

Statistical studies of IRIS data towards better understanding of small-scale reconnection

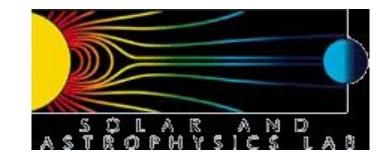
Authors: Lijia Guo^{1,2}, Bart De Pontieu^{1,3,4}, Juan Martinez-Sykora^{1,2}

- 1. Lockheed Martin Solar and Astrophysics Laboratory, 3215 Hanover St., Org. A021S, Bldg. 252, Palo Alto, CA 94304, USA.
- 2. Bay Area Environmental Research Institute, 625 2nd St Ste. 209, Petaluma, CA 94952, USA.
- 3. Institute of Theoretical Astrophysics, University of Oslo, Post Office Box 1029, Blindern, N-0315, Oslo, Norway.
- 4. Rosseland Centre for Solar Physics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo,Norway

IRIS-9, Göttingen, 25-29 June 2018

Contributed Talk

1. Fundamental physical processes and modeling


Statistical studies of IRIS data towards better understanding of small-scale reconnection

<u>L.-J. Guo^{1,2}</u>, B. De Pontieu^{1,3}

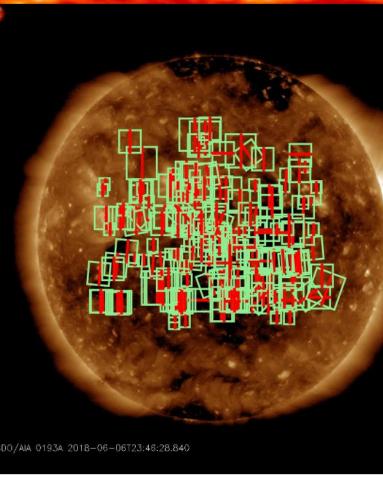
¹Lockheed Martin Solar and Astrophysics Laboratory, CA, United States. ²Bay Area Environmental Research Institute, Petaluma, CA, USA. ³University of Oslo, Oslo, Norway.

Magnetic reconnection is a fundamental plasma process that play a critical role in energizing the solar atmosphere. Despite the fact that it is one of the most widely assumed mechanisms in studies of solar eruptive events, it is still not fully understood. Recently, we used spectroscopic data from the Interface Region Imaging Spectrograph (IRIS) mission to reveal the transient evolution of fast reconnection mediated by plasmoids at several small-scale reconnection sites (Innes & Guo et al. 2015, Rouppe van der Voort et al., 2017). In this presentation, we present statistical studies of explosive events on a large amount of samples with the help of artificial intelligence. The IRIS team obtained a significant number of observations of explosive events in Si IV (and other wavelengths) during 2016 and 2017. We apply machine-learning and deep-learning algorithms on these data sets to detect explosive events. All the events we detect are then categorized according to different aspects (e.g. dynamics, absorption features etc.). For each group, we obtain key parameters of reconnection dynamics (e.g. growth time) and by comparing these parameters in different group, we are able to reveal how reconnection proceeds in different regimes on the Sun.

Statistical studies of IRIS data towards better understanding of small-scale reconnection

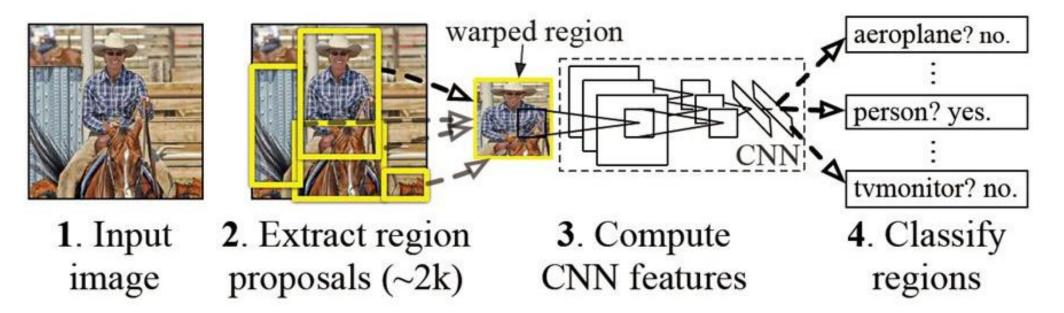
Authors: Lijia Guo^{1,2}, Bart De Pontieu^{1,3,4}, Juan Martinez-Sykora^{1,2}

- 1. Lockheed Martin Solar and Astrophysics Laboratory, 3215 Hanover St., Org. A021S, Bldg. 252, Palo Alto, CA 94304, USA.
- 2. Bay Area Environmental Research Institute, 625 2nd St Ste. 209, Petaluma, CA 94952, USA.
- 3. Institute of Theoretical Astrophysics, University of Oslo, Post Office Box 1029, Blindern, N-0315, Oslo, Norway.
- 4. Rosseland Centre for Solar Physics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo,Norway


Search for sit-and-stare data sets for statistic studies of explosive events in IRIS database

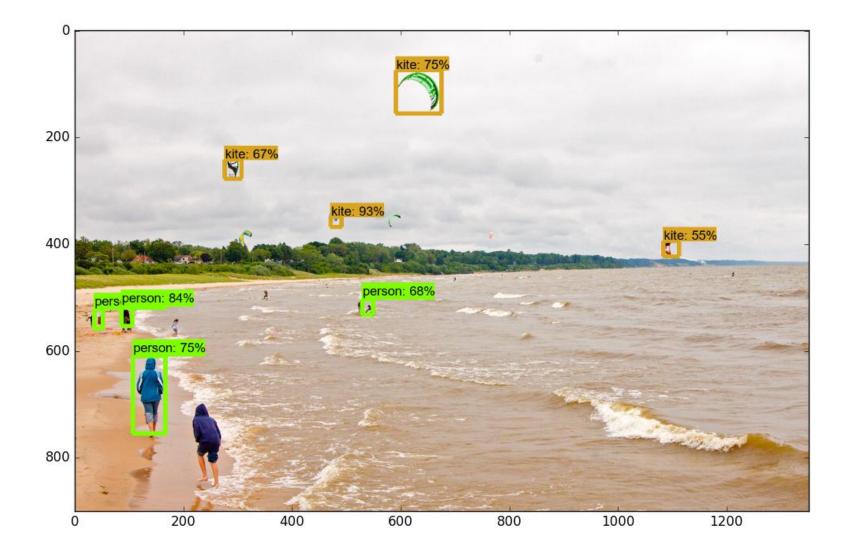
INTERFACE REGION IMAGING SPECTROGRAPH IRIS DATA SEARCH

Help

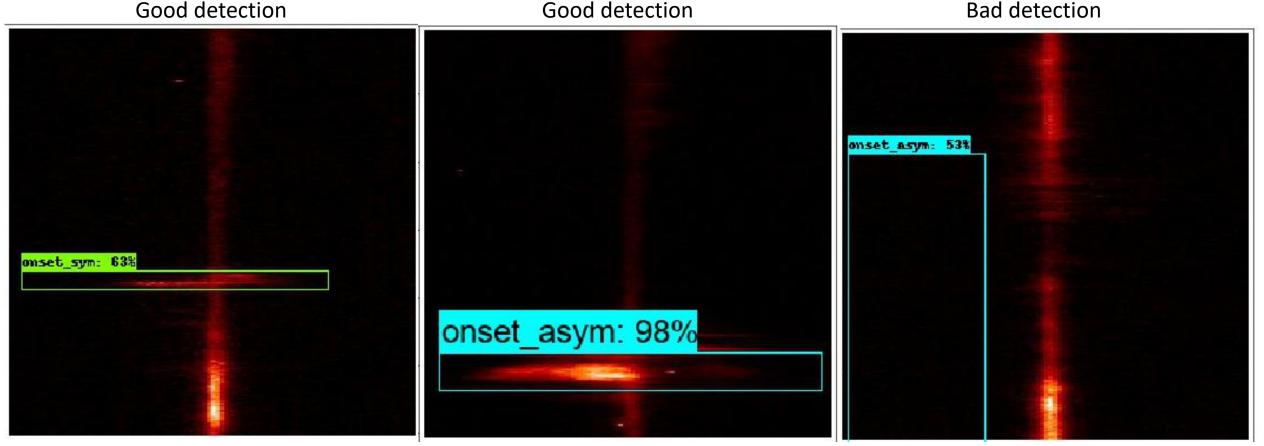

Export SSW

<< < Start > >>	<< < End > >>						
2013-07-20T00:00	2018-06-08T00:00						
min Raster max	min SJI max						
FOV X	FOV X						
FOV Y	FOV Y						
Count 1	Cadence						
Cdnce 6	1330						
Raster Step	1400						
Count	2796						
Size	2832						
Cdnce	Target						
Exposure Time	-620 XCEN 620						
Min Exp	-620 YCEN 620						
Exp Time	Radius						
	OBSID: 🔻						
Spectral Lines	Target :						
Desc:	Events						
Count: 264 Limit: 200 🔻	Search Reset More						
Only OBS with data	Only Annotated 193 V						

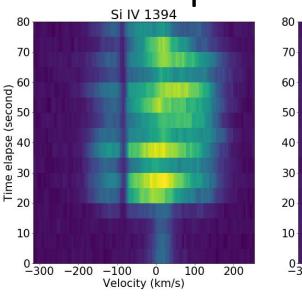
•	Time	Goal	OBS Desc.	X,Y	RX	RY	Raster Cad	Step Cad
	3-12-03 19-18:36	Plage near PIL in AR 11909	Large sit-and-stare	41",-268"	0"	119"	5s	5s
	3-12-03 34-20:16	More plage in AR 11909	Large sit-and-stare	60",-312"	0"	119"	5s	5s
	3-12-04 19-12:32	Moss in AR 11909	Large sit-and-stare	217",-331"	0"	119"	5s	5s
	3-12-05 58-22:40	Sit n Stare in mixed polarity AR 11909	Very large sit-and- stare	448",-292"	0"	174"	5s	5s
	3-12-06 06-09:43	Sit n stare Emerging AR 11916	Large sit-and-stare	43",-227"	0"	119"	5s	5s
	3-12-06 44-11:21	Sit n stare on Emergin AR 11916	Large sit-and-stare	63",-221"	0"	119"	5s	5s
1000	3-12-06 52-20:55	Jitter test of FW transient	Large sit-and-stare	239",-218"	0"	119"	5s	5s
	3-12-07 48-13:42	Sit n stare AR 11916	Large sit-and-stare	276",-231"	0"	119"	5s	5s
	3-12-07 24-15:18	Sit n stare AR 11916	Large sit-and-stare	309",-216"	0"	119"	5s	5s
	3-12-07 14-16:53	Sit n stare AR 11916	Large sit-and-stare	318",-223"	0"	119"	5s	5s
	3-12-08 09-01:05	Sit n stare Spot AR 11916	Large sit-and-stare	433",-212"	0"	119"	5s	5s
201	3-12-14	AR 11921 Sit n			122	1.1212	- <u></u>	102

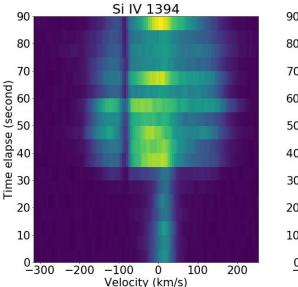

Application of deep-learning algorithms on object detection

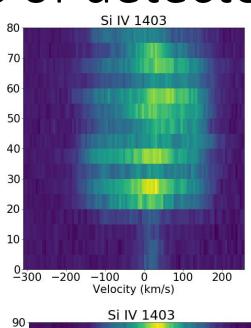
Step1. Input an image Step2. Use selective search to obtain ~2k proposals Step3. Warp each proposal and apply CNN to extract its features Step4. Adopt class-specified SVM to score each proposal

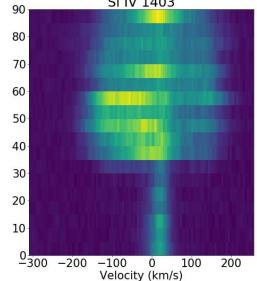

CNN stands for convolutional neural network

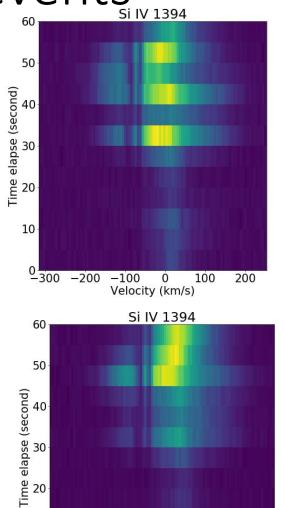
Detection results


Detection results include: boxes enclosing the objects, classes of the objects and scores showing the confidence level of detect results.


Apply object-detection neural networks on IRIS data



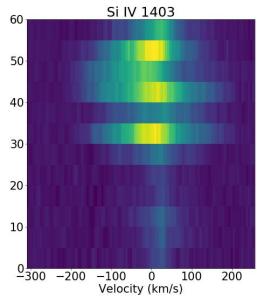

We train and apply neural networks on the time evolution of Si IV 1394 spectra of each pixel along the IRIS slit. Accuracy for strong events: >96% on tested data sets, on average less than one hour per data set. In this presentation, we present results from IRIS data set at 2014-05-04 12:09:28-14:29:21.

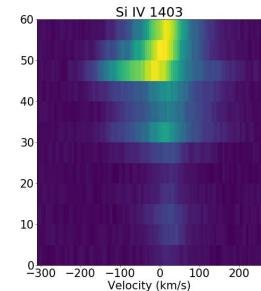

Examples of detected events

10

0-300

-200

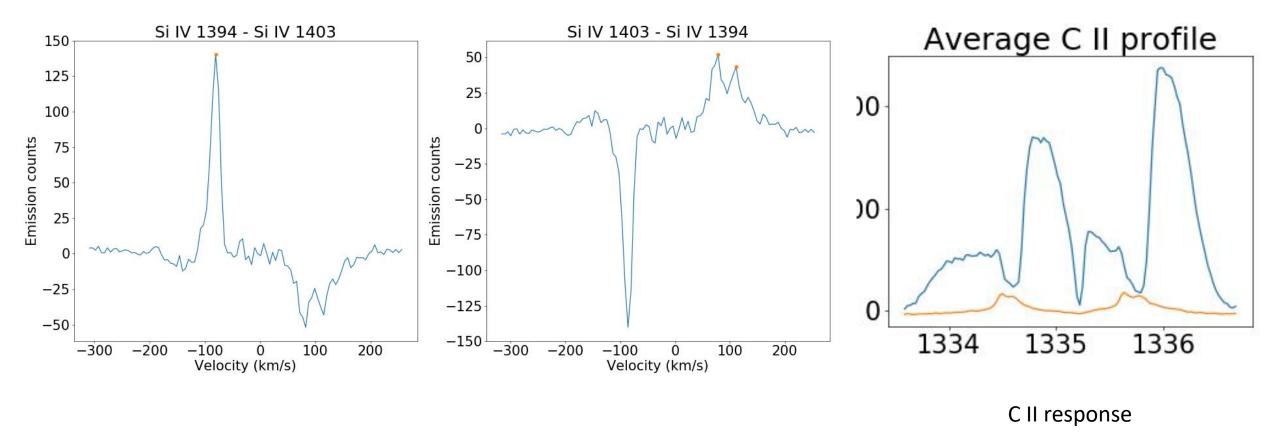

-100


Ó

Velocity (km/s)

200

100

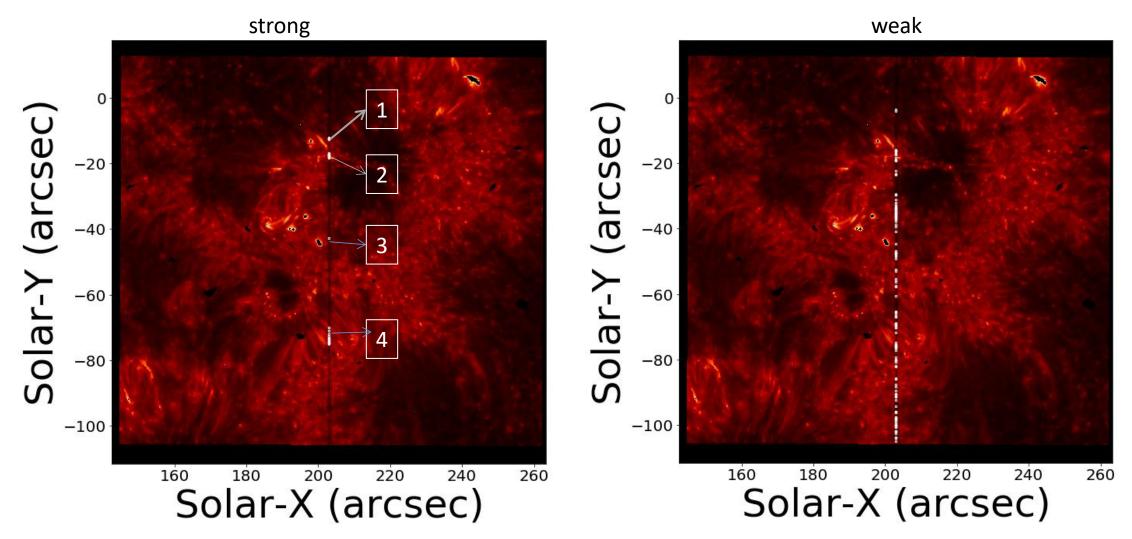


Detection results and preliminary diagnostics

	В	C	D	E	F	G		Н	I		J	1	K		L		М
1	pix	t_start t	t_end	sym	score	strong	Si	IV/O IV	Si 1394/1403	CII	resp	MgII_	_resp	Ni_	absorb	Fe_	absorb
2	1	38	43	asymmetric	0.78724	no		19.3497	2.059360561	no	10	yes		no		no	54.0
3	1	909	916	asymmetric	0.844379	no		14.2195	1.910840931	no		yes		yes	6	no	
4	1	1051	1055	asymmetric	0.791152	no		22.2903	1.896400905	no		yes		no		no	
5	4	511	517	asymmetric	0.999254	no		15.126	2.056310714	no		yes		no		no	
6	5	512	517	asymmetric	0.998429	no		13	2.04837822	no		yes		no		no	
7	6	1256	1264	asymmetric	0.776505	no		28.8171	2.057692207	no		yes		no		no	
8	7	703	709	asymmetric	0.963353	no		16.8503	1.991366853	no		yes		no		no	
9	7	1626	1633	asymmetric	0.864544	no		17.2506	2.020466199	no		yes		no		no	
10	8	9	14	asymmetric	0.828118	no		18.1082	1.998461502	no		yes		no		no	
11	8	1627	1634	asymmetric	0.997785	no		19.603	2.037374686	no		yes		no		no	
12	9	8	12	asymmetric	0.999096	no		14. 2204	2.038894702	no		yes		no		no	
13	11	1386	1392	asymmetric	0.812479	no		18.2733	2.003063473	no		yes		no		no	
14	13	310	316	asymmetric	0.769788	no		20. 5636	1.954596343	no		yes		no		no	
15	14	585	597	asymmetric	0.857771	no		18.6446	2.168740335	no		yes		no		no	
16	15	585	597	asymmetric	0.79004	no		24.6329	2.081346908	no		yes		no		no	
17	16	713	719	asymmetric	0.7657	no		-435.091	1.931338139	no		yes		no		no	
18	16	1340	1345	asymmetric	0.7717	no		13.9403	2.034792403	no		yes		no		no	
19	17	87	93	asymmetric	0.887149	no		28.2689	2.119247678	no		yes		no		no	
20	18	87	93	asymmetric	0.677204	no		21.7399	1.964422257	no		yes		no		no	
21	18	363	369	asymmetric	0.998273	no		30. 4256	1.983283023	no		yes		no		no	
22	18	454	461	symmetric	0.918432	no		20.8525	2.042559572	no		yes		no		no	
23	18	997	1004	asymmetric	0.858464	no		15.7505	2.076275216	no		yes		no		no	

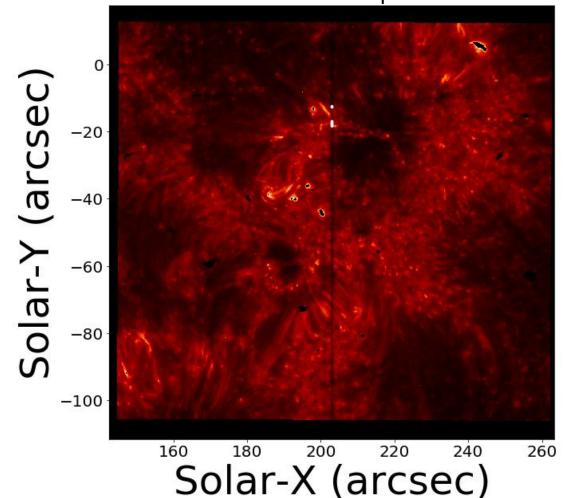
718 events are detected.

Methods to determine absorption features and chromospheric response



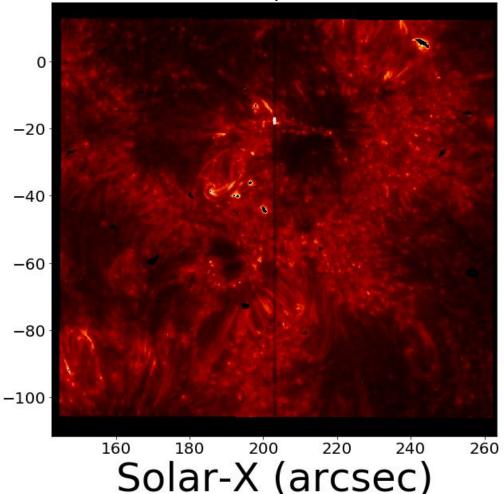
Ni II absorption

Fe II absorption

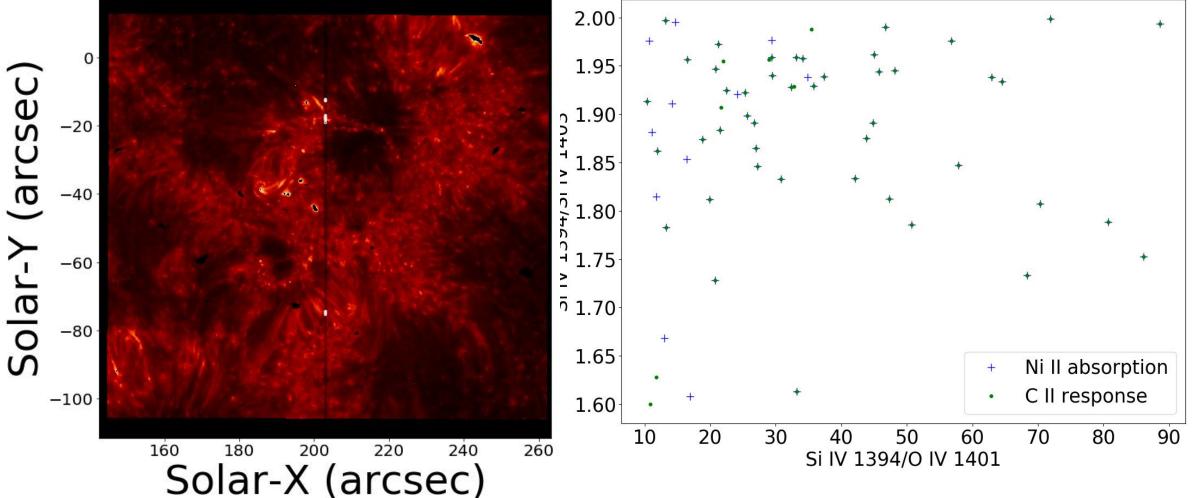

Yellow line is the time-averaged C II profile for each pixel.

Locations of strong events versus weak events

Strong events occur recurrently over four locations, each event last 30~90 seconds.


Locations of events with Ni II and Fe II absorption

Ni II absorption


0 Solar-Y (arcsec) -20 -40-80 -100

Fe II absorption

Locations of events with C II response

C II response

Correlation between Ni II absorption and C II response

Conclusion

- We present a method to study a massive amount of spectroscopic data efficiently.
- Judging from spectroscopic diagnostics (C II response, Ni II absorption, Fe II absorption etc.), explosive events occur under different plasma environments.
- Ongoing work:
 - ---Include Mg II h&k, triplet response
 - ---Scan all 264 sit-and-stare datasets

Thank you for your attention!

Hotdog detection app

Santa monitor

Supplemental slides Machine learning softwares

- Caffe (c), Keras, Tensorflow(python), Theano(python) etc.
- We will go with tensorflow for now, and keep an eye on developments of other softwares.
- https://www.tensorflow.org/
- If you are interested in other softwares, here is a summary: https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

Prepare data for training: annotate images

Annotation software generate *.xml files

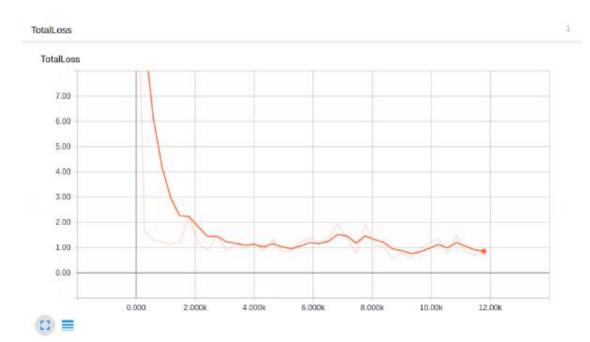
1	A	В	С	D	E	F	G	Н
1	filename	width	height	class	xmin	ymin	xmax	ymax
2	101-5.png	307	607	event	81	507	241	535
3	102-5.png	307	607	event	68	502	249	538
4	103-5.png	307	607	event	85	494	240	537
5	103-5.png	307	607	event	83	564	247	600
6	104-5.png	307	607	event	83	559	235	604
7	125-3.png	307	607	event	94	412	218	463
8	130-4.png	307	607	event	69	60	252	85
9	130-5.png	307	607	event	66	49	272	88
10	162-5.png	307	607	event	87	277	235	323
11	163-5.png	307	607	event	68	281	247	327

Choose a model

models available in model zoo:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

System	VOC2007 test mAP	FPS (Titan X)	Number of Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	~6000	~1000 x 600
YOLO (customized)	63.4	45	98	448 x 448
SSD300* (VGG16)	77.2	46	8732	300 x 300
SSD512* (VGG16)	79.8	19	24564	512 x 512


Download models and put them in the 'object_detection' directory

Start training

Command Prompt

INFO:tensorflow:Recording summary at step 474. INFO:tensorflow:global step 475: loss = 6.7612 (52.423 sec/step) INFO:tensorflow:Recording summary at step 475. INFO:tensorflow:Saving checkpoint to path training/model.ckpt INFO:tensorflow:Recording summary at step 475. INFO:tensorflow:global step 476: loss = 7.2071 (40.643 sec/step) INFO:tensorflow:Recording summary at step 476. INFO:tensorflow:Recording summary at step 476. INFO:tensorflow:global step 477: loss = 6.9404 (50.605 sec/step) INFO:tensorflow:Recording summary at step 477. INFO:tensorflow:Recording summary at step 477. INFO:tensorflow:Saving checkpoint to path training/model.ckpt INFO:tensorflow:global step 478: loss = 5.6367 (46.932 sec/step) INFO:tensorflow:Recording summary at step 478. INFO:tensorflow:Recording summary at step 478. INFO:tensorflow:global step 479: loss = 6.5664 (51.286 sec/step) INFO:tensorflow:Recording summary at step 479. INFO:tensorflow:Recording summary at step 479. INFO:tensorflow:Saving checkpoint to path training/model.ckpt INFO:tensorflow:global step 480: loss = 5.3346 (39.718 sec/step) INFO:tensorflow:Recording summary at step 480. INFO:tensorflow:global step 481: loss = 6.6955 (37.484 sec/step) INFO:tensorflow:Saving checkpoint to path training/model.ckpt INFO:tensorflow:Recording summary at step 481. INFO:tensorflow:global step 482: loss = 6.8000 (48.541 sec/step) INFO:tensorflow:Recording summary at step 482. INFO:tensorflow:Recording summary at step 482. INFO:tensorflow:Saving checkpoint to path training/model.ckpt tensorflow) C:\Users\guoli\Downloads\models-master\research\object_detect type 'python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/iris.config'

Automatically save training progress Automatically restart from the latest checkpoint.

Resources

- https://pythonprogramming.net/introduction-use-tensorflow-objectdetection-api-tutorial/
- https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5 JvHM8ljYj-zLfQRF3EO8sYv