

Stockholm University

Chromospheric condensation and magnetic field from He I D3 inversions

T. Libbrecht, J. de la Cruz Rodríguez, S. Danilovic, J. Leenaarts & H. Pazira

European Research Council

Established by the European Commission

arXiv:1806.06880

IRIS-9, Göttingen, 25-29 June 2018

Contributed Talk

4. Eruptions in the solar atmosphere

What do non-LTE inversions tell us about flares in the upper chromosphere?

J. de la Cruz Rodríguez¹, S. Danilovic¹, T. Libbretch¹

¹Institute for Solar Physics, Dept. of Astronomy, Stockholm University

Solar fares have long been studied observationally and theoretically with radiation-MHD simulations. However, both approaches have struggled to fully explain the observed line profiles in chromospheric lines. In this talk we present and discuss time-series of 3D empirical models derived from non-LTE inversions performed simultaneously in Ca II H&K, Ca II 8542 and, for some targets, including also Mg II h&k from IRIS.

Previous studies involving depth-stratified inversions have focused in the Ca II 8542 line, that samples the lower chromosphere. By including Ca II H&K and Mg II h&k we can reach the upper chromosphere, and better constrain velocity and temperature gradients in the entire chromosphere.

Stockholm University

Chromospheric condensation and magnetic field from He I D3 inversions

T. Libbrecht, J. de la Cruz Rodríguez, S. Danilovic, J. Leenaarts & H. Pazira

European Research Council

Established by the European Commission

arXiv:1806.06880

(some) chromospheric diagnostics

x [Mm]

(some) chromospheric diagnostics

He I D₃ and 10830: magnetic fields in the mid-upper chromosphere

He I D₃ flare observations at the Swedish 1-m Solar Telescope

Observations with SDO/HMI

X-ray flux during the observation

UT

Inversions

Hazel-1 (Asensio Ramos et al. 2008)

- Two slabs at the foot points.

• Single slab model in flare loops.

Flare loops

Flare loops

Flare loops

150

- But also a blue-shifted population.
 - Vdop and I also may show similar correlations.

Time

- •He I D₃ excellent $V_{I.o.s}$ and **B** diagnostic capabilities.
- •The derived magnetic field orientation is compatible with the loops orientation.
- •Very good diagnostic for chromospheric condensation!

- •He I D₃ excellent $V_{I.o.s}$ and **B** diagnostic capabilities.
- •The derived magnetic field orientation is compatible with the loops orientation.
- •Very good diagnostic for chromospheric condensation!

