

How do fibrils appear in Ca II K data compared to Ha data?

Sepideh Kianfar¹, Jorrit Leenaarts¹, Jaime de la Cruz Rodríguez¹ ¹ Institute for Solar Physics, Department of Astronomy Stockholm University, Albanova University Center, SE–10691 Stockholm, Sweden

Introduction

Observations show that fibrils cover most of the chromosphere in line core images in Ca II H&K and H α . In this project, we investigate fibrils that appear bright in wavelength-integrated Ca II K images. They are bright because their K2 intensity is higher than their surroundings. The width of the central reversal in the fibrils is the same. A fraction of these bright fibrils has a clear counterpart in H α . Those that do also appear bright in the H α line core.

Observations

- * Observed by the Swedish 1-m Solar telescope (SST)
- ***** On 2016-09-15, at 08:49:51 UT
- ★ Field of view of 63'' × 42'' at disk center
- * Targeted a plage region at the location of a decayed active

region -

 ★ Instruments:
▶ CRisp Imaging SpectroPolarimeter (CRISP)
→ Fe I 6301-2, Ca II 8542
& Hα lines

onginateu.

▶ CHROMospheric Imaging Spectrometer (CHROMIS) → Ca II K line

Results 40 30 · 20 8 $\lambda_{Ca,(}$ 10 Single scan with the best seeing condition Λ Integrated over the near-core wavelength positions 40 Unsharp—masked 20 20 $\Lambda H_{\alpha,0}$ A 10 10 20 30 40 [arcsec] ath of 50 brigh Figure 2. Over-plotted paths of selected fibrils (red) and the neighbouring dark background (blue). The wavelengthare chosen integration range is shown at the left side of the maps ll K map * Fibrillar structures are only bright in the very core hbouring dark of the Ca II K line. ground is defined * The central reversal is generally the same as in the region next to it: $\checkmark red \rightarrow$ fibril, *blue* \rightarrow background \Rightarrow This suggests that they only exist higher up in the chromosphere $Ca \amalg K$ H_{Ω} * Most of the bright fibrils in the selected

Figure 3. Spectral profile of the bright fibrils sample, appearing in Ca II K, in comparison to H α . The fibrillar paths are over plotted on wavelength—integrated and unsharp—masked maps.

* Most of the bright fibrils in the selected sample have the same bright structure in Hα

similar bright structure in both maps
shifted/no bright structure in Hα

Discussion

We compared our results with Ca II K and H α images computed from a 3D radiation-MHD simulation with the *Bifrost* code (See figure 4).

The simulation contains some fibrils, but not as many as in the observations, especially in the case of the bright fibrils. A few bright fibril—like structures are indicated with red dashed lines.

As a next step, we will determine the atmospheric structure at the location of the observed bright fibrils and their neighbouring background by running non-LTE inversions. We so aim to understand the nature and origin of bright fibrils.

References

Leenaarts, J., Carlsson, M., & Rouppe van der Voort, L. 2012, ApJ, 749, 136

Bjørgen, J. P., Sukhorukov, A. V., Leenaarts, J., et al. 2018, A&A, 611, A62 de la Cruz Rodríguez, J., Leenaarts, J., & Asensio Ramos, A. 2016, ApJ, 830, L30

IRIS-9, Göttingen, 25-29 June 2018

Poster

2. Chromospheric heating and dynamics

How Fibrils Appear in the Ca II K Data in Comparison to $H\alpha$ Data

Sepideh Kianfar¹, Jorrit Leenaarts¹, Jaime de la Cruz Rodríguez¹

¹ Institute for Solar Physics, Department of Astronomy Stockholm University, Albanova University Center, SE-10691 Stockholm, Sweden

Observations show that fibrils cover most of the chromosphere in line–core images in Ca II H&K and H α . We observed these lines with the Swedish 1–meter Solar Telescope using the CHROMIS and CRISP imaging spectrographs. We investigate fibrils that appear bright in wavelength–integrated Ca II K images. They are bright because their K2 intensity is higher than their surroundings. The width of the emission peaks in the fibrils is the same as in their surroundings. Only a fraction of the fibrils has a clear counterpart in H α . Those that do also appear bright in the H α line–core. We will discuss possible explanations for this behavior.