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We report on three-dimensional MHD simulations of recurrent small-scale Coronal Mass Ejection
(CME)-like eruptions using flux-emergence simulations and study their formation and eruption mech-
anism. These eruptions have the size and energies of small prominence eruptions. The erupting flux
ropes are formed due to the reconnection of J-loops (formed by shearing and rotation) and are located
inside magnetic envelope field favouring torus instability. The flux rope eruptions are triggered by the
action of a tension removal mechanism, such as the typical tether-cutting where the envelope field re-
connects with itself. Another side tether-cutting is also found. There, the envelope field reconnected
with the J-loops. The two tether-cutting mechanisms transfer hot plasma differently inside the erupting
structures. We report similar mechanisms creating three more eruptions in a recurrent manner.
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Introduction - Recurrent Eruptions
I —

It is common for a single AR to produce several eruptions (e.g. Nitta+ 2001, Wang+
2013)
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Initial Conditions
I
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Eruptions — Overview
I ——
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Eruptions — Overview
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Observations suggest that not all CMEs have a hot core (e.g. Nindos+15)

We will focus on the reason of why we do not find a hot core in our simulation.



1st Eruption — Mechanism |
I
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1st Eruption — Mechanism

1. Find the h-t profile
2. Find Torus index at the flux rope
position

« Flux rope is in the Torus region
(n=[1-2]) from the early stages

- Eruptive phase starts after the
tether-cutting of the envelope field

This process removes all the overlying
tension resulting into an ejective
eruption

(c)

Torus Inst
500 ¢ (c)
400: Reconnection

30054 tflow
200

100

Recon. V, [km/s]

40F () 50 55 60

@ ©5
305 _6 |
5
4

170 200

/150

1100

Zgg [Mm]
N
o
I

10F s8 60 62 64 66 68
E Time [min] :

o
o

Tension
- of envelope

50 55 60 65 70
Time [min]

Veg [km/s]



1st Eruption — Fieldlines

post-reconnection arcade




2nd Eruption — Mechanism |
]

1. The post-reconnection arcade forms the new envelope field
2. The previous eruption has created a magnetic external field

post reconnection arcade
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2nd Eruption — Mechanism I
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2nd Eruption — Mechanism |l

Reconnection of Js form a FR (similar to 1st)
. But the envelope fieldlines do not reconnect with themselves... Envelope

field reconnects with the Js (Envelope — J tether cutting)
3. The reconnected lines twist around the flux rope becoming part of it
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Eruptions — Temperature /Density
-

Eruption 1 Eruption 2  Eruption 3 Eruption 4

Eruption 1 T
Hot plasma is o
injected into the £ Q | [
central region 10 | -t
through the jet 50 Tt ., B
(CME-like) : ° T

N 20
Eruption 2,3.4 10
Cold and dense =0 | g

plasma core. Hot
plasma at the ; :
periphery ‘ | oo

Vz (km/s)

Dynamical heating
of the CME core
could be an
indication for
envelope-envelope
tether cutting

.
\ ’y///_:'/i

W),




CME-like eruptions — Summary
--

Main results:

1. The flux ropes possibly become torus unstable and it undergoes full
ejection due to tether-cutting reconnection.

2. The envelope field can reconnect with the J-loops and act as a tension
removal mechanism

3. Hot plasma transfer in the central region differs with the location of the
tether-cutting

4. Dynamical heating of the flux rope core is indication of the “typical” tether
cutting
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