.

Thanks for your attention

asainz.solarphysics@gmail.com